Qyoto  4.0.5
Qyoto is a C# language binding for Qt
 All Classes Namespaces Functions Variables Typedefs Enumerations Properties
QtGui.QTransform Class Reference

The QTransform class specifies 2D transformations of a coordinate system. More...

Inheritance diagram for QtGui.QTransform:
Collaboration diagram for QtGui.QTransform:

Public Types

enum  TransformationType {
  TxNone = 0, TxProject = 16, TxRotate = 4, TxScale = 2,
  TxShear = 8, TxTranslate = 1
}
 

Public Member Functions

override bool Equals (object o)
 
override int GetHashCode ()
 
 QTransform ()
 
 
 QTransform (QMatrix mtx)
 
 
 QTransform (QTransform copy)
 
 
 QTransform (Qt.Initialization arg1)
 
 
 QTransform (double h11, double h12, double h21, double h22, double dx, double dy)
 
 
 QTransform (double h11, double h12, double h13, double h21, double h22, double h23, double h31, double h32, double h33=1.0)
 
 
virtual void CreateProxy ()
 
new QTransform Adjoint ()
 
 
new double Det ()
 
 
new double Determinant ()
 
 
new double Dx ()
 
 
new double Dy ()
 
 
new QTransform Inverted ()
 
 
new QTransform Inverted (ref bool invertible)
 
 
new bool IsAffine ()
 
 
new bool IsIdentity ()
 
 
new bool IsInvertible ()
 
 
new bool IsRotating ()
 
 
new bool IsScaling ()
 
 
new bool IsTranslating ()
 
 
new double M11 ()
 
 
new double M12 ()
 
 
new double M13 ()
 
 
new double M21 ()
 
 
new double M22 ()
 
 
new double M23 ()
 
 
new double M31 ()
 
 
new double M32 ()
 
 
new double M33 ()
 
 
new QPoint Map (QPoint p)
 
 
new QPointF Map (QPointF p)
 
 
new QLine Map (QLine l)
 
 
new QLineF Map (QLineF l)
 
 
new QPolygonF Map (QPolygonF a)
 
 
new QPolygon Map (QPolygon a)
 
 
new QRegion Map (QRegion r)
 
 
new QPainterPath Map (QPainterPath p)
 
 
new void Map (int x, int y, ref int tx, ref int ty)
 
 
new void Map (double x, double y, ref double tx, ref double ty)
 
 
new QRect MapRect (QRect arg1)
 
 
new QRectF MapRect (QRectF arg1)
 
 
new QPolygon MapToPolygon (QRect r)
 
 
new void Reset ()
 
 
new QTransform Rotate (double a, Qt.Axis axis=Qt.Axis.ZAxis)
 
 
new QTransform RotateRadians (double a, Qt.Axis axis=Qt.Axis.ZAxis)
 
 
new QTransform Scale (double sx, double sy)
 
 
new void SetMatrix (double m11, double m12, double m13, double m21, double m22, double m23, double m31, double m32, double m33)
 
 
new QTransform Shear (double sh, double sv)
 
 
new QMatrix ToAffine ()
 
 
new QTransform Translate (double dx, double dy)
 
 
new QTransform Transposed ()
 
 
new QTransform.TransformationType Type ()
 
 
new void Dispose ()
 

Static Public Member Functions

static QTransform operator* (QTransform arg1, double arg2)
 
 
static QTransform operator+ (QTransform arg1, double arg2)
 
static QTransform operator- (QTransform arg1, double arg2)
 
static QTransform operator/ (QTransform arg1, double arg2)
 
static QTransform FromScale (double dx, double dy)
 
 
static QTransform FromTranslate (double dx, double dy)
 
 
static bool operator!= (QTransform arg1, QTransform arg2)
 
 
static QTransform operator* (QTransform arg1, QTransform arg2)
 
 
static bool operator== (QTransform arg1, QTransform arg2)
 
 
static bool QuadToQuad (QPolygonF one, QPolygonF two, QTransform result)
 
 
static bool QuadToSquare (QPolygonF quad, QTransform result)
 
 
static bool SquareToQuad (QPolygonF square, QTransform result)
 
 

Protected Member Functions

 QTransform (System.Type dummy)
 

Protected Attributes

SmokeInvocation interceptor
 

Properties

virtual System.IntPtr SmokeObject [get, set]
 

Detailed Description

The QTransform class specifies 2D transformations of a coordinate system.

A transformation specifies how to translate, scale, shear, rotate or project the coordinate system, and is typically used when rendering graphics.

QTransform differs from QMatrix(obsolete) in that it is a true 3x3 matrix, allowing perspective transformations. QTransform's toAffine() method allows casting QTransform to QMatrix(obsolete). If a perspective transformation has been specified on the matrix, then the conversion will cause loss of data.

QTransform is the recommended transformation class in Qt.

A QTransform object can be built using the setMatrix(), scale(), rotate(), translate() and shear() functions. Alternatively, it can be built by applying basic matrix operations. The matrix can also be defined when constructed, and it can be reset to the identity matrix (the default) using the reset() function.

The QTransform class supports mapping of graphic primitives: A given point, line, polygon, region, or painter path can be mapped to the coordinate system defined by this matrix using the map() function. In case of a rectangle, its coordinates can be transformed using the mapRect() function. A rectangle can also be transformed into a polygon (mapped to the coordinate system defined by this matrix), using the mapToPolygon() function.

QTransform provides the isIdentity() function which returns true if the matrix is the identity matrix, and the isInvertible() function which returns true if the matrix is non-singular (i.e. AB = BA = I). The inverted() function returns an inverted copy of this matrix if it is invertible (otherwise it returns the identity matrix), and adjoint() returns the matrix's classical adjoint. In addition, QTransform provides the determinant() function which returns the matrix's determinant.

Finally, the QTransform class supports matrix multiplication, addition and subtraction, and objects of the class can be streamed as well as compared.

Rendering Graphics

When rendering graphics, the matrix defines the transformations but the actual transformation is performed by the drawing routines in QPainter.

By default, QPainter operates on the associated device's own coordinate system. The standard coordinate system of a QPaintDevice has its origin located at the top-left position. The x values increase to the right; y values increase downward. For a complete description, see the coordinate system documentation.

QPainter has functions to translate, scale, shear and rotate the coordinate system without using a QTransform. For example:

void SimpleTransformation::paintEvent(QPaintEvent *)

{

QPainter painter(this);

painter.setPen(QPen(Qt::blue, 1, Qt::DashLine));

painter.drawRect(0, 0, 100, 100);

painter.rotate(45);

painter.setFont(QFont("Helvetica", 24));

painter.setPen(QPen(Qt::black, 1));

painter.drawText(20, 10, "QTransform");

}

Although these functions are very convenient, it can be more efficient to build a QTransform and call QPainter::setTransform() if you want to perform more than a single transform operation. For example:

void CombinedTransformation::paintEvent(QPaintEvent *)

{

QPainter painter(this);

painter.setPen(QPen(Qt::blue, 1, Qt::DashLine));

painter.drawRect(0, 0, 100, 100);

QTransform transform;

transform.translate(50, 50);

transform.rotate(45);

transform.scale(0.5, 1.0);

painter.setTransform(transform);

painter.setFont(QFont("Helvetica", 24));

painter.setPen(QPen(Qt::black, 1));

painter.drawText(20, 10, "QTransform");

}

Basic Matrix Operations

A QTransform object contains a 3 x 3 matrix. The m31 (dx) and m32 (dy) elements specify horizontal and vertical translation. The m11 and m22 elements specify horizontal and vertical scaling. The m21 and m12 elements specify horizontal and vertical shearing. And finally, the m13 and m23 elements specify horizontal and vertical projection, with m33 as an additional projection factor.

QTransform transforms a point in the plane to another point using the following formulas:

x' = m11*x + m21*y + dx

y' = m22*y + m12*x + dy

if (is not affine) {

w' = m13*x + m23*y + m33

x' /= w'

y' /= w'

}

The point (x, y) is the original point, and (x', y') is the transformed point. (x', y') can be transformed back to (x, y) by performing the same operation on the inverted() matrix.

The various matrix elements can be set when constructing the matrix, or by using the setMatrix() function later on. They can also be manipulated using the translate(), rotate(), scale() and shear() convenience functions. The currently set values can be retrieved using the m11(), m12(), m13(), m21(), m22(), m23(), m31(), m32(), m33(), dx() and dy() functions.

Translation is the simplest transformation. Setting dx and dy will move the coordinate system dx units along the X axis and dy units along the Y axis. Scaling can be done by setting m11 and m22. For example, setting m11 to 2 and m22 to 1.5 will double the height and increase the width by 50%. The identity matrix has m11, m22, and m33 set to 1 (all others are set to 0) mapping a point to itself. Shearing is controlled by m12 and m21. Setting these elements to values different from zero will twist the coordinate system. Rotation is achieved by setting both the shearing factors and the scaling factors. Perspective transformation is achieved by setting both the projection factors and the scaling factors.

Here's the combined transformations example using basic matrix operations:

void BasicOperations::paintEvent(QPaintEvent *)

{

double pi = 3.14;

double a = pi/180 * 45.0;

double sina = sin(a);

double cosa = cos(a);

QTransform translationTransform(1, 0, 0, 1, 50.0, 50.0);

QTransform rotationTransform(cosa, sina, -sina, cosa, 0, 0);

QTransform scalingTransform(0.5, 0, 0, 1.0, 0, 0);

QTransform transform;

transform = scalingTransform * rotationTransform * translationTransform;

QPainter painter(this);

painter.setPen(QPen(Qt::blue, 1, Qt::DashLine));

painter.drawRect(0, 0, 100, 100);

painter.setTransform(transform);

painter.setFont(QFont("Helvetica", 24));

painter.setPen(QPen(Qt::black, 1));

painter.drawText(20, 10, "QTransform");

}

See also QPainter, Coordinate System, Affine Transformations Demo, and Transformations Example.

Member Enumeration Documentation

Enumerator:
TxNone 
TxProject 
TxRotate 
TxScale 
TxShear 
TxTranslate 

Constructor & Destructor Documentation

QtGui.QTransform.QTransform ( System.Type  dummy)
protected
QtGui.QTransform.QTransform ( )

Constructs an identity matrix.

All elements are set to zero except m11 and m22 (specifying the scale) and m13 which are set to 1.

See also reset().

QtGui.QTransform.QTransform ( QMatrix  mtx)

Constructs a matrix that is a copy of the given matrix. Note that the m13, m23, and m33 elements are set to 0, 0, and 1 respectively.

QtGui.QTransform.QTransform ( QTransform  copy)

Constructs an identity matrix.

All elements are set to zero except m11 and m22 (specifying the scale) and m13 which are set to 1.

See also reset().

QtGui.QTransform.QTransform ( Qt.Initialization  arg1)

Constructs an identity matrix.

All elements are set to zero except m11 and m22 (specifying the scale) and m13 which are set to 1.

See also reset().

QtGui.QTransform.QTransform ( double  h11,
double  h12,
double  h21,
double  h22,
double  dx,
double  dy 
)

Constructs an identity matrix.

All elements are set to zero except m11 and m22 (specifying the scale) and m13 which are set to 1.

See also reset().

QtGui.QTransform.QTransform ( double  h11,
double  h12,
double  h13,
double  h21,
double  h22,
double  h23,
double  h31,
double  h32,
double  h33 = 1.0 
)

Constructs an identity matrix.

All elements are set to zero except m11 and m22 (specifying the scale) and m13 which are set to 1.

See also reset().

Member Function Documentation

new QTransform QtGui.QTransform.Adjoint ( )

Returns the adjoint of this matrix.

virtual void QtGui.QTransform.CreateProxy ( )
virtual
new double QtGui.QTransform.Det ( )

Returns the matrix's determinant. Use determinant() instead.

new double QtGui.QTransform.Determinant ( )

Returns the matrix's determinant.

new void QtGui.QTransform.Dispose ( )
new double QtGui.QTransform.Dx ( )

Returns the horizontal translation factor.

See also m31(), translate(), and Basic Matrix Operations.

new double QtGui.QTransform.Dy ( )

Returns the vertical translation factor.

See also translate() and Basic Matrix Operations.

override bool QtGui.QTransform.Equals ( object  o)
static QTransform QtGui.QTransform.FromScale ( double  dx,
double  dy 
)
static

Creates a matrix which corresponds to a scaling of sx horizontally and sy vertically. This is the same as QTransform().scale(sx, sy) but slightly faster.

This function was introduced in Qt 4.5.

static QTransform QtGui.QTransform.FromTranslate ( double  dx,
double  dy 
)
static

Creates a matrix which corresponds to a translation of dx along the x axis and dy along the y axis. This is the same as QTransform().translate(dx, dy) but slightly faster.

This function was introduced in Qt 4.5.

override int QtGui.QTransform.GetHashCode ( )
new QTransform QtGui.QTransform.Inverted ( )

Returns an inverted copy of this matrix.

If the matrix is singular (not invertible), the returned matrix is the identity matrix. If invertible is valid (i.e. not 0), its value is set to true if the matrix is invertible, otherwise it is set to false.

See also isInvertible().

new QTransform QtGui.QTransform.Inverted ( ref bool  invertible)

Returns an inverted copy of this matrix.

If the matrix is singular (not invertible), the returned matrix is the identity matrix. If invertible is valid (i.e. not 0), its value is set to true if the matrix is invertible, otherwise it is set to false.

See also isInvertible().

new bool QtGui.QTransform.IsAffine ( )

Returns true if the matrix represent an affine transformation, otherwise returns false.

new bool QtGui.QTransform.IsIdentity ( )

Returns true if the matrix is the identity matrix, otherwise returns false.

See also reset().

new bool QtGui.QTransform.IsInvertible ( )

Returns true if the matrix is invertible, otherwise returns false.

See also inverted().

new bool QtGui.QTransform.IsRotating ( )

Returns true if the matrix represents some kind of a rotating transformation, otherwise returns false.

See also reset().

new bool QtGui.QTransform.IsScaling ( )

Returns true if the matrix represents a scaling transformation, otherwise returns false.

See also reset().

new bool QtGui.QTransform.IsTranslating ( )

Returns true if the matrix represents a translating transformation, otherwise returns false.

See also reset().

new double QtGui.QTransform.M11 ( )

Returns the horizontal scaling factor.

See also scale() and Basic Matrix Operations.

new double QtGui.QTransform.M12 ( )

Returns the vertical shearing factor.

See also shear() and Basic Matrix Operations.

new double QtGui.QTransform.M13 ( )

Returns the horizontal projection factor.

See also translate() and Basic Matrix Operations.

new double QtGui.QTransform.M21 ( )

Returns the horizontal shearing factor.

See also shear() and Basic Matrix Operations.

new double QtGui.QTransform.M22 ( )

Returns the vertical scaling factor.

See also scale() and Basic Matrix Operations.

new double QtGui.QTransform.M23 ( )

Returns the vertical projection factor.

See also translate() and Basic Matrix Operations.

new double QtGui.QTransform.M31 ( )

Returns the horizontal translation factor.

See also dx(), translate(), and Basic Matrix Operations.

new double QtGui.QTransform.M32 ( )

Returns the vertical translation factor.

See also dy(), translate(), and Basic Matrix Operations.

new double QtGui.QTransform.M33 ( )

Returns the division factor.

See also translate() and Basic Matrix Operations.

new QPoint QtGui.QTransform.Map ( QPoint  p)

This is an overloaded function.

Creates and returns a QPoint object that is a copy of the given point, mapped into the coordinate system defined by this matrix. Note that the transformed coordinates are rounded to the nearest integer.

new QPointF QtGui.QTransform.Map ( QPointF  p)

This is an overloaded function.

Creates and returns a QPointF object that is a copy of the given point, p, mapped into the coordinate system defined by this matrix.

new QLine QtGui.QTransform.Map ( QLine  l)

This is an overloaded function.

Creates and returns a QLineF object that is a copy of the given line, l, mapped into the coordinate system defined by this matrix.

new QLineF QtGui.QTransform.Map ( QLineF  l)

This is an overloaded function.

Creates and returns a QLine object that is a copy of the given line, mapped into the coordinate system defined by this matrix. Note that the transformed coordinates are rounded to the nearest integer.

new QPolygonF QtGui.QTransform.Map ( QPolygonF  a)

This is an overloaded function.

Creates and returns a QPolygonF object that is a copy of the given polygon, mapped into the coordinate system defined by this matrix.

new QPolygon QtGui.QTransform.Map ( QPolygon  a)

This is an overloaded function.

Creates and returns a QPolygon object that is a copy of the given polygon, mapped into the coordinate system defined by this matrix. Note that the transformed coordinates are rounded to the nearest integer.

new QRegion QtGui.QTransform.Map ( QRegion  r)

This is an overloaded function.

Creates and returns a QRegion object that is a copy of the given region, mapped into the coordinate system defined by this matrix.

Calling this method can be rather expensive if rotations or shearing are used.

new QPainterPath QtGui.QTransform.Map ( QPainterPath  p)

This is an overloaded function.

Creates and returns a QPainterPath object that is a copy of the given path, mapped into the coordinate system defined by this matrix.

new void QtGui.QTransform.Map ( int  x,
int  y,
ref int  tx,
ref int  ty 
)

This is an overloaded function.

Maps the given coordinates x and y into the coordinate system defined by this matrix. The resulting values are put in *tx and *ty, respectively. Note that the transformed coordinates are rounded to the nearest integer.

new void QtGui.QTransform.Map ( double  x,
double  y,
ref double  tx,
ref double  ty 
)

Maps the given coordinates x and y into the coordinate system defined by this matrix. The resulting values are put in *tx and *ty, respectively.

The coordinates are transformed using the following formulas:

x' = m11*x + m21*y + dx

y' = m22*y + m12*x + dy

if (is not affine) {

w' = m13*x + m23*y + m33

x' /= w'

y' /= w'

}

The point (x, y) is the original point, and (x', y') is the transformed point.

See also Basic Matrix Operations.

new QRect QtGui.QTransform.MapRect ( QRect  arg1)

This is an overloaded function.

Creates and returns a QRect object that is a copy of the given rectangle, mapped into the coordinate system defined by this matrix. Note that the transformed coordinates are rounded to the nearest integer.

new QRectF QtGui.QTransform.MapRect ( QRectF  arg1)

Creates and returns a QRectF object that is a copy of the given rectangle, mapped into the coordinate system defined by this matrix.

The rectangle's coordinates are transformed using the following formulas:

x' = m11*x + m21*y + dx

y' = m22*y + m12*x + dy

if (is not affine) {

w' = m13*x + m23*y + m33

x' /= w'

y' /= w'

}

If rotation or shearing has been specified, this function returns the bounding rectangle. To retrieve the exact region the given rectangle maps to, use the mapToPolygon() function instead.

See also mapToPolygon() and Basic Matrix Operations.

new QPolygon QtGui.QTransform.MapToPolygon ( QRect  r)

Creates and returns a QPolygon representation of the given rectangle, mapped into the coordinate system defined by this matrix.

The rectangle's coordinates are transformed using the following formulas:

x' = m11*x + m21*y + dx

y' = m22*y + m12*x + dy

if (is not affine) {

w' = m13*x + m23*y + m33

x' /= w'

y' /= w'

}

Polygons and rectangles behave slightly differently when transformed (due to integer rounding), so matrix.map(QPolygon(rectangle)) is not always the same as matrix.mapToPolygon(rectangle).

See also mapRect() and Basic Matrix Operations.

static bool QtGui.QTransform.operator!= ( QTransform  arg1,
QTransform  arg2 
)
static

Returns true if this matrix is not equal to the given matrix, otherwise returns false.

static QTransform QtGui.QTransform.operator* ( QTransform  arg1,
double  arg2 
)
static

Returns the result of multiplying this matrix by the given matrix.

Note that matrix multiplication is not commutative, i.e. a*b != b*a.

static QTransform QtGui.QTransform.operator* ( QTransform  arg1,
QTransform  arg2 
)
static

Returns the result of multiplying this matrix by the given matrix.

Note that matrix multiplication is not commutative, i.e. a*b != b*a.

static QTransform QtGui.QTransform.operator+ ( QTransform  arg1,
double  arg2 
)
static
static QTransform QtGui.QTransform.operator- ( QTransform  arg1,
double  arg2 
)
static
static QTransform QtGui.QTransform.operator/ ( QTransform  arg1,
double  arg2 
)
static
static bool QtGui.QTransform.operator== ( QTransform  arg1,
QTransform  arg2 
)
static

Returns true if this matrix is equal to the given matrix, otherwise returns false.

static bool QtGui.QTransform.QuadToQuad ( QPolygonF  one,
QPolygonF  two,
QTransform  result 
)
static

Creates a transformation matrix, trans, that maps a four-sided polygon, one, to another four-sided polygon, two. Returns true if the transformation is possible; otherwise returns false.

This is a convenience method combining quadToSquare() and squareToQuad() methods. It allows the input quad to be transformed into any other quad.

See also squareToQuad() and quadToSquare().

static bool QtGui.QTransform.QuadToSquare ( QPolygonF  quad,
QTransform  result 
)
static

Creates a transformation matrix, trans, that maps a four-sided polygon, quad, to a unit square. Returns true if the transformation is constructed or false if such a transformation does not exist.

See also squareToQuad() and quadToQuad().

new void QtGui.QTransform.Reset ( )

Resets the matrix to an identity matrix, i.e. all elements are set to zero, except m11 and m22 (specifying the scale) and m33 which are set to 1.

See also QTransform(), isIdentity(), and Basic Matrix Operations.

new QTransform QtGui.QTransform.Rotate ( double  a,
Qt.Axis  axis = Qt.Axis.ZAxis 
)

Rotates the coordinate system counterclockwise by the given angle about the specified axis and returns a reference to the matrix.

Note that if you apply a QTransform to a point defined in widget coordinates, the direction of the rotation will be clockwise because the y-axis points downwards.

The angle is specified in degrees.

See also setMatrix().

new QTransform QtGui.QTransform.RotateRadians ( double  a,
Qt.Axis  axis = Qt.Axis.ZAxis 
)

Rotates the coordinate system counterclockwise by the given angle about the specified axis and returns a reference to the matrix.

Note that if you apply a QTransform to a point defined in widget coordinates, the direction of the rotation will be clockwise because the y-axis points downwards.

The angle is specified in radians.

See also setMatrix().

new QTransform QtGui.QTransform.Scale ( double  sx,
double  sy 
)

Scales the coordinate system by sx horizontally and sy vertically, and returns a reference to the matrix.

See also setMatrix().

new void QtGui.QTransform.SetMatrix ( double  m11,
double  m12,
double  m13,
double  m21,
double  m22,
double  m23,
double  m31,
double  m32,
double  m33 
)

Sets the matrix elements to the specified values, m11, m12, m13 m21, m22, m23 m31, m32 and m33. Note that this function replaces the previous values. QTransform provides the translate(), rotate(), scale() and shear() convenience functions to manipulate the various matrix elements based on the currently defined coordinate system.

See also QTransform().

new QTransform QtGui.QTransform.Shear ( double  sh,
double  sv 
)

Shears the coordinate system by sh horizontally and sv vertically, and returns a reference to the matrix.

See also setMatrix().

static bool QtGui.QTransform.SquareToQuad ( QPolygonF  square,
QTransform  result 
)
static

Creates a transformation matrix, trans, that maps a unit square to a four-sided polygon, quad. Returns true if the transformation is constructed or false if such a transformation does not exist.

See also quadToSquare() and quadToQuad().

new QMatrix QtGui.QTransform.ToAffine ( )

Returns the QTransform as an affine matrix.

Warning: If a perspective transformation has been specified, then the conversion will cause loss of data.

new QTransform QtGui.QTransform.Translate ( double  dx,
double  dy 
)

Moves the coordinate system dx along the x axis and dy along the y axis, and returns a reference to the matrix.

See also setMatrix().

new QTransform QtGui.QTransform.Transposed ( )

Returns the transpose of this matrix.

new QTransform.TransformationType QtGui.QTransform.Type ( )

Returns the transformation type of this matrix.

The transformation type is the highest enumeration value capturing all of the matrix's transformations. For example, if the matrix both scales and shears, the type would be TxShear, because TxShear has a higher enumeration value than TxScale.

Knowing the transformation type of a matrix is useful for optimization: you can often handle specific types more optimally than handling the generic case.

Member Data Documentation

SmokeInvocation QtGui.QTransform.interceptor
protected

Property Documentation

virtual System.IntPtr QtGui.QTransform.SmokeObject
getset