33     XP = QVector<double>(4, 0.0);
 
   34     YP = QVector<double>(4, 0.0);
 
   35     ZP = QVector<double>(4, 0.0);
 
   36     InFront = QVector<bool>(4, 
false);
 
   43     double Xj, Yj, Zj, Rj;
 
   44     double sinJB, cosJB, sinJL, cosJL;
 
   45     double sinSB, cosSB, sinSL, cosSL;
 
   46     double D, t, tdelay, LAMBDA, ALPHA;
 
   47     double T, oj, fj, ij, pa, tb, I, P;
 
   57     double l1, l2, l3, l4, p1, p2, p3, p4, w1, w2, w3, w4, G, fl, 
z, Gj, Gs, Pj;
 
   60     double S1, S2, S3, S4, L1, L2, L3, L4, b1, b2, b3, b4, R1, R2, R3, R4;
 
   61     double X[5], Y[5], Z[5];
 
   62     double A1[5], B1[5], C1[5];
 
   63     double A2[5], B2[5], C2[5];
 
   64     double A3[5], B3[5], C3[5];
 
   65     double A4[5], B4[5], C4[5];
 
   66     double A5[5], B5[5], C5[5];
 
   67     double A6[5], B6[5], C6[5];
 
   69     Jupiter->
ecLong().SinCos( sinJL, cosJL );
 
   70     Jupiter->
ecLat().SinCos( sinJB, cosJB );
 
   72     Sun->
ecLong().SinCos( sinSL, cosSL );
 
   73     Sun->
ecLat().SinCos( sinSB, cosSB );
 
   76     Xj = Jupiter->
rsun() * cosJB *cosJL + Sun->
rsun() * cosSL;
 
   77     Yj = Jupiter->
rsun() * cosJB *sinJL + Sun->
rsun() * sinSL;
 
   78     Zj = Jupiter->
rsun() * sinJB;
 
   82     Rj = sqrt(Xj*Xj +Yj*Yj + Zj*Zj );
 
   83     tdelay = 0.0057755183*Rj;  
 
   85     LAMBDA = atan2(Yj, Xj);
 
   86     ALPHA = atan2( Zj, sqrt( Xj*Xj + Yj*Yj ) );
 
   89     t = num->
julianDay() - 2443000.5 - tdelay;
 
   92     l1 = 
dms(106.07947 + 203.488955432*t).radians();
 
   93     l2 = 
dms(175.72938 + 101.374724550*t).radians();
 
   94     l3 = 
dms(120.55434 +  50.317609110*t).radians();
 
   95     l4 = 
dms( 84.44868 +  21.571071314*t).radians();
 
   98     p1 = 
dms( 58.3329 + 0.16103936*t).radians();
 
   99     p2 = 
dms(132.8959 + 0.04647985*t).radians();
 
  100     p3 = 
dms(187.2887 + 0.00712740*t).radians();
 
  101     p4 = 
dms(335.3418 + 0.00183998*t).radians();
 
  104     w1 = 
dms(311.0793 - 0.13279430*t).radians();
 
  105     w2 = 
dms(100.5099 - 0.03263047*t).radians();
 
  106     w3 = 
dms(119.1688 - 0.00717704*t).radians();
 
  107     w4 = 
dms(322.5729 - 0.00175934*t).radians();
 
  112     G = 
dms(0.33033 * sin( 2.85674 + 0.0000183469*t )
 
  113             + 0.03439 * sin( 0.601894 - 0.000282274*t )).radians();
 
  116     fl = 
dms(191.8132 + 0.17390023*t).radians();
 
  119     z = 
dms(316.5182 - 0.00000208*t).radians();
 
  122     Gj = 
dms(30.23756 + 0.0830925701*t + G/dms::DegToRad).radians();
 
  123     Gs = 
dms(31.97853 + 0.0334597339*t).radians();
 
  126     Pj = 
dms(13.469942).radians();
 
  129     S1 = 0.47259 * sin( 2.*( l1 - l2) )
 
  130          - 0.03480 * sin( p3 - p4 )
 
  131          - 0.01756 * sin( p1 + p3 - 2.*Pj - 2.*Gj )
 
  132          + 0.01080 * sin( l2 - 2.*l3 + p3 )
 
  133          + 0.00757 * sin( fl )
 
  134          + 0.00663 * sin( l2 - 2.*l3 + p4 )
 
  135          + 0.00453 * sin( l1 - p3 )
 
  136          + 0.00453 * sin( l2 - 2.*l3 + p2 )
 
  137          - 0.00354 * sin( l1 - l2 )
 
  138          - 0.00317 * sin( 2.*z - 2.*Pj )
 
  139          - 0.00269 * sin( l2 - 2.*l3 + p1 )
 
  140          + 0.00263 * sin( l1 - p4 )
 
  141          + 0.00186 * sin( l1 - p1 )
 
  142          - 0.00186 * sin( Gj )
 
  143          + 0.00167 * sin( p2 - p3 )
 
  144          + 0.00158 * sin( 4.*( l1 - l2 ) )
 
  145          - 0.00155 * sin( l1 - l3 )
 
  146          - 0.00142 * sin( z +w3 - 2.*Pj - 2.*Gj )
 
  147          - 0.00115 * sin( 2.*( l1 - 2.*l2 + w2 ) )
 
  148          + 0.00089 * sin( p2 - p4 )
 
  149          + 0.00084 * sin( w2 - w3 )
 
  150          + 0.00084 * sin( l1 +p3 - 2.*Pj -2.*Gj )
 
  151          + 0.00053 * sin( z - w2 );
 
  153     S2 = 1.06476 * sin( 2.*( l2 - l3 ) )
 
  154          + 0.04253 * sin( l1 - 2.*l2 + p3 )
 
  155          + 0.03579 * sin( l2 - p3 )
 
  156          + 0.02383 * sin( l1 - 2.*l2 + p4 )
 
  157          + 0.01977 * sin( l2 - p4 )
 
  158          - 0.01843 * sin( fl )
 
  159          + 0.01299 * sin( p3 - p4 )
 
  160          - 0.01142 * sin( l2 - l3 )
 
  161          + 0.01078 * sin( l2 - p2 )
 
  162          - 0.01058 * sin( Gj )
 
  163          + 0.00870 * sin( l2 - 2.*l3 + p2 )
 
  164          - 0.00775 * sin( 2.*( z - Pj) )
 
  165          + 0.00524 * sin( 2.*( l1 - l2 ) )
 
  166          - 0.00460 * sin( l1 - l3 )
 
  167          + 0.00450 * sin( l2 - 2.*l3 + p1 )
 
  168          + 0.00327 * sin( z + w3 - 2.*Pj - 2.*Gj )
 
  169          - 0.00296 * sin( p1 +p3 - 2.*Pj - 2.*Gj )
 
  170          - 0.00151 * sin( 2.*Gj )
 
  171          + 0.00146 * sin( z - w3 )
 
  172          + 0.00125 * sin( z - w4 )
 
  173          - 0.00117 * sin( l1 - 2.*l3 + p3 )
 
  174          - 0.00095 * sin( 2.*( l2 - w2 ) )
 
  175          + 0.00086 * sin( l1 - 2.*l2 + w2 )
 
  176          - 0.00086 * sin( 5.*Gs - Gj + 0.911497 )
 
  177          - 0.00078 * sin( l2 - l4 )
 
  178          - 0.00064 * sin( l1 - 2.*l3 + p4 )
 
  179          - 0.00063 * sin( 3.*l3 - 7.*l4 + 4.*p4 )
 
  180          + 0.00061 * sin( p1 - p4 )
 
  181          + 0.00058 * sin( 2.*( z - Pj - Gj ) )
 
  182          + 0.00058 * sin( w3 - w4 )
 
  183          + 0.00056 * sin( 2.*( l2 - l4 ) )
 
  184          + 0.00055 * sin( 2.*( l1 - l3 ) )
 
  185          + 0.00052 * sin( 3.*l3 - 7.*l4 + p3 +3.*p4 )
 
  186          - 0.00043 * sin( l1 - p3 )
 
  187          + 0.00042 * sin( p3 - p2 )
 
  188          + 0.00041 * sin( 5.*( l2 -l3 ) )
 
  189          + 0.00041 * sin( p4 - Pj )
 
  190          + 0.00038 * sin( l2 - p1 )
 
  191          + 0.00032 * sin( w2 - w3 )
 
  192          + 0.00032 * sin( 2.*( l3 - Gj - Pj ) )
 
  193          + 0.00029 * sin( p1 - p3 );
 
  195     S3 = 0.16477 * sin( l3 - p3 )
 
  196          + 0.09062 * sin( l3 - p4 )
 
  197          - 0.06907 * sin( l2 - l3 )
 
  198          + 0.03786 * sin( p3 - p4 )
 
  199          + 0.01844 * sin( 2.*( l3 - l4 ) )
 
  200          - 0.01340 * sin( Gj )
 
  201          + 0.00703 * sin( l2 - 2.*l3 + p3 )
 
  202          - 0.00670 * sin( 2.*( z - Pj ) )
 
  203          - 0.00540 * sin( l3 - l4 )
 
  204          + 0.00481 * sin( p1 +p3 - 2.*Pj - 2.*Gj )
 
  205          - 0.00409 * sin( l2 - 2.*l3 + p2 )
 
  206          + 0.00379 * sin( l2 - 2.*l3 + p4 )
 
  207          + 0.00235 * sin( z - w3 )
 
  208          + 0.00198 * sin( z - w4 )
 
  209          + 0.00180 * sin( fl )
 
  210          + 0.00129 * sin( 3.*( l3 - l4 ) )
 
  211          + 0.00124 * sin( l1 - l3 )
 
  212          - 0.00119 * sin( 5.*Gs - 2.*Gj + 0.911497 )
 
  213          + 0.00109 * sin( l1 - l2 )
 
  214          - 0.00099 * sin( 3.*l3 - 7.*l4 + 4.*p4 )
 
  215          + 0.00091 * sin( w3 - w4 )
 
  216          + 0.00081 * sin( 3.*l3 - 7.*l4 + p3 + 3.*p4 )
 
  217          - 0.00076 * sin( 2.*l2 - 3.*l3 + p3 )
 
  218          + 0.00069 * sin( p4 - Pj )
 
  219          - 0.00058 * sin( 2.*l3 - 3.*l4 + p4 )
 
  220          + 0.00057 * sin( l3 + p3 - 2.*Pj -2.*Gj )
 
  221          - 0.00057 * sin( l3 - 2.*l4 + p4 )
 
  222          - 0.00052 * sin( p2 - p3 )
 
  223          - 0.00052 * sin( l2 - 2.*l3 +p1 )
 
  224          + 0.00048 * sin( l3 - 2.*l4 +p3 )
 
  225          - 0.00045 * sin( 2.*l2 - 3.*l3 +p4 )
 
  226          - 0.00041 * sin( p2 - p4 )
 
  227          - 0.00038 * sin( 2.*Gj )
 
  228          - 0.00033 * sin( p3 - p4 + w3 - w4 )
 
  229          - 0.00032 * sin( 3.*l3 - 7.*l4 +2.*p3 +2.*p4 )
 
  230          + 0.00030 * sin( 4.*( l3 - l4 ) )
 
  231          - 0.00029 * sin( w3 + z - 2.*Pj - 2.*Gj )
 
  232          + 0.00029 * sin( l3 + p4 - 2.*Pj - 2.*Gj )
 
  233          + 0.00026 * sin( l3 - Pj - Gj )
 
  234          + 0.00024 * sin( l2 - 3.*l3 + 2.*l4 )
 
  235          + 0.00021 * sin( 2.*( l3 - Pj - Gj ) )
 
  236          - 0.00021 * sin( l3 - p2 )
 
  237          + 0.00017 * sin( 2.*( l3 - p2 ) );
 
  239     S4 = 0.84109 * sin( l4 - p4 )
 
  240          + 0.03429 * sin( p4 - p3 )
 
  241          - 0.03305 * sin( 2.*( z - Pj ) )
 
  242          - 0.03211 * sin( Gj )
 
  243          - 0.01860 * sin( l4 - p3 )
 
  244          + 0.01182 * sin( z - w4 )
 
  245          + 0.00622 * sin( l4 + p4 - 2.*Gj - 2.*Pj )
 
  246          + 0.00385 * sin( 2.*( l4 - p4 ) )
 
  247          - 0.00284 * sin( 5.*Gs - 2.*Gj + + 0.911497 )
 
  248          - 0.00233 * sin( 2.*( z - p4 ) )
 
  249          - 0.00223 * sin( l3 - l4 )
 
  250          - 0.00208 * sin( l4 - Pj )
 
  251          + 0.00177 * sin( z +w4 - 2.*p4 )
 
  252          + 0.00134 * sin( p4 - Pj )
 
  253          + 0.00125 * sin( 2.*( l4 - Gj - Pj ) )
 
  254          - 0.00117 * sin( 2.*Gj )
 
  255          - 0.00112 * sin( 2.*( l3 - l4 ) )
 
  256          + 0.00106 * sin( 3.*l3 - 7.*l4 + 4.*p4 )
 
  257          + 0.00102 * sin( l4 - Gj - Pj )
 
  258          + 0.00096 * sin( 2.*l4 - z - w4 )
 
  259          + 0.00087 * sin( 2.*( z - w4 ) )
 
  260          - 0.00087 * sin( 3.*l3 - 7.*l4 + p3 + 3.*p4 )
 
  261          + 0.00085 * sin( l3 -2.*l4 +p4 )
 
  262          - 0.00081 * sin( 2.*(l4 - z ) )
 
  263          + 0.00071 * sin( l4 + p4 - 2.*Pj - 2.*Gj )
 
  264          + 0.00060 * sin( l1 - l4 )
 
  265          - 0.00056 * sin( z - w3 )
 
  266          - 0.00055 * sin( l3 - 2.*l4 + p3 )
 
  267          + 0.00051 * sin( l2 - l4 )
 
  268          + 0.00042 * sin( 2.*( z - Gj - Pj ) )
 
  269          + 0.00039 * sin( 2.*( p4 - w4 ) )
 
  270          + 0.00036 * sin( z + Pj - p4 - w4 )
 
  271          + 0.00035 * sin( 2.*Gs - Gj + 3.28767 )
 
  272          - 0.00035 * sin( l4 - p4 + 2.*Pj - 2.*z )
 
  273          - 0.00032 * sin( l4 + p4 - 2.*Pj - Gj )
 
  274          + 0.00030 * sin( 3.*l3 - 7.*l4 + 2.*p3 + 2.*p4 )
 
  275          + 0.00030 * sin( 2.*Gs - 2.*Gj + 2.60316 )
 
  276          + 0.00028 * sin( l4 - p4 + 2.*z - 2.*Pj )
 
  277          - 0.00028 * sin( 2.*( l4 - w4 ) )
 
  278          - 0.00027 * sin( p3 - p4 + w3 - w4 )
 
  279          - 0.00026 * sin( 5.*Gs - 3.*Gj + 3.28767 )
 
  280          + 0.00025 * sin( w4 - w3 )
 
  281          - 0.00025 * sin( l2 - 3.*l3 + 2.*l4 )
 
  282          - 0.00023 * sin( 3.*( l3 - l4 ) )
 
  283          + 0.00021 * sin( 2.*l4 - 2.*Pj - 3.*Gj )
 
  284          - 0.00021 * sin( 2.*l3 - 3.*l4 + p4 )
 
  285          + 0.00019 * sin( l4 - p4 - Gj )
 
  286          - 0.00019 * sin( 2.*l4 - p4 +Gj )
 
  287          - 0.00018 * sin( l4 - p4 + Gj )
 
  288          - 0.00016 * sin( l4 + p3 - 2.*Pj - 2.*Gj );
 
  302     tb =  0.0006502 * sin( L1 - w1 )
 
  303           + 0.0001835 * sin( L1 - w2 )
 
  304           + 0.0000329 * sin( L1 - w3 )
 
  305           - 0.0000311 * sin( L1 - z  )
 
  306           + 0.0000093 * sin( L1 - w4 )
 
  307           + 0.0000075 * sin( 3.*L1 - 4.*l2 - 1.9927*S1 + w2 )
 
  308           + 0.0000046 * sin( L1 +z - 2.*Pj - 2.*Gj );
 
  311     tb =  0.0081275 * sin( L2 - w2 )
 
  312           + 0.0004512 * sin( L2 - w3 )
 
  313           - 0.0003286 * sin( L2 - z  )
 
  314           + 0.0001164 * sin( L2 - w4 )
 
  315           + 0.0000273 * sin( l1 -  2.*l3 + 1.0146*S2 + w2 )
 
  316           + 0.0000143 * sin( L2 + z - 2.*Pj - 2.*Gj )
 
  317           - 0.0000143 * sin( L2 - w1 )
 
  318           + 0.0000035 * sin( L2 - z + Gj )
 
  319           - 0.0000028 * sin( l1 - 2.*l3 +1.0146*S2 + w3 );
 
  322     tb =  0.0032364 * sin( L3 - w3 )
 
  323           - 0.0016911 * sin( L3 - z  )
 
  324           + 0.0006849 * sin( L3 - w4 )
 
  325           - 0.0002806 * sin( L3 - w2 )
 
  326           + 0.0000321 * sin( L3 + z - 2.*Pj - 2.*Gj )
 
  327           + 0.0000051 * sin( L3 - z + Gj )
 
  328           - 0.0000045 * sin( L3 - z - Gj )
 
  329           - 0.0000045 * sin( L3 + z - 2.*Pj )
 
  330           + 0.0000037 * sin( L3 + z - 2.*Pj -3.*Gj )
 
  331           + 0.0000030 * sin( 2.*l2 - 3.*L3 + 4.03*S3 +w2 )
 
  332           - 0.0000021 * sin( 2.*l2 - 3.*L3 + 4.03*S3 +w3 );
 
  335     tb = -0.0076579 * sin( L4 - z )
 
  336          + 0.0044148 * sin( L4 - w4 )
 
  337          - 0.0005106 * sin( L4 - w3 )
 
  338          + 0.0000773 * sin( L4 + z - 2.*Pj - 2.*Gj )
 
  339          + 0.0000104 * sin( L4 - z + Gj )
 
  340          - 0.0000102 * sin( L4 - z - Gj )
 
  341          + 0.0000088 * sin( L4 + z - 2.*Pj - 3.*Gj )
 
  342          - 0.0000038 * sin( L4 + z - 2.*Pj - Gj );
 
  348                    - 0.0041339 * cos( 2.*( l1 - l2 ) )
 
  349                    - 0.0000395 * cos( l1 - p3 )
 
  350                    - 0.0000214 * cos( l1 - p4 )
 
  351                    + 0.0000170 * cos( l1 - l2 )
 
  352                    - 0.0000162 * cos( l1 - p1 )
 
  353                    - 0.0000130 * cos( 4.*( l1 - l2 ) )
 
  354                    + 0.0000106 * cos( l1 - l3 )
 
  355                    - 0.0000063 * cos( l1 +p3 - 2.*Pj - 2*Gj ) );
 
  358                    0.0093847 * cos( l1 - l2 )
 
  359                    - 0.0003114 * cos( l2 - p3 )
 
  360                    - 0.0001738 * cos( l2 - p4 )
 
  361                    - 0.0000941 * cos( l2 - p2 )
 
  362                    + 0.0000553 * cos( l2 - l3 )
 
  363                    + 0.0000523 * cos( l1 - l3 )
 
  364                    - 0.0000290 * cos( 2.*( l1 - l2 ) )
 
  365                    + 0.0000166 * cos( 2.*( l2 - w2 ) )
 
  366                    + 0.0000107 * cos( l1 - 2.*l3 +p3 )
 
  367                    - 0.0000102 * cos( l2 - p1 )
 
  368                    - 0.0000091 * cos( 2.*( l1 - l3 ) ) );
 
  370     R3 = 14.99240*( 1.0 +
 
  371                     - 0.0014377 * cos( l3 - p3 )
 
  372                     - 0.0007904 * cos( l3 - p4 )
 
  373                     + 0.0006342 * cos( l2 - l3 )
 
  374                     - 0.0001758 * cos( 2.*( l3 - l4 ) )
 
  375                     + 0.0000294 * cos( l3 - l4 )
 
  376                     - 0.0000156 * cos( 3.*( l3 - l4 ) )
 
  377                     + 0.0000155 * cos( l1 - l3 )
 
  378                     - 0.0000153 * cos( l1 - l2 )
 
  379                     + 0.0000070 * cos( 2.*l2 - 3.*l3 +p3 )
 
  380                     - 0.0000051 * cos( l3 +p3 - 2.*Pj - 2.*Gj ) );
 
  382     R4 = 26.36990*( 1.0 +
 
  383                     - 0.0073391 * cos( l4 - p4 )
 
  384                     + 0.0001620 * cos( l4 - p3 )
 
  385                     + 0.0000974 * cos( l3 - l4 )
 
  386                     - 0.0000541 * cos( l4 + p4 - 2.*Pj - 2.*Gj )
 
  387                     - 0.0000269 * cos( 2.*( l4 - p4 ) )
 
  388                     + 0.0000182 * cos( l4 - Pj )
 
  389                     + 0.0000177 * cos( 2.*( l3 - l4 ) )
 
  390                     - 0.0000167 * cos( 2.*l4 - z - w4 )
 
  391                     + 0.0000167 * cos( z - w4 )
 
  392                     - 0.0000155 * cos( 2.*( l4 - Pj - Gj ) )
 
  393                     + 0.0000142 * cos( 2.*( l4 - z ) )
 
  394                     + 0.0000104 * cos( l1 - l4 )
 
  395                     + 0.0000092 * cos( l2 - l4 )
 
  396                     - 0.0000089 * cos( l4 - Pj - Gj )
 
  397                     - 0.0000062 * cos( l4 +p4 - 2.*Pj - 3.*Gj )
 
  398                     + 0.0000048 * cos( 2.*( l4 - w4 ) ) );
 
  402     t = ( num->
julianDay() - 2415020.50 ) / 36525.0;
 
  403     I = 
dms( 3.120262 +0.0006*t ).radians();
 
  406     t = ( num->
julianDay() - 2433282.423 ) / 36525.0;
 
  407     P = 
dms( 1.3966626*t +0.0003088*t*t ).radians();
 
  415     X[0] = R1 * cos( L1 - z ) * cos( b1 );
 
  416     X[1] = R2 * cos( L2 - z ) * cos( b2 );
 
  417     X[2] = R3 * cos( L3 - z ) * cos( b3 );
 
  418     X[3] = R4 * cos( L4 - z ) * cos( b4 );
 
  419     Y[0] = R1 * sin( L1 - z ) * cos( b1 );
 
  420     Y[1] = R2 * sin( L2 - z ) * cos( b2 );
 
  421     Y[2] = R3 * sin( L3 - z ) * cos( b3 );
 
  422     Y[3] = R4 * sin( L4 - z ) * cos( b4 );
 
  423     Z[0] = R1 * sin( b1 );
 
  424     Z[1] = R2 * sin( b2 );
 
  425     Z[2] = R3 * sin( b3 );
 
  426     Z[3] = R4 * sin( b4 );
 
  429     X[4] = 0.0;  Y[4] = 0.0;  Z[4] = 1.0;
 
  433     oj = 
dms( 100.464441 + 1.0209550*T + 0.00040117*T*T + 0.000000569*T*T*T ).radians();
 
  435     ij = 
dms( 1.303270 - 0.0054966*T +0.00000465*T*T - 0.000000004*T*T*T ).radians();
 
  437     for ( 
int i=0; i<5; ++i ) {
 
  439         B1[i] = Y[i] * cos( I ) - Z[i] * sin( I );
 
  440         C1[i] = Y[i] * sin( I ) + Z[i] * cos( I );
 
  442         A2[i] = A1[i] * cos( fj ) - B1[i] * sin( fj );
 
  443         B2[i] = A1[i] * sin( fj ) + B1[i] * cos( fj );
 
  447         B3[i] = B2[i] * cos( ij ) - C2[i] * sin( ij );
 
  448         C3[i] = B2[i] * sin( ij ) + C2[i] * cos( ij );
 
  450         A4[i] = A3[i] * cos( oj ) - B3[i] * sin( oj );
 
  451         B4[i] = A3[i] * sin( oj ) + B3[i] * cos( oj );
 
  454         A5[i] = A4[i] * sin( LAMBDA ) - B4[i] * cos( LAMBDA );
 
  455         B5[i] = A4[i] * cos( LAMBDA ) + B4[i] * sin( LAMBDA );
 
  459         B6[i] = C5[i] * sin( ALPHA ) + B5[i] * cos( ALPHA );
 
  460         C6[i] = C5[i] * cos( ALPHA ) - B5[i] * sin( ALPHA );
 
  469     D = atan2( A6[4], C6[4] );
 
  477     for ( 
int i=0; i<4; ++i ) {
 
  478         XP[i] = A6[i] * cos( D ) - C6[i] * sin( D );
 
  479         YP[i] = A6[i] * sin( D ) + C6[i] * cos( D );
 
  482         Moon[i]->setRA( Jupiter->
ra().
Hours() - 0.011*( 
XP[i] * cos( pa ) - 
YP[i] * sin( pa ) )/15.0 );
 
  483         Moon[i]->setDec( Jupiter->
dec().
Degrees() - 0.011*( 
XP[i] * sin( pa ) + 
YP[i] * cos( pa ) ) );
 
  489         if ( 
Moon[i]->hasTrail() ) {
 
  490             Moon[i]->addToTrail();
 
  492                 Moon[i]->clipTrail();
 
Child class of KSPlanetBase; encapsulates information about the Sun. 
 
const double & Degrees() const 
 
virtual ~JupiterMoons()
Destructor. 
 
JupiterMoons()
Constructor. 
 
i18nc("string from libindi, used in the config dialog","100x")
 
long double julianDay() const 
 
An angle, stored as degrees, but expressible in many ways. 
 
virtual void findPosition(const KSNumbers *num, const KSPlanetBase *jup, const KSSun *sunptr)
Find the positions of each Moon, relative to Jupiter. 
 
const dms & ecLat() const 
 
There are several time-dependent values used in position calculations, that are not specific to an ob...
 
const dms & ecLong() const 
 
QVector< TrailObject * > Moon
 
provides a SkyObject with an attachable Trail 
 
virtual double pa() const 
 
A subclass of TrailObject that provides additional information needed for most solar system objects...
 
double julianCenturies() const 
 
static const int MaxTrail
Maximum trail size.