• Skip to content
  • Skip to link menu
KDE API Reference
  • KDE API Reference
  • kdeedu API Reference
  • KDE Home
  • Contact Us
 

kig

Public Member Functions | Static Public Member Functions | Public Attributes | List of all members
ConicCartesianData Class Reference

#include <conic-common.h>

Public Member Functions

 ConicCartesianData ()
 
 ConicCartesianData (const ConicPolarData &d)
 
 ConicCartesianData (double a, double b, double c, double d, double e, double f)
 
 ConicCartesianData (const double incoeffs[6])
 
bool valid () const
 

Static Public Member Functions

static ConicCartesianData invalidData ()
 

Public Attributes

double coeffs [6]
 

Detailed Description

Cartesian Conic Data.

This class represents an equation of a conic in the form "ax^2 + by^2 + cxy + dx + ey + f = 0".

The coefficients are stored in the order a - f.

Definition at line 37 of file conic-common.h.

Constructor & Destructor Documentation

ConicCartesianData::ConicCartesianData ( )

Definition at line 871 of file conic-common.cpp.

ConicCartesianData::ConicCartesianData ( const ConicPolarData &  polardata)
explicit

Construct a ConicCartesianData from a ConicPolarData.

This file is part of Kig, a KDE program for Interactive Geometry...

Construct a ConicCartesianData that is the cartesian representation of the conic represented by d.

Copyright (C) 2002 Maurizio Paolini paoli.nosp@m.ni@d.nosp@m.mf.un.nosp@m.icat.nosp@m.t.it

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Definition at line 37 of file conic-common.cpp.

ConicCartesianData::ConicCartesianData ( double  a,
double  b,
double  c,
double  d,
double  e,
double  f 
)
inline

Construct a ConicCartesianData from its coefficients Construct a ConicCartesianData using the coefficients a through f from the equation "ax^2 + by^2 + cxy + dx + ey + f = 0".

Definition at line 53 of file conic-common.h.

ConicCartesianData::ConicCartesianData ( const double  incoeffs[6])

Definition at line 462 of file conic-common.cpp.

Member Function Documentation

ConicCartesianData ConicCartesianData::invalidData ( )
static

Invalid conic.

Return a ConicCartesianData representing an invalid conic.

See also
valid()

Definition at line 883 of file conic-common.cpp.

bool ConicCartesianData::valid ( ) const

Test validity.

Return whether this is a valid conic.

See also
invalidData()

Definition at line 890 of file conic-common.cpp.

Member Data Documentation

double ConicCartesianData::coeffs[6]

Definition at line 40 of file conic-common.h.


The documentation for this class was generated from the following files:
  • conic-common.h
  • conic-common.cpp
This file is part of the KDE documentation.
Documentation copyright © 1996-2014 The KDE developers.
Generated on Tue Oct 14 2014 22:35:40 by doxygen 1.8.7 written by Dimitri van Heesch, © 1997-2006

KDE's Doxygen guidelines are available online.

kig

Skip menu "kig"
  • Main Page
  • Namespace List
  • Namespace Members
  • Alphabetical List
  • Class List
  • Class Hierarchy
  • Class Members
  • File List
  • File Members

kdeedu API Reference

Skip menu "kdeedu API Reference"
  • Analitza
  •     lib
  • kalgebra
  • kalzium
  •   libscience
  • kanagram
  • kig
  •   lib
  • klettres
  • kstars
  • libkdeedu
  •   keduvocdocument
  • marble
  • parley
  • rocs
  •   App
  •   RocsCore
  •   VisualEditor
  •   stepcore

Search



Report problems with this website to our bug tracking system.
Contact the specific authors with questions and comments about the page contents.

KDE® and the K Desktop Environment® logo are registered trademarks of KDE e.V. | Legal