kig
circle_imp.cc
Go to the documentation of this file.
bool isPropertyDefinedOnOrThroughThisImp(int which) const
Definition: circle_imp.cc:364
Instances of this class represent a certain ObjectImp type.
Definition: object_imp.h:95
bool inherits(const ObjectImpType *t) const
Returns true if this ObjectImp inherits the ObjectImp type represented by t.
Definition: object_imp.cc:279
QString & append(QChar ch)
const ObjectImpType * impRequirementForProperty(int which) const
Definition: circle_imp.cc:157
QString simplyCartesianEquationString(const KigDocument &w) const
Return a string containing the cartesian equation of this circle.
Definition: circle_imp.cc:263
void drawCircle(const Coordinate ¢er, double radius)
draw a circle...
Definition: kigpainter.cpp:84
bool inRect(const Rect &r, int width, const KigWidget &) const
Definition: circle_imp.cc:72
ObjectImp * transform(const Transformation &) const
Return this ObjectImp, transformed by the transformation t.
Definition: circle_imp.cc:44
bool contains(const Coordinate &p, int width, const KigWidget &) const
Definition: circle_imp.cc:67
CircleImp(const Coordinate ¢er, double radius)
Construct a Circle with a given center and radius.
Definition: circle_imp.cc:35
virtual const ObjectImpType * impRequirementForProperty(int which) const
Definition: object_imp.cc:76
QString polarEquationString(const KigDocument &w) const
Return a string containing the polar equation of this circle.
Definition: circle_imp.cc:235
virtual ObjectImp * property(int which, const KigDocument &d) const
Definition: object_imp.cc:70
const Coordinate getPoint(double param, const KigDocument &) const
Definition: circle_imp.cc:325
const ConicPolarData polarData() const
Return the polar representation of this conic.
Definition: circle_imp.cc:307
virtual QString fromScreen(const Coordinate &pt, const KigDocument &w) const =0
virtual const QByteArrayList propertiesInternalNames() const
Definition: object_imp.cc:63
int conicType() const
Always returns 1, since a circle always is an ellipse.
Definition: circle_imp.cc:292
int size() const
The Coordinate class is the basic class representing a 2D location by its x and y components...
Definition: coordinate.h:33
const QByteArrayList propertiesInternalNames() const
Definition: circle_imp.cc:129
ObjectImp * property(int which, const KigDocument &w) const
Definition: circle_imp.cc:187
bool isHomothetic() const
Returns whether this is a homothetic (affine) transformation.
Definition: kigtransform.cpp:681
double getParam(const Coordinate &point, const KigDocument &) const
Definition: circle_imp.cc:317
void addTerm(double coeff, const QString &unknowns, bool &needsign)
Definition: equation.cc:41
const ScreenInfo & screenInfo() const
the part of the document we're currently showing i.e.
Definition: kig_view.cpp:272
QString fromUtf8(const char *str, int size)
virtual const char * iconForProperty(int which) const
Definition: object_imp.cc:187
bool equals(const ObjectImp &rhs) const
Returns true if this ObjectImp is equal to rhs.
Definition: circle_imp.cc:335
const ConicCartesianData cartesianData() const
Return the cartesian representation of this conic.
Definition: circle_imp.cc:297
QString cartesianEquationString(const KigDocument &w) const
Return a string containing the cartesian equation of this circle.
Definition: circle_imp.cc:245
const ObjectImpType * type() const
Returns the lowermost ObjectImpType that this object is an instantiation of.
Definition: circle_imp.cc:359
virtual bool isPropertyDefinedOnOrThroughThisImp(int which) const
Definition: object_imp.cc:326
const char * iconForProperty(int which) const
Definition: circle_imp.cc:164
static const ObjectImpType * stype()
Returns the ObjectImpType representing the CircleImp type.
Definition: circle_imp.cc:342
const Coordinate apply(const double x0, const double x1, const double x2) const
Apply this Tranformation.
Definition: kigtransform.cpp:611
Coordinate focus1() const
The first focus of a circle is simply its center.
Definition: circle_imp.cc:282
ObjectImp * transform(const Transformation &) const
Return this ObjectImp, transformed by the transformation t.
Definition: conic_imp.cc:34
static const ObjectImpType * stype()
Returns the ObjectImpType representing the ConicImp type.
Definition: conic_imp.cc:380
KigDocument is the class holding the real data in a Kig document.
Definition: kig_document.h:36
The ObjectImp class represents the behaviour of an object after it is calculated. ...
Definition: object_imp.h:226
Coordinate focus2() const
The second focus of a circle is simply its center.
Definition: circle_imp.cc:287
const CoordinateSystem & coordinateSystem() const
Definition: kig_document.cc:40
Definition: object_imp.h:56
This class represents an equation of a conic in the form .
Definition: conic-common.h:85
This file is part of the KDE documentation.
Documentation copyright © 1996-2020 The KDE developers.
Generated on Mon Jun 22 2020 13:12:05 by doxygen 1.8.7 written by Dimitri van Heesch, © 1997-2006
Documentation copyright © 1996-2020 The KDE developers.
Generated on Mon Jun 22 2020 13:12:05 by doxygen 1.8.7 written by Dimitri van Heesch, © 1997-2006
KDE's Doxygen guidelines are available online.