kig
cubic-common.h
Go to the documentation of this file.
const Coordinate calcCubicLineIntersect(const CubicCartesianData &c, const LineData &l, int root, bool &valid)
Definition: cubic-common.cc:375
const CubicCartesianData calcCubicNodeThroughPoints(const std::vector< Coordinate > &points)
Definition: cubic-common.cc:247
const CubicCartesianData calcCubicThroughPoints(const std::vector< Coordinate > &points)
This function calcs a cartesian cubic equation such that the given points are on the cubic...
Definition: cubic-common.cc:58
The Coordinate class is the basic class representing a 2D location by its x and y components...
Definition: coordinate.h:33
CubicCartesianData(double a000, double a001, double a002, double a011, double a012, double a022, double a111, double a112, double a122, double a222)
Constructor.
Definition: cubic-common.h:48
bool valid() const
Return whether this is a valid CubicCartesianData.
Definition: cubic-common.cc:539
const CubicCartesianData calcCubicTransformation(const CubicCartesianData &data, const Transformation &t, bool &valid)
Definition: cubic-common.cc:438
This class represents an equation of a cubic in the form (in homogeneous coordinates, ), .
Definition: cubic-common.h:31
void calcCubicLineRestriction(CubicCartesianData data, Coordinate p1, Coordinate dir, double &a, double &b, double &c, double &d)
Definition: cubic-common.cc:395
bool operator==(const CubicCartesianData &lhs, const CubicCartesianData &rhs)
Definition: cubic-common.cc:524
double calcCubicYvalue(double x, double ymin, double ymax, int root, CubicCartesianData data, bool &valid, int &numroots)
Definition: cubic-common.cc:345
const CubicCartesianData calcCubicCuspThroughPoints(const std::vector< Coordinate > &points)
Definition: cubic-common.cc:153
static CubicCartesianData invalidData()
Create an invalid CubicCartesianData.
Definition: cubic-common.cc:532
This file is part of the KDE documentation.
Documentation copyright © 1996-2020 The KDE developers.
Generated on Mon Jun 22 2020 13:12:05 by doxygen 1.8.7 written by Dimitri van Heesch, © 1997-2006
Documentation copyright © 1996-2020 The KDE developers.
Generated on Mon Jun 22 2020 13:12:05 by doxygen 1.8.7 written by Dimitri van Heesch, © 1997-2006
KDE's Doxygen guidelines are available online.