kig
other_imp.cc
Go to the documentation of this file.
78 double fixedX = cos( mstartangle ) * ( p.x - mpoint.x ) + sin( mstartangle ) * ( p.y - mpoint.y );
79 double fixedY = -sin( mstartangle ) * ( p.x - mpoint.x ) + cos( mstartangle ) * ( p.y - mpoint.y );
476 return new IntImp( static_cast<int>( Goniometry::convert( ma, Goniometry::Rad, Goniometry::Deg ) ) );
Instances of this class represent a certain ObjectImp type.
Definition: object_imp.h:95
bool inherits(const ObjectImpType *t) const
Returns true if this ObjectImp inherits the ObjectImp type represented by t.
Definition: object_imp.cc:279
AngleImp(const Coordinate &pt, double start_angle_in_radials, double angle_in_radials, bool markRightAngle)
Construct an Angle with a given center, start angle and dimension (both in radians).
Definition: other_imp.cc:64
double sectorSurface() const
Return the size of the sector surface of this arc.
Definition: other_imp.cc:493
Definition: goniometry.h:31
virtual const ObjectImpType * impRequirementForProperty(int which) const
Definition: object_imp.cc:76
virtual ObjectImp * property(int which, const KigDocument &d) const
Definition: object_imp.cc:70
bool internalContainsPoint(const Coordinate &p, double threshold) const
Definition: other_imp.cc:766
const ObjectImpType * impRequirementForProperty(int which) const
Definition: other_imp.cc:252
VectorImp(const Coordinate &a, const Coordinate &b)
Construct a Vector with a given start point and end point.
Definition: other_imp.cc:191
double getParam(const Coordinate &, const KigDocument &) const
Definition: other_imp.cc:747
bool equals(const ObjectImp &rhs) const
Returns true if this ObjectImp is equal to rhs.
Definition: other_imp.cc:582
static const ObjectImpType * stype()
Returns the ObjectImpType representing the VectorImp type.
Definition: other_imp.cc:613
void drawVector(const Coordinate &a, const Coordinate &b)
draw a vector ( with an arrow etc.
Definition: kigpainter.cpp:692
ObjectImp * transform(const Transformation &) const
Return this ObjectImp, transformed by the transformation t.
Definition: other_imp.cc:46
const ObjectImpType * type() const
Returns the lowermost ObjectImpType that this object is an instantiation of.
Definition: other_imp.cc:651
A conic arc, which is given by the cartesian equation and two angles.
Definition: conic_imp.h:172
virtual const QByteArrayList propertiesInternalNames() const
Definition: object_imp.cc:63
static const ObjectImpType * stype()
The ObjectImpType representing the base ObjectImp class.
Definition: object_imp.cc:284
Coordinate calcPointOnPerpend(const LineData &l, const Coordinate &t)
This file is part of Kig, a KDE program for Interactive Geometry...
Definition: common.cpp:37
int size() const
The Coordinate class is the basic class representing a 2D location by its x and y components...
Definition: coordinate.h:33
bool inRect(const Rect &r, int width, const KigWidget &) const
Definition: other_imp.cc:104
bool isHomothetic() const
Returns whether this is a homothetic (affine) transformation.
Definition: kigtransform.cpp:681
const QByteArrayList propertiesInternalNames() const
Definition: other_imp.cc:120
const ScreenInfo & screenInfo() const
the part of the document we're currently showing i.e.
Definition: kig_view.cpp:272
const char * iconForProperty(int which) const
Definition: other_imp.cc:259
bool contains(const Coordinate &p, int width, const KigWidget &w) const
Definition: other_imp.cc:381
bool isOnSegment(const Coordinate &o, const Coordinate &a, const Coordinate &b, const double fault)
is o on the segment defined by point a and point b ? this calls isOnLine(), but also checks if o is "...
Definition: common.cpp:212
const Coordinate getPoint(double param, const KigDocument &) const
Definition: other_imp.cc:742
const Coordinate apply2by2only(const Coordinate &c) const
Definition: kigtransform.cpp:723
virtual const char * iconForProperty(int which) const
Definition: object_imp.cc:187
const QByteArrayList propertiesInternalNames() const
Definition: other_imp.cc:419
const ConicCartesianData cartesianData() const
Return the cartesian representation of this conic.
Definition: circle_imp.cc:297
ObjectImp * property(int which, const KigDocument &w) const
Definition: other_imp.cc:277
double getAffineDeterminant() const
Definition: kigtransform.cpp:711
void drawArc(const Coordinate ¢er, double radius, double startangle, double angle)
draw the arc ( a part of a circle ), of the circle with center center, radius radius, with size angle, starting at the angle startAngle.
Definition: kigpainter.cpp:957
bool inRect(const Rect &r, int width, const KigWidget &si) const
Definition: other_imp.cc:386
ObjectImp * transform(const Transformation &t) const
Return this ObjectImp, transformed by the transformation t.
Definition: other_imp.cc:342
const ObjectImpType * type() const
Returns the lowermost ObjectImpType that this object is an instantiation of.
Definition: other_imp.cc:646
const Coordinate getPoint(double p, const KigDocument &d) const
Definition: other_imp.cc:525
ObjectImp * transform(const Transformation &t) const
Return this ObjectImp, transformed by the transformation t.
Definition: conic_imp.cc:482
bool equals(const ObjectImp &rhs) const
Returns true if this ObjectImp is equal to rhs.
Definition: other_imp.cc:574
ObjectImp * property(int which, const KigDocument &w) const
Definition: other_imp.cc:162
virtual bool isPropertyDefinedOnOrThroughThisImp(int which) const
Definition: object_imp.cc:326
static const ObjectImpType * stype()
Returns the ObjectImpType representing the ArcImp type.
Definition: other_imp.cc:629
void setContains(Coordinate p)
this makes sure p is in the rect, extending it if necessary...
Definition: rect.cc:240
static double convert(const double angle, const Goniometry::System from, const Goniometry::System to)
The most useful method of this class: convert the specified angle from the system from to the system ...
Definition: goniometry.cc:87
Coordinate calcIntersectionPoint(const LineData &l1, const LineData &l2)
this calcs the point where the lines l and m intersect...
Definition: common.cpp:57
double startAngle() const
Return the start angle in radians of this arc.
Definition: other_imp.cc:542
bool isPropertyDefinedOnOrThroughThisImp(int which) const
Definition: other_imp.cc:683
double startAngle() const
Return the start angle in radians of this angle.
Definition: other_imp.h:83
bool lineInRect(const Rect &r, const Coordinate &a, const Coordinate &b, const int width, const ObjectImp *imp, const KigWidget &w)
Is the line, segment, ray or vector inside r ? We need the imp to distinguish between rays...
Definition: common.cpp:401
const Coordinate apply(const double x0, const double x1, const double x2) const
Apply this Tranformation.
Definition: kigtransform.cpp:611
double getParam(const Coordinate &c, const KigDocument &d) const
Definition: other_imp.cc:511
Definition: goniometry.h:31
bool internalContainsPoint(const Coordinate &p, double threshold) const
Definition: other_imp.cc:666
Coordinate attachPoint() const
Returns a reference point where to attach labels; when this returns an invalidCoord then the attachme...
Definition: other_imp.cc:110
bool inRect(const Rect &r, int width, const KigWidget &) const
Definition: other_imp.cc:218
const QByteArrayList propertiesInternalNames() const
Definition: other_imp.cc:228
bool isPropertyDefinedOnOrThroughThisImp(int which) const
Definition: other_imp.cc:678
bool contains(const Coordinate &p, int width, const KigWidget &) const
Definition: other_imp.cc:213
static const ObjectImpType * stype()
Returns the ObjectImpType representing the CurveImp type.
Definition: curve_imp.cc:27
static const ObjectImpType * stype()
Returns the ObjectImpType representing the AngleImp type.
Definition: other_imp.cc:597
KigDocument is the class holding the real data in a Kig document.
Definition: kig_document.h:36
bool isOnArc(const Coordinate &o, const Coordinate &c, const double r, const double sa, const double a, const double fault)
Definition: common.cpp:238
ObjectImp * property(int which, const KigDocument &d) const
Definition: other_imp.cc:464
const ObjectImpType * impRequirementForProperty(int which) const
Definition: other_imp.cc:498
const ObjectImpType * type() const
Returns the lowermost ObjectImpType that this object is an instantiation of.
Definition: other_imp.cc:656
bool containsPoint(const Coordinate &p, const KigDocument &doc) const
Return whether this Curve contains the given point.
Definition: other_imp.cc:661
bool contains(const Coordinate &p, int width, const KigWidget &) const
Definition: other_imp.cc:71
The ObjectImp class represents the behaviour of an object after it is calculated. ...
Definition: object_imp.h:226
ObjectImp * transform(const Transformation &) const
Return this ObjectImp, transformed by the transformation t.
Definition: other_imp.cc:200
bool isPropertyDefinedOnOrThroughThisImp(int which) const
Definition: other_imp.cc:671
void drawAngle(const Coordinate &point, double startangle, double angle, int radius)
draw the angle with center point, with size angle, starting at the angle startAngle.
Definition: kigpainter.cpp:631
void drawRightAngle(const Coordinate &point, double startangle, int diagonal)
draw the angle with center point, with size angle, starting at the angle startAngle.
Definition: kigpainter.cpp:664
bool equals(const ObjectImp &rhs) const
Returns true if this ObjectImp is equal to rhs.
Definition: other_imp.cc:590
bool containsPoint(const Coordinate &p, const KigDocument &doc) const
Return whether this Curve contains the given point.
Definition: other_imp.cc:761
Definition: object_imp.h:56
ArcImp(const Coordinate ¢er, const double radius, const double startangle, const double angle)
Construct an Arc with a given center, radius, start angle and dimension (both in radians).
Definition: other_imp.cc:320
This class represents a curve: something which is composed of points, like a line, a circle, a locus.
Definition: curve_imp.h:27
const ObjectImpType * impRequirementForProperty(int which) const
Definition: other_imp.cc:140
This file is part of the KDE documentation.
Documentation copyright © 1996-2020 The KDE developers.
Generated on Mon Jun 22 2020 13:12:05 by doxygen 1.8.7 written by Dimitri van Heesch, © 1997-2006
Documentation copyright © 1996-2020 The KDE developers.
Generated on Mon Jun 22 2020 13:12:05 by doxygen 1.8.7 written by Dimitri van Heesch, © 1997-2006
KDE's Doxygen guidelines are available online.