Kstars

qcustomplot.cpp
1/*
2 QCustomPlot, an easy to use, modern plotting widget for Qt
3 SPDX-FileCopyrightText: 2011-2021 Emanuel Eichhammer <http://www.qcustomplot.com/>
4
5 SPDX-License-Identifier: GPL-3.0-or-later
6*/
7
8#include "qcustomplot.h"
9
10
11/* including file 'src/vector2d.cpp' */
12/* modified 2021-03-29T02:30:44, size 7973 */
13
14////////////////////////////////////////////////////////////////////////////////////////////////////
15//////////////////// QCPVector2D
16////////////////////////////////////////////////////////////////////////////////////////////////////
17
18/*! \class QCPVector2D
19 \brief Represents two doubles as a mathematical 2D vector
20
21 This class acts as a replacement for QVector2D with the advantage of double precision instead of
22 single, and some convenience methods tailored for the QCustomPlot library.
23*/
24
25/* start documentation of inline functions */
26
27/*! \fn void QCPVector2D::setX(double x)
28
29 Sets the x coordinate of this vector to \a x.
30
31 \see setY
32*/
33
34/*! \fn void QCPVector2D::setY(double y)
35
36 Sets the y coordinate of this vector to \a y.
37
38 \see setX
39*/
40
41/*! \fn double QCPVector2D::length() const
42
43 Returns the length of this vector.
44
45 \see lengthSquared
46*/
47
48/*! \fn double QCPVector2D::lengthSquared() const
49
50 Returns the squared length of this vector. In some situations, e.g. when just trying to find the
51 shortest vector of a group, this is faster than calculating \ref length, because it avoids
52 calculation of a square root.
53
54 \see length
55*/
56
57/*! \fn double QCPVector2D::angle() const
58
59 Returns the angle of the vector in radians. The angle is measured between the positive x line and
60 the vector, counter-clockwise in a mathematical coordinate system (y axis upwards positive). In
61 screen/widget coordinates where the y axis is inverted, the angle appears clockwise.
62*/
63
64/*! \fn QPoint QCPVector2D::toPoint() const
65
66 Returns a QPoint which has the x and y coordinates of this vector, truncating any floating point
67 information.
68
69 \see toPointF
70*/
71
72/*! \fn QPointF QCPVector2D::toPointF() const
73
74 Returns a QPointF which has the x and y coordinates of this vector.
75
76 \see toPoint
77*/
78
79/*! \fn bool QCPVector2D::isNull() const
80
81 Returns whether this vector is null. A vector is null if \c qIsNull returns true for both x and y
82 coordinates, i.e. if both are binary equal to 0.
83*/
84
85/*! \fn QCPVector2D QCPVector2D::perpendicular() const
86
87 Returns a vector perpendicular to this vector, with the same length.
88*/
89
90/*! \fn double QCPVector2D::dot() const
91
92 Returns the dot/scalar product of this vector with the specified vector \a vec.
93*/
94
95/* end documentation of inline functions */
96
97/*!
98 Creates a QCPVector2D object and initializes the x and y coordinates to 0.
99*/
101 mX(0),
102 mY(0)
103{
104}
105
106/*!
107 Creates a QCPVector2D object and initializes the \a x and \a y coordinates with the specified
108 values.
109*/
110QCPVector2D::QCPVector2D(double x, double y) :
111 mX(x),
112 mY(y)
113{
114}
115
116/*!
117 Creates a QCPVector2D object and initializes the x and y coordinates respective coordinates of
118 the specified \a point.
119*/
121 mX(point.x()),
122 mY(point.y())
123{
124}
125
126/*!
127 Creates a QCPVector2D object and initializes the x and y coordinates respective coordinates of
128 the specified \a point.
129*/
131 mX(point.x()),
132 mY(point.y())
133{
134}
135
136/*!
137 Normalizes this vector. After this operation, the length of the vector is equal to 1.
138
139 If the vector has both entries set to zero, this method does nothing.
140
141 \see normalized, length, lengthSquared
142*/
144{
145 if (mX == 0.0 && mY == 0.0) return;
146 const double lenInv = 1.0/length();
147 mX *= lenInv;
148 mY *= lenInv;
149}
150
151/*!
152 Returns a normalized version of this vector. The length of the returned vector is equal to 1.
153
154 If the vector has both entries set to zero, this method returns the vector unmodified.
155
156 \see normalize, length, lengthSquared
157*/
159{
160 if (mX == 0.0 && mY == 0.0) return *this;
161 const double lenInv = 1.0/length();
162 return QCPVector2D(mX*lenInv, mY*lenInv);
163}
164
165/*! \overload
166
167 Returns the squared shortest distance of this vector (interpreted as a point) to the finite line
168 segment given by \a start and \a end.
169
170 \see distanceToStraightLine
171*/
172double QCPVector2D::distanceSquaredToLine(const QCPVector2D &start, const QCPVector2D &end) const
173{
174 const QCPVector2D v(end-start);
175 const double vLengthSqr = v.lengthSquared();
177 {
178 const double mu = v.dot(*this-start)/vLengthSqr;
179 if (mu < 0)
180 return (*this-start).lengthSquared();
181 else if (mu > 1)
182 return (*this-end).lengthSquared();
183 else
184 return ((start + mu*v)-*this).lengthSquared();
185 } else
186 return (*this-start).lengthSquared();
187}
188
189/*! \overload
190
191 Returns the squared shortest distance of this vector (interpreted as a point) to the finite line
192 segment given by \a line.
193
194 \see distanceToStraightLine
195*/
197{
198 return distanceSquaredToLine(QCPVector2D(line.p1()), QCPVector2D(line.p2()));
199}
200
201/*!
202 Returns the shortest distance of this vector (interpreted as a point) to the infinite straight
203 line given by a \a base point and a \a direction vector.
204
205 \see distanceSquaredToLine
206*/
207double QCPVector2D::distanceToStraightLine(const QCPVector2D &base, const QCPVector2D &direction) const
208{
209 return qAbs((*this-base).dot(direction.perpendicular()))/direction.length();
210}
211
212/*!
213 Scales this vector by the given \a factor, i.e. the x and y components are multiplied by \a
214 factor.
215*/
217{
218 mX *= factor;
219 mY *= factor;
220 return *this;
221}
222
223/*!
224 Scales this vector by the given \a divisor, i.e. the x and y components are divided by \a
225 divisor.
226*/
228{
229 mX /= divisor;
230 mY /= divisor;
231 return *this;
232}
233
234/*!
235 Adds the given \a vector to this vector component-wise.
236*/
238{
239 mX += vector.mX;
240 mY += vector.mY;
241 return *this;
242}
243
244/*!
245 subtracts the given \a vector from this vector component-wise.
246*/
248{
249 mX -= vector.mX;
250 mY -= vector.mY;
251 return *this;
252}
253/* end of 'src/vector2d.cpp' */
254
255
256/* including file 'src/painter.cpp' */
257/* modified 2021-03-29T02:30:44, size 8656 */
258
259////////////////////////////////////////////////////////////////////////////////////////////////////
260//////////////////// QCPPainter
261////////////////////////////////////////////////////////////////////////////////////////////////////
262
263/*! \class QCPPainter
264 \brief QPainter subclass used internally
265
266 This QPainter subclass is used to provide some extended functionality e.g. for tweaking position
267 consistency between antialiased and non-antialiased painting. Further it provides workarounds
268 for QPainter quirks.
269
270 \warning This class intentionally hides non-virtual functions of QPainter, e.g. setPen, save and
271 restore. So while it is possible to pass a QCPPainter instance to a function that expects a
272 QPainter pointer, some of the workarounds and tweaks will be unavailable to the function (because
273 it will call the base class implementations of the functions actually hidden by QCPPainter).
274*/
275
276/*!
277 Creates a new QCPPainter instance and sets default values
278*/
280 mModes(pmDefault),
281 mIsAntialiasing(false)
282{
283 // don't setRenderHint(QPainter::NonCosmeticDefautPen) here, because painter isn't active yet and
284 // a call to begin() will follow
285}
286
287/*!
288 Creates a new QCPPainter instance on the specified paint \a device and sets default values. Just
289 like the analogous QPainter constructor, begins painting on \a device immediately.
290
291 Like \ref begin, this method sets QPainter::NonCosmeticDefaultPen in Qt versions before Qt5.
292*/
294 QPainter(device),
295 mModes(pmDefault),
296 mIsAntialiasing(false)
297{
298#if QT_VERSION < QT_VERSION_CHECK(5, 0, 0) // before Qt5, default pens used to be cosmetic if NonCosmeticDefaultPen flag isn't set. So we set it to get consistency across Qt versions.
299 if (isActive())
300 setRenderHint(QPainter::NonCosmeticDefaultPen);
301#endif
302}
303
304/*!
305 Sets the pen of the painter and applies certain fixes to it, depending on the mode of this
306 QCPPainter.
307
308 \note this function hides the non-virtual base class implementation.
309*/
310void QCPPainter::setPen(const QPen &pen)
311{
313 if (mModes.testFlag(pmNonCosmetic))
315}
316
317/*! \overload
318
319 Sets the pen (by color) of the painter and applies certain fixes to it, depending on the mode of
320 this QCPPainter.
321
322 \note this function hides the non-virtual base class implementation.
323*/
324void QCPPainter::setPen(const QColor &color)
325{
326 QPainter::setPen(color);
327 if (mModes.testFlag(pmNonCosmetic))
329}
330
331/*! \overload
332
333 Sets the pen (by style) of the painter and applies certain fixes to it, depending on the mode of
334 this QCPPainter.
335
336 \note this function hides the non-virtual base class implementation.
337*/
339{
340 QPainter::setPen(penStyle);
341 if (mModes.testFlag(pmNonCosmetic))
343}
344
345/*! \overload
346
347 Works around a Qt bug introduced with Qt 4.8 which makes drawing QLineF unpredictable when
348 antialiasing is disabled. Thus when antialiasing is disabled, it rounds the \a line to
349 integer coordinates and then passes it to the original drawLine.
350
351 \note this function hides the non-virtual base class implementation.
352*/
354{
355 if (mIsAntialiasing || mModes.testFlag(pmVectorized))
356 QPainter::drawLine(line);
357 else
359}
360
361/*!
362 Sets whether painting uses antialiasing or not. Use this method instead of using setRenderHint
363 with QPainter::Antialiasing directly, as it allows QCPPainter to regain pixel exactness between
364 antialiased and non-antialiased painting (Since Qt < 5.0 uses slightly different coordinate systems for
365 AA/Non-AA painting).
366*/
368{
370 if (mIsAntialiasing != enabled)
371 {
372 mIsAntialiasing = enabled;
373 if (!mModes.testFlag(pmVectorized)) // antialiasing half-pixel shift only needed for rasterized outputs
374 {
375 if (mIsAntialiasing)
376 translate(0.5, 0.5);
377 else
378 translate(-0.5, -0.5);
379 }
380 }
381}
382
383/*!
384 Sets the mode of the painter. This controls whether the painter shall adjust its
385 fixes/workarounds optimized for certain output devices.
386*/
388{
389 mModes = modes;
390}
391
392/*!
393 Sets the QPainter::NonCosmeticDefaultPen in Qt versions before Qt5 after beginning painting on \a
394 device. This is necessary to get cosmetic pen consistency across Qt versions, because since Qt5,
395 all pens are non-cosmetic by default, and in Qt4 this render hint must be set to get that
396 behaviour.
397
398 The Constructor \ref QCPPainter(QPaintDevice *device) which directly starts painting also sets
399 the render hint as appropriate.
400
401 \note this function hides the non-virtual base class implementation.
402*/
404{
405 bool result = QPainter::begin(device);
406#if QT_VERSION < QT_VERSION_CHECK(5, 0, 0) // before Qt5, default pens used to be cosmetic if NonCosmeticDefaultPen flag isn't set. So we set it to get consistency across Qt versions.
407 if (result)
408 setRenderHint(QPainter::NonCosmeticDefaultPen);
409#endif
410 return result;
411}
412
413/*! \overload
414
415 Sets the mode of the painter. This controls whether the painter shall adjust its
416 fixes/workarounds optimized for certain output devices.
417*/
419{
420 if (!enabled && mModes.testFlag(mode))
421 mModes &= ~mode;
422 else if (enabled && !mModes.testFlag(mode))
423 mModes |= mode;
424}
425
426/*!
427 Saves the painter (see QPainter::save). Since QCPPainter adds some new internal state to
428 QPainter, the save/restore functions are reimplemented to also save/restore those members.
429
430 \note this function hides the non-virtual base class implementation.
431
432 \see restore
433*/
435{
436 mAntialiasingStack.push(mIsAntialiasing);
438}
439
440/*!
441 Restores the painter (see QPainter::restore). Since QCPPainter adds some new internal state to
442 QPainter, the save/restore functions are reimplemented to also save/restore those members.
443
444 \note this function hides the non-virtual base class implementation.
445
446 \see save
447*/
449{
450 if (!mAntialiasingStack.isEmpty())
451 mIsAntialiasing = mAntialiasingStack.pop();
452 else
453 qDebug() << Q_FUNC_INFO << "Unbalanced save/restore";
455}
456
457/*!
458 Changes the pen width to 1 if it currently is 0. This function is called in the \ref setPen
459 overrides when the \ref pmNonCosmetic mode is set.
460*/
462{
463 if (qFuzzyIsNull(pen().widthF()))
464 {
465 QPen p = pen();
466 p.setWidth(1);
468 }
469}
470/* end of 'src/painter.cpp' */
471
472
473/* including file 'src/paintbuffer.cpp' */
474/* modified 2021-03-29T02:30:44, size 18915 */
475
476////////////////////////////////////////////////////////////////////////////////////////////////////
477//////////////////// QCPAbstractPaintBuffer
478////////////////////////////////////////////////////////////////////////////////////////////////////
479
480/*! \class QCPAbstractPaintBuffer
481 \brief The abstract base class for paint buffers, which define the rendering backend
482
483 This abstract base class defines the basic interface that a paint buffer needs to provide in
484 order to be usable by QCustomPlot.
485
486 A paint buffer manages both a surface to draw onto, and the matching paint device. The size of
487 the surface can be changed via \ref setSize. External classes (\ref QCustomPlot and \ref
488 QCPLayer) request a painter via \ref startPainting and then perform the draw calls. Once the
489 painting is complete, \ref donePainting is called, so the paint buffer implementation can do
490 clean up if necessary. Before rendering a frame, each paint buffer is usually filled with a color
491 using \ref clear (usually the color is \c Qt::transparent), to remove the contents of the
492 previous frame.
493
494 The simplest paint buffer implementation is \ref QCPPaintBufferPixmap which allows regular
495 software rendering via the raster engine. Hardware accelerated rendering via pixel buffers and
496 frame buffer objects is provided by \ref QCPPaintBufferGlPbuffer and \ref QCPPaintBufferGlFbo.
497 They are used automatically if \ref QCustomPlot::setOpenGl is enabled.
498*/
499
500/* start documentation of pure virtual functions */
501
502/*! \fn virtual QCPPainter *QCPAbstractPaintBuffer::startPainting() = 0
503
504 Returns a \ref QCPPainter which is ready to draw to this buffer. The ownership and thus the
505 responsibility to delete the painter after the painting operations are complete is given to the
506 caller of this method.
507
508 Once you are done using the painter, delete the painter and call \ref donePainting.
509
510 While a painter generated with this method is active, you must not call \ref setSize, \ref
511 setDevicePixelRatio or \ref clear.
512
513 This method may return 0, if a painter couldn't be activated on the buffer. This usually
514 indicates a problem with the respective painting backend.
515*/
516
517/*! \fn virtual void QCPAbstractPaintBuffer::draw(QCPPainter *painter) const = 0
518
519 Draws the contents of this buffer with the provided \a painter. This is the method that is used
520 to finally join all paint buffers and draw them onto the screen.
521*/
522
523/*! \fn virtual void QCPAbstractPaintBuffer::clear(const QColor &color) = 0
524
525 Fills the entire buffer with the provided \a color. To have an empty transparent buffer, use the
526 named color \c Qt::transparent.
527
528 This method must not be called if there is currently a painter (acquired with \ref startPainting)
529 active.
530*/
531
532/*! \fn virtual void QCPAbstractPaintBuffer::reallocateBuffer() = 0
533
534 Reallocates the internal buffer with the currently configured size (\ref setSize) and device
535 pixel ratio, if applicable (\ref setDevicePixelRatio). It is called as soon as any of those
536 properties are changed on this paint buffer.
537
538 \note Subclasses of \ref QCPAbstractPaintBuffer must call their reimplementation of this method
539 in their constructor, to perform the first allocation (this can not be done by the base class
540 because calling pure virtual methods in base class constructors is not possible).
541*/
542
543/* end documentation of pure virtual functions */
544/* start documentation of inline functions */
545
546/*! \fn virtual void QCPAbstractPaintBuffer::donePainting()
547
548 If you have acquired a \ref QCPPainter to paint onto this paint buffer via \ref startPainting,
549 call this method as soon as you are done with the painting operations and have deleted the
550 painter.
551
552 paint buffer subclasses may use this method to perform any type of cleanup that is necessary. The
553 default implementation does nothing.
554*/
555
556/* end documentation of inline functions */
557
558/*!
559 Creates a paint buffer and initializes it with the provided \a size and \a devicePixelRatio.
560
561 Subclasses must call their \ref reallocateBuffer implementation in their respective constructors.
562*/
563QCPAbstractPaintBuffer::QCPAbstractPaintBuffer(const QSize &size, double devicePixelRatio) :
564 mSize(size),
565 mDevicePixelRatio(devicePixelRatio),
566 mInvalidated(true)
567{
568}
569
570QCPAbstractPaintBuffer::~QCPAbstractPaintBuffer()
571{
572}
573
574/*!
575 Sets the paint buffer size.
576
577 The buffer is reallocated (by calling \ref reallocateBuffer), so any painters that were obtained
578 by \ref startPainting are invalidated and must not be used after calling this method.
579
580 If \a size is already the current buffer size, this method does nothing.
581*/
583{
584 if (mSize != size)
585 {
586 mSize = size;
588 }
589}
590
591/*!
592 Sets the invalidated flag to \a invalidated.
593
594 This mechanism is used internally in conjunction with isolated replotting of \ref QCPLayer
595 instances (in \ref QCPLayer::lmBuffered mode). If \ref QCPLayer::replot is called on a buffered
596 layer, i.e. an isolated repaint of only that layer (and its dedicated paint buffer) is requested,
597 QCustomPlot will decide depending on the invalidated flags of other paint buffers whether it also
598 replots them, instead of only the layer on which the replot was called.
599
600 The invalidated flag is set to true when \ref QCPLayer association has changed, i.e. if layers
601 were added or removed from this buffer, or if they were reordered. It is set to false as soon as
602 all associated \ref QCPLayer instances are drawn onto the buffer.
603
604 Under normal circumstances, it is not necessary to manually call this method.
605*/
607{
608 mInvalidated = invalidated;
609}
610
611/*!
612 Sets the device pixel ratio to \a ratio. This is useful to render on high-DPI output devices.
613 The ratio is automatically set to the device pixel ratio used by the parent QCustomPlot instance.
614
615 The buffer is reallocated (by calling \ref reallocateBuffer), so any painters that were obtained
616 by \ref startPainting are invalidated and must not be used after calling this method.
617
618 \note This method is only available for Qt versions 5.4 and higher.
619*/
621{
622 if (!qFuzzyCompare(ratio, mDevicePixelRatio))
623 {
624#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
625 mDevicePixelRatio = ratio;
627#else
628 qDebug() << Q_FUNC_INFO << "Device pixel ratios not supported for Qt versions before 5.4";
629 mDevicePixelRatio = 1.0;
630#endif
631 }
632}
633
634////////////////////////////////////////////////////////////////////////////////////////////////////
635//////////////////// QCPPaintBufferPixmap
636////////////////////////////////////////////////////////////////////////////////////////////////////
637
638/*! \class QCPPaintBufferPixmap
639 \brief A paint buffer based on QPixmap, using software raster rendering
640
641 This paint buffer is the default and fall-back paint buffer which uses software rendering and
642 QPixmap as internal buffer. It is used if \ref QCustomPlot::setOpenGl is false.
643*/
644
645/*!
646 Creates a pixmap paint buffer instancen with the specified \a size and \a devicePixelRatio, if
647 applicable.
648*/
649QCPPaintBufferPixmap::QCPPaintBufferPixmap(const QSize &size, double devicePixelRatio) :
650 QCPAbstractPaintBuffer(size, devicePixelRatio)
651{
653}
654
655QCPPaintBufferPixmap::~QCPPaintBufferPixmap()
656{
657}
658
659/* inherits documentation from base class */
661{
662 QCPPainter *result = new QCPPainter(&mBuffer);
663#if QT_VERSION < QT_VERSION_CHECK(6, 0, 0)
664 result->setRenderHint(QPainter::HighQualityAntialiasing);
665#endif
666 return result;
667}
668
669/* inherits documentation from base class */
671{
672 if (painter && painter->isActive())
673 painter->drawPixmap(0, 0, mBuffer);
674 else
675 qDebug() << Q_FUNC_INFO << "invalid or inactive painter passed";
676}
677
678/* inherits documentation from base class */
680{
681 mBuffer.fill(color);
682}
683
684/* inherits documentation from base class */
686{
688 if (!qFuzzyCompare(1.0, mDevicePixelRatio))
689 {
690#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
691 mBuffer = QPixmap(mSize*mDevicePixelRatio);
692 mBuffer.setDevicePixelRatio(mDevicePixelRatio);
693#else
694 qDebug() << Q_FUNC_INFO << "Device pixel ratios not supported for Qt versions before 5.4";
695 mDevicePixelRatio = 1.0;
696 mBuffer = QPixmap(mSize);
697#endif
698 } else
699 {
700 mBuffer = QPixmap(mSize);
701 }
702}
703
704
705#ifdef QCP_OPENGL_PBUFFER
706////////////////////////////////////////////////////////////////////////////////////////////////////
707//////////////////// QCPPaintBufferGlPbuffer
708////////////////////////////////////////////////////////////////////////////////////////////////////
709
710/*! \class QCPPaintBufferGlPbuffer
711 \brief A paint buffer based on OpenGL pixel buffers, using hardware accelerated rendering
712
713 This paint buffer is one of the OpenGL paint buffers which facilitate hardware accelerated plot
714 rendering. It is based on OpenGL pixel buffers (pbuffer) and is used in Qt versions before 5.0.
715 (See \ref QCPPaintBufferGlFbo used in newer Qt versions.)
716
717 The OpenGL paint buffers are used if \ref QCustomPlot::setOpenGl is set to true, and if they are
718 supported by the system.
719*/
720
721/*!
722 Creates a \ref QCPPaintBufferGlPbuffer instance with the specified \a size and \a
723 devicePixelRatio, if applicable.
724
725 The parameter \a multisamples defines how many samples are used per pixel. Higher values thus
726 result in higher quality antialiasing. If the specified \a multisamples value exceeds the
727 capability of the graphics hardware, the highest supported multisampling is used.
728*/
729QCPPaintBufferGlPbuffer::QCPPaintBufferGlPbuffer(const QSize &size, double devicePixelRatio, int multisamples) :
730 QCPAbstractPaintBuffer(size, devicePixelRatio),
731 mGlPBuffer(0),
733{
734 QCPPaintBufferGlPbuffer::reallocateBuffer();
735}
736
738{
739 if (mGlPBuffer)
740 delete mGlPBuffer;
741}
742
743/* inherits documentation from base class */
744QCPPainter *QCPPaintBufferGlPbuffer::startPainting()
745{
746 if (!mGlPBuffer->isValid())
747 {
748 qDebug() << Q_FUNC_INFO << "OpenGL frame buffer object doesn't exist, reallocateBuffer was not called?";
749 return 0;
750 }
751
752 QCPPainter *result = new QCPPainter(mGlPBuffer);
753 result->setRenderHint(QPainter::HighQualityAntialiasing);
754 return result;
755}
756
757/* inherits documentation from base class */
758void QCPPaintBufferGlPbuffer::draw(QCPPainter *painter) const
759{
760 if (!painter || !painter->isActive())
761 {
762 qDebug() << Q_FUNC_INFO << "invalid or inactive painter passed";
763 return;
764 }
765 if (!mGlPBuffer->isValid())
766 {
767 qDebug() << Q_FUNC_INFO << "OpenGL pbuffer isn't valid, reallocateBuffer was not called?";
768 return;
769 }
770 painter->drawImage(0, 0, mGlPBuffer->toImage());
771}
772
773/* inherits documentation from base class */
774void QCPPaintBufferGlPbuffer::clear(const QColor &color)
775{
776 if (mGlPBuffer->isValid())
777 {
778 mGlPBuffer->makeCurrent();
779 glClearColor(color.redF(), color.greenF(), color.blueF(), color.alphaF());
781 mGlPBuffer->doneCurrent();
782 } else
783 qDebug() << Q_FUNC_INFO << "OpenGL pbuffer invalid or context not current";
784}
785
786/* inherits documentation from base class */
787void QCPPaintBufferGlPbuffer::reallocateBuffer()
788{
789 if (mGlPBuffer)
790 delete mGlPBuffer;
791
792 QGLFormat format;
793 format.setAlpha(true);
794 format.setSamples(mMultisamples);
795 mGlPBuffer = new QGLPixelBuffer(mSize, format);
796}
797#endif // QCP_OPENGL_PBUFFER
798
799
800#ifdef QCP_OPENGL_FBO
801////////////////////////////////////////////////////////////////////////////////////////////////////
802//////////////////// QCPPaintBufferGlFbo
803////////////////////////////////////////////////////////////////////////////////////////////////////
804
805/*! \class QCPPaintBufferGlFbo
806 \brief A paint buffer based on OpenGL frame buffers objects, using hardware accelerated rendering
807
808 This paint buffer is one of the OpenGL paint buffers which facilitate hardware accelerated plot
809 rendering. It is based on OpenGL frame buffer objects (fbo) and is used in Qt versions 5.0 and
810 higher. (See \ref QCPPaintBufferGlPbuffer used in older Qt versions.)
811
812 The OpenGL paint buffers are used if \ref QCustomPlot::setOpenGl is set to true, and if they are
813 supported by the system.
814*/
815
816/*!
817 Creates a \ref QCPPaintBufferGlFbo instance with the specified \a size and \a devicePixelRatio,
818 if applicable.
819
820 All frame buffer objects shall share one OpenGL context and paint device, which need to be set up
821 externally and passed via \a glContext and \a glPaintDevice. The set-up is done in \ref
822 QCustomPlot::setupOpenGl and the context and paint device are managed by the parent QCustomPlot
823 instance.
824*/
826 QCPAbstractPaintBuffer(size, devicePixelRatio),
830{
831 QCPPaintBufferGlFbo::reallocateBuffer();
832}
833
835{
836 if (mGlFrameBuffer)
837 delete mGlFrameBuffer;
838}
839
840/* inherits documentation from base class */
841QCPPainter *QCPPaintBufferGlFbo::startPainting()
842{
843 QSharedPointer<QOpenGLPaintDevice> paintDevice = mGlPaintDevice.toStrongRef();
844 QSharedPointer<QOpenGLContext> context = mGlContext.toStrongRef();
845 if (!paintDevice)
846 {
847 qDebug() << Q_FUNC_INFO << "OpenGL paint device doesn't exist";
848 return 0;
849 }
850 if (!context)
851 {
852 qDebug() << Q_FUNC_INFO << "OpenGL context doesn't exist";
853 return 0;
854 }
855 if (!mGlFrameBuffer)
856 {
857 qDebug() << Q_FUNC_INFO << "OpenGL frame buffer object doesn't exist, reallocateBuffer was not called?";
858 return 0;
859 }
860
861 if (QOpenGLContext::currentContext() != context.data())
862 context->makeCurrent(context->surface());
863 mGlFrameBuffer->bind();
864 QCPPainter *result = new QCPPainter(paintDevice.data());
865#if QT_VERSION < QT_VERSION_CHECK(6, 0, 0)
866 result->setRenderHint(QPainter::HighQualityAntialiasing);
867#endif
868 return result;
869}
870
871/* inherits documentation from base class */
872void QCPPaintBufferGlFbo::donePainting()
873{
874 if (mGlFrameBuffer && mGlFrameBuffer->isBound())
875 mGlFrameBuffer->release();
876 else
877 qDebug() << Q_FUNC_INFO << "Either OpenGL frame buffer not valid or was not bound";
878}
879
880/* inherits documentation from base class */
881void QCPPaintBufferGlFbo::draw(QCPPainter *painter) const
882{
883 if (!painter || !painter->isActive())
884 {
885 qDebug() << Q_FUNC_INFO << "invalid or inactive painter passed";
886 return;
887 }
888 if (!mGlFrameBuffer)
889 {
890 qDebug() << Q_FUNC_INFO << "OpenGL frame buffer object doesn't exist, reallocateBuffer was not called?";
891 return;
892 }
893 painter->drawImage(0, 0, mGlFrameBuffer->toImage());
894}
895
896/* inherits documentation from base class */
897void QCPPaintBufferGlFbo::clear(const QColor &color)
898{
899 QSharedPointer<QOpenGLContext> context = mGlContext.toStrongRef();
900 if (!context)
901 {
902 qDebug() << Q_FUNC_INFO << "OpenGL context doesn't exist";
903 return;
904 }
905 if (!mGlFrameBuffer)
906 {
907 qDebug() << Q_FUNC_INFO << "OpenGL frame buffer object doesn't exist, reallocateBuffer was not called?";
908 return;
909 }
910
911 if (QOpenGLContext::currentContext() != context.data())
912 context->makeCurrent(context->surface());
913 mGlFrameBuffer->bind();
914 glClearColor(color.redF(), color.greenF(), color.blueF(), color.alphaF());
916 mGlFrameBuffer->release();
917}
918
919/* inherits documentation from base class */
920void QCPPaintBufferGlFbo::reallocateBuffer()
921{
922 // release and delete possibly existing framebuffer:
923 if (mGlFrameBuffer)
924 {
925 if (mGlFrameBuffer->isBound())
926 mGlFrameBuffer->release();
927 delete mGlFrameBuffer;
928 mGlFrameBuffer = 0;
929 }
930
931 QSharedPointer<QOpenGLPaintDevice> paintDevice = mGlPaintDevice.toStrongRef();
932 QSharedPointer<QOpenGLContext> context = mGlContext.toStrongRef();
933 if (!paintDevice)
934 {
935 qDebug() << Q_FUNC_INFO << "OpenGL paint device doesn't exist";
936 return;
937 }
938 if (!context)
939 {
940 qDebug() << Q_FUNC_INFO << "OpenGL context doesn't exist";
941 return;
942 }
943
944 // create new fbo with appropriate size:
945 context->makeCurrent(context->surface());
947 frameBufferFormat.setSamples(context->format().samples());
949 mGlFrameBuffer = new QOpenGLFramebufferObject(mSize*mDevicePixelRatio, frameBufferFormat);
950 if (paintDevice->size() != mSize*mDevicePixelRatio)
951 paintDevice->setSize(mSize*mDevicePixelRatio);
952#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
953 paintDevice->setDevicePixelRatio(mDevicePixelRatio);
954#endif
955}
956#endif // QCP_OPENGL_FBO
957/* end of 'src/paintbuffer.cpp' */
958
959
960/* including file 'src/layer.cpp' */
961/* modified 2021-03-29T02:30:44, size 37615 */
962
963////////////////////////////////////////////////////////////////////////////////////////////////////
964//////////////////// QCPLayer
965////////////////////////////////////////////////////////////////////////////////////////////////////
966
967/*! \class QCPLayer
968 \brief A layer that may contain objects, to control the rendering order
969
970 The Layering system of QCustomPlot is the mechanism to control the rendering order of the
971 elements inside the plot.
972
973 It is based on the two classes QCPLayer and QCPLayerable. QCustomPlot holds an ordered list of
974 one or more instances of QCPLayer (see QCustomPlot::addLayer, QCustomPlot::layer,
975 QCustomPlot::moveLayer, etc.). When replotting, QCustomPlot goes through the list of layers
976 bottom to top and successively draws the layerables of the layers into the paint buffer(s).
977
978 A QCPLayer contains an ordered list of QCPLayerable instances. QCPLayerable is an abstract base
979 class from which almost all visible objects derive, like axes, grids, graphs, items, etc.
980
981 \section qcplayer-defaultlayers Default layers
982
983 Initially, QCustomPlot has six layers: "background", "grid", "main", "axes", "legend" and
984 "overlay" (in that order). On top is the "overlay" layer, which only contains the QCustomPlot's
985 selection rect (\ref QCustomPlot::selectionRect). The next two layers "axes" and "legend" contain
986 the default axes and legend, so they will be drawn above plottables. In the middle, there is the
987 "main" layer. It is initially empty and set as the current layer (see
988 QCustomPlot::setCurrentLayer). This means, all new plottables, items etc. are created on this
989 layer by default. Then comes the "grid" layer which contains the QCPGrid instances (which belong
990 tightly to QCPAxis, see \ref QCPAxis::grid). The Axis rect background shall be drawn behind
991 everything else, thus the default QCPAxisRect instance is placed on the "background" layer. Of
992 course, the layer affiliation of the individual objects can be changed as required (\ref
993 QCPLayerable::setLayer).
994
995 \section qcplayer-ordering Controlling the rendering order via layers
996
997 Controlling the ordering of layerables in the plot is easy: Create a new layer in the position
998 you want the layerable to be in, e.g. above "main", with \ref QCustomPlot::addLayer. Then set the
999 current layer with \ref QCustomPlot::setCurrentLayer to that new layer and finally create the
1000 objects normally. They will be placed on the new layer automatically, due to the current layer
1001 setting. Alternatively you could have also ignored the current layer setting and just moved the
1002 objects with \ref QCPLayerable::setLayer to the desired layer after creating them.
1003
1004 It is also possible to move whole layers. For example, If you want the grid to be shown in front
1005 of all plottables/items on the "main" layer, just move it above "main" with
1006 QCustomPlot::moveLayer.
1007
1008 The rendering order within one layer is simply by order of creation or insertion. The item
1009 created last (or added last to the layer), is drawn on top of all other objects on that layer.
1010
1011 When a layer is deleted, the objects on it are not deleted with it, but fall on the layer below
1012 the deleted layer, see QCustomPlot::removeLayer.
1013
1014 \section qcplayer-buffering Replotting only a specific layer
1015
1016 If the layer mode (\ref setMode) is set to \ref lmBuffered, you can replot only this specific
1017 layer by calling \ref replot. In certain situations this can provide better replot performance,
1018 compared with a full replot of all layers. Upon creation of a new layer, the layer mode is
1019 initialized to \ref lmLogical. The only layer that is set to \ref lmBuffered in a new \ref
1020 QCustomPlot instance is the "overlay" layer, containing the selection rect.
1021*/
1022
1023/* start documentation of inline functions */
1024
1025/*! \fn QList<QCPLayerable*> QCPLayer::children() const
1026
1027 Returns a list of all layerables on this layer. The order corresponds to the rendering order:
1028 layerables with higher indices are drawn above layerables with lower indices.
1029*/
1030
1031/*! \fn int QCPLayer::index() const
1032
1033 Returns the index this layer has in the QCustomPlot. The index is the integer number by which this layer can be
1034 accessed via \ref QCustomPlot::layer.
1035
1036 Layers with higher indices will be drawn above layers with lower indices.
1037*/
1038
1039/* end documentation of inline functions */
1040
1041/*!
1042 Creates a new QCPLayer instance.
1043
1044 Normally you shouldn't directly instantiate layers, use \ref QCustomPlot::addLayer instead.
1045
1046 \warning It is not checked that \a layerName is actually a unique layer name in \a parentPlot.
1047 This check is only performed by \ref QCustomPlot::addLayer.
1048*/
1050 QObject(parentPlot),
1051 mParentPlot(parentPlot),
1052 mName(layerName),
1053 mIndex(-1), // will be set to a proper value by the QCustomPlot layer creation function
1054 mVisible(true),
1055 mMode(lmLogical)
1056{
1057 // Note: no need to make sure layerName is unique, because layer
1058 // management is done with QCustomPlot functions.
1059}
1060
1061QCPLayer::~QCPLayer()
1062{
1063 // If child layerables are still on this layer, detach them, so they don't try to reach back to this
1064 // then invalid layer once they get deleted/moved themselves. This only happens when layers are deleted
1065 // directly, like in the QCustomPlot destructor. (The regular layer removal procedure for the user is to
1066 // call QCustomPlot::removeLayer, which moves all layerables off this layer before deleting it.)
1067
1068 while (!mChildren.isEmpty())
1069 mChildren.last()->setLayer(nullptr); // removes itself from mChildren via removeChild()
1070
1071 if (mParentPlot->currentLayer() == this)
1072 qDebug() << Q_FUNC_INFO << "The parent plot's mCurrentLayer will be a dangling pointer. Should have been set to a valid layer or nullptr beforehand.";
1073}
1074
1075/*!
1076 Sets whether this layer is visible or not. If \a visible is set to false, all layerables on this
1077 layer will be invisible.
1078
1079 This function doesn't change the visibility property of the layerables (\ref
1080 QCPLayerable::setVisible), but the \ref QCPLayerable::realVisibility of each layerable takes the
1081 visibility of the parent layer into account.
1082*/
1083void QCPLayer::setVisible(bool visible)
1084{
1085 mVisible = visible;
1086}
1087
1088/*!
1089 Sets the rendering mode of this layer.
1090
1091 If \a mode is set to \ref lmBuffered for a layer, it will be given a dedicated paint buffer by
1092 the parent QCustomPlot instance. This means it may be replotted individually by calling \ref
1093 QCPLayer::replot, without needing to replot all other layers.
1094
1095 Layers which are set to \ref lmLogical (the default) are used only to define the rendering order
1096 and can't be replotted individually.
1097
1098 Note that each layer which is set to \ref lmBuffered requires additional paint buffers for the
1099 layers below, above and for the layer itself. This increases the memory consumption and
1100 (slightly) decreases the repainting speed because multiple paint buffers need to be joined. So
1101 you should carefully choose which layers benefit from having their own paint buffer. A typical
1102 example would be a layer which contains certain layerables (e.g. items) that need to be changed
1103 and thus replotted regularly, while all other layerables on other layers stay static. By default,
1104 only the topmost layer called "overlay" is in mode \ref lmBuffered, and contains the selection
1105 rect.
1106
1107 \see replot
1108*/
1110{
1111 if (mMode != mode)
1112 {
1113 mMode = mode;
1115 pb->setInvalidated();
1116 }
1117}
1118
1119/*! \internal
1120
1121 Draws the contents of this layer with the provided \a painter.
1122
1123 \see replot, drawToPaintBuffer
1124*/
1126{
1127 foreach (QCPLayerable *child, mChildren)
1128 {
1129 if (child->realVisibility())
1130 {
1131 painter->save();
1132 painter->setClipRect(child->clipRect().translated(0, -1));
1133 child->applyDefaultAntialiasingHint(painter);
1134 child->draw(painter);
1135 painter->restore();
1136 }
1137 }
1138}
1139
1140/*! \internal
1141
1142 Draws the contents of this layer into the paint buffer which is associated with this layer. The
1143 association is established by the parent QCustomPlot, which manages all paint buffers (see \ref
1144 QCustomPlot::setupPaintBuffers).
1145
1146 \see draw
1147*/
1149{
1151 {
1152 if (QCPPainter *painter = pb->startPainting())
1153 {
1154 if (painter->isActive())
1155 draw(painter);
1156 else
1157 qDebug() << Q_FUNC_INFO << "paint buffer returned inactive painter";
1158 delete painter;
1159 pb->donePainting();
1160 } else
1161 qDebug() << Q_FUNC_INFO << "paint buffer returned nullptr painter";
1162 } else
1163 qDebug() << Q_FUNC_INFO << "no valid paint buffer associated with this layer";
1164}
1165
1166/*!
1167 If the layer mode (\ref setMode) is set to \ref lmBuffered, this method allows replotting only
1168 the layerables on this specific layer, without the need to replot all other layers (as a call to
1169 \ref QCustomPlot::replot would do).
1170
1171 QCustomPlot also makes sure to replot all layers instead of only this one, if the layer ordering
1172 or any layerable-layer-association has changed since the last full replot and any other paint
1173 buffers were thus invalidated.
1174
1175 If the layer mode is \ref lmLogical however, this method simply calls \ref QCustomPlot::replot on
1176 the parent QCustomPlot instance.
1177
1178 \see draw
1179*/
1181{
1182 if (mMode == lmBuffered && !mParentPlot->hasInvalidatedPaintBuffers())
1183 {
1185 {
1186 pb->clear(Qt::transparent);
1188 pb->setInvalidated(false); // since layer is lmBuffered, we know only this layer is on buffer and we can reset invalidated flag
1189 mParentPlot->update();
1190 } else
1191 qDebug() << Q_FUNC_INFO << "no valid paint buffer associated with this layer";
1192 } else
1193 mParentPlot->replot();
1194}
1195
1196/*! \internal
1197
1198 Adds the \a layerable to the list of this layer. If \a prepend is set to true, the layerable will
1199 be prepended to the list, i.e. be drawn beneath the other layerables already in the list.
1200
1201 This function does not change the \a mLayer member of \a layerable to this layer. (Use
1202 QCPLayerable::setLayer to change the layer of an object, not this function.)
1203
1204 \see removeChild
1205*/
1207{
1208 if (!mChildren.contains(layerable))
1209 {
1210 if (prepend)
1211 mChildren.prepend(layerable);
1212 else
1213 mChildren.append(layerable);
1215 pb->setInvalidated();
1216 } else
1217 qDebug() << Q_FUNC_INFO << "layerable is already child of this layer" << reinterpret_cast<quintptr>(layerable);
1218}
1219
1220/*! \internal
1221
1222 Removes the \a layerable from the list of this layer.
1223
1224 This function does not change the \a mLayer member of \a layerable. (Use QCPLayerable::setLayer
1225 to change the layer of an object, not this function.)
1226
1227 \see addChild
1228*/
1230{
1231 if (mChildren.removeOne(layerable))
1232 {
1234 pb->setInvalidated();
1235 } else
1236 qDebug() << Q_FUNC_INFO << "layerable is not child of this layer" << reinterpret_cast<quintptr>(layerable);
1237}
1238
1239
1240////////////////////////////////////////////////////////////////////////////////////////////////////
1241//////////////////// QCPLayerable
1242////////////////////////////////////////////////////////////////////////////////////////////////////
1243
1244/*! \class QCPLayerable
1245 \brief Base class for all drawable objects
1246
1247 This is the abstract base class most visible objects derive from, e.g. plottables, axes, grid
1248 etc.
1249
1250 Every layerable is on a layer (QCPLayer) which allows controlling the rendering order by stacking
1251 the layers accordingly.
1252
1253 For details about the layering mechanism, see the QCPLayer documentation.
1254*/
1255
1256/* start documentation of inline functions */
1257
1258/*! \fn QCPLayerable *QCPLayerable::parentLayerable() const
1259
1260 Returns the parent layerable of this layerable. The parent layerable is used to provide
1261 visibility hierarchies in conjunction with the method \ref realVisibility. This way, layerables
1262 only get drawn if their parent layerables are visible, too.
1263
1264 Note that a parent layerable is not necessarily also the QObject parent for memory management.
1265 Further, a layerable doesn't always have a parent layerable, so this function may return \c
1266 nullptr.
1267
1268 A parent layerable is set implicitly when placed inside layout elements and doesn't need to be
1269 set manually by the user.
1270*/
1271
1272/* end documentation of inline functions */
1273/* start documentation of pure virtual functions */
1274
1275/*! \fn virtual void QCPLayerable::applyDefaultAntialiasingHint(QCPPainter *painter) const = 0
1276 \internal
1277
1278 This function applies the default antialiasing setting to the specified \a painter, using the
1279 function \ref applyAntialiasingHint. It is the antialiasing state the painter is put in, when
1280 \ref draw is called on the layerable. If the layerable has multiple entities whose antialiasing
1281 setting may be specified individually, this function should set the antialiasing state of the
1282 most prominent entity. In this case however, the \ref draw function usually calls the specialized
1283 versions of this function before drawing each entity, effectively overriding the setting of the
1284 default antialiasing hint.
1285
1286 <b>First example:</b> QCPGraph has multiple entities that have an antialiasing setting: The graph
1287 line, fills and scatters. Those can be configured via QCPGraph::setAntialiased,
1288 QCPGraph::setAntialiasedFill and QCPGraph::setAntialiasedScatters. Consequently, there isn't only
1289 the QCPGraph::applyDefaultAntialiasingHint function (which corresponds to the graph line's
1290 antialiasing), but specialized ones like QCPGraph::applyFillAntialiasingHint and
1291 QCPGraph::applyScattersAntialiasingHint. So before drawing one of those entities, QCPGraph::draw
1292 calls the respective specialized applyAntialiasingHint function.
1293
1294 <b>Second example:</b> QCPItemLine consists only of a line so there is only one antialiasing
1295 setting which can be controlled with QCPItemLine::setAntialiased. (This function is inherited by
1296 all layerables. The specialized functions, as seen on QCPGraph, must be added explicitly to the
1297 respective layerable subclass.) Consequently it only has the normal
1298 QCPItemLine::applyDefaultAntialiasingHint. The \ref QCPItemLine::draw function doesn't need to
1299 care about setting any antialiasing states, because the default antialiasing hint is already set
1300 on the painter when the \ref draw function is called, and that's the state it wants to draw the
1301 line with.
1302*/
1303
1304/*! \fn virtual void QCPLayerable::draw(QCPPainter *painter) const = 0
1305 \internal
1306
1307 This function draws the layerable with the specified \a painter. It is only called by
1308 QCustomPlot, if the layerable is visible (\ref setVisible).
1309
1310 Before this function is called, the painter's antialiasing state is set via \ref
1311 applyDefaultAntialiasingHint, see the documentation there. Further, the clipping rectangle was
1312 set to \ref clipRect.
1313*/
1314
1315/* end documentation of pure virtual functions */
1316/* start documentation of signals */
1317
1318/*! \fn void QCPLayerable::layerChanged(QCPLayer *newLayer);
1319
1320 This signal is emitted when the layer of this layerable changes, i.e. this layerable is moved to
1321 a different layer.
1322
1323 \see setLayer
1324*/
1325
1326/* end documentation of signals */
1327
1328/*!
1329 Creates a new QCPLayerable instance.
1330
1331 Since QCPLayerable is an abstract base class, it can't be instantiated directly. Use one of the
1332 derived classes.
1333
1334 If \a plot is provided, it automatically places itself on the layer named \a targetLayer. If \a
1335 targetLayer is an empty string, it places itself on the current layer of the plot (see \ref
1336 QCustomPlot::setCurrentLayer).
1337
1338 It is possible to provide \c nullptr as \a plot. In that case, you should assign a parent plot at
1339 a later time with \ref initializeParentPlot.
1340
1341 The layerable's parent layerable is set to \a parentLayerable, if provided. Direct layerable
1342 parents are mainly used to control visibility in a hierarchy of layerables. This means a
1343 layerable is only drawn, if all its ancestor layerables are also visible. Note that \a
1344 parentLayerable does not become the QObject-parent (for memory management) of this layerable, \a
1345 plot does. It is not uncommon to set the QObject-parent to something else in the constructors of
1346 QCPLayerable subclasses, to guarantee a working destruction hierarchy.
1347*/
1349 QObject(plot),
1350 mVisible(true),
1351 mParentPlot(plot),
1352 mParentLayerable(parentLayerable),
1353 mLayer(nullptr),
1354 mAntialiased(true)
1355{
1356 if (mParentPlot)
1357 {
1358 if (targetLayer.isEmpty())
1359 setLayer(mParentPlot->currentLayer());
1360 else if (!setLayer(targetLayer))
1361 qDebug() << Q_FUNC_INFO << "setting QCPlayerable initial layer to" << targetLayer << "failed.";
1362 }
1363}
1364
1365QCPLayerable::~QCPLayerable()
1366{
1367 if (mLayer)
1368 {
1369 mLayer->removeChild(this);
1370 mLayer = nullptr;
1371 }
1372}
1373
1374/*!
1375 Sets the visibility of this layerable object. If an object is not visible, it will not be drawn
1376 on the QCustomPlot surface, and user interaction with it (e.g. click and selection) is not
1377 possible.
1378*/
1380{
1381 mVisible = on;
1382}
1383
1384/*!
1385 Sets the \a layer of this layerable object. The object will be placed on top of the other objects
1386 already on \a layer.
1387
1388 If \a layer is 0, this layerable will not be on any layer and thus not appear in the plot (or
1389 interact/receive events).
1390
1391 Returns true if the layer of this layerable was successfully changed to \a layer.
1392*/
1394{
1395 return moveToLayer(layer, false);
1396}
1397
1398/*! \overload
1399 Sets the layer of this layerable object by name
1400
1401 Returns true on success, i.e. if \a layerName is a valid layer name.
1402*/
1404{
1405 if (!mParentPlot)
1406 {
1407 qDebug() << Q_FUNC_INFO << "no parent QCustomPlot set";
1408 return false;
1409 }
1410 if (QCPLayer *layer = mParentPlot->layer(layerName))
1411 {
1412 return setLayer(layer);
1413 } else
1414 {
1415 qDebug() << Q_FUNC_INFO << "there is no layer with name" << layerName;
1416 return false;
1417 }
1418}
1419
1420/*!
1421 Sets whether this object will be drawn antialiased or not.
1422
1423 Note that antialiasing settings may be overridden by QCustomPlot::setAntialiasedElements and
1424 QCustomPlot::setNotAntialiasedElements.
1425*/
1427{
1428 mAntialiased = enabled;
1429}
1430
1431/*!
1432 Returns whether this layerable is visible, taking the visibility of the layerable parent and the
1433 visibility of this layerable's layer into account. This is the method that is consulted to decide
1434 whether a layerable shall be drawn or not.
1435
1436 If this layerable has a direct layerable parent (usually set via hierarchies implemented in
1437 subclasses, like in the case of \ref QCPLayoutElement), this function returns true only if this
1438 layerable has its visibility set to true and the parent layerable's \ref realVisibility returns
1439 true.
1440*/
1442{
1443 return mVisible && (!mLayer || mLayer->visible()) && (!mParentLayerable || mParentLayerable.data()->realVisibility());
1444}
1445
1446/*!
1447 This function is used to decide whether a click hits a layerable object or not.
1448
1449 \a pos is a point in pixel coordinates on the QCustomPlot surface. This function returns the
1450 shortest pixel distance of this point to the object. If the object is either invisible or the
1451 distance couldn't be determined, -1.0 is returned. Further, if \a onlySelectable is true and the
1452 object is not selectable, -1.0 is returned, too.
1453
1454 If the object is represented not by single lines but by an area like a \ref QCPItemText or the
1455 bars of a \ref QCPBars plottable, a click inside the area should also be considered a hit. In
1456 these cases this function thus returns a constant value greater zero but still below the parent
1457 plot's selection tolerance. (typically the selectionTolerance multiplied by 0.99).
1458
1459 Providing a constant value for area objects allows selecting line objects even when they are
1460 obscured by such area objects, by clicking close to the lines (i.e. closer than
1461 0.99*selectionTolerance).
1462
1463 The actual setting of the selection state is not done by this function. This is handled by the
1464 parent QCustomPlot when the mouseReleaseEvent occurs, and the finally selected object is notified
1465 via the \ref selectEvent/\ref deselectEvent methods.
1466
1467 \a details is an optional output parameter. Every layerable subclass may place any information
1468 in \a details. This information will be passed to \ref selectEvent when the parent QCustomPlot
1469 decides on the basis of this selectTest call, that the object was successfully selected. The
1470 subsequent call to \ref selectEvent will carry the \a details. This is useful for multi-part
1471 objects (like QCPAxis). This way, a possibly complex calculation to decide which part was clicked
1472 is only done once in \ref selectTest. The result (i.e. the actually clicked part) can then be
1473 placed in \a details. So in the subsequent \ref selectEvent, the decision which part was
1474 selected doesn't have to be done a second time for a single selection operation.
1475
1476 In the case of 1D Plottables (\ref QCPAbstractPlottable1D, like \ref QCPGraph or \ref QCPBars) \a
1477 details will be set to a \ref QCPDataSelection, describing the closest data point to \a pos.
1478
1479 You may pass \c nullptr as \a details to indicate that you are not interested in those selection
1480 details.
1481
1482 \see selectEvent, deselectEvent, mousePressEvent, wheelEvent, QCustomPlot::setInteractions,
1483 QCPAbstractPlottable1D::selectTestRect
1484*/
1485double QCPLayerable::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
1486{
1487 Q_UNUSED(pos)
1489 Q_UNUSED(details)
1490 return -1.0;
1491}
1492
1493/*! \internal
1494
1495 Sets the parent plot of this layerable. Use this function once to set the parent plot if you have
1496 passed \c nullptr in the constructor. It can not be used to move a layerable from one QCustomPlot
1497 to another one.
1498
1499 Note that, unlike when passing a non \c nullptr parent plot in the constructor, this function
1500 does not make \a parentPlot the QObject-parent of this layerable. If you want this, call
1501 QObject::setParent(\a parentPlot) in addition to this function.
1502
1503 Further, you will probably want to set a layer (\ref setLayer) after calling this function, to
1504 make the layerable appear on the QCustomPlot.
1505
1506 The parent plot change will be propagated to subclasses via a call to \ref parentPlotInitialized
1507 so they can react accordingly (e.g. also initialize the parent plot of child layerables, like
1508 QCPLayout does).
1509*/
1511{
1512 if (mParentPlot)
1513 {
1514 qDebug() << Q_FUNC_INFO << "called with mParentPlot already initialized";
1515 return;
1516 }
1517
1518 if (!parentPlot)
1519 qDebug() << Q_FUNC_INFO << "called with parentPlot zero";
1520
1521 mParentPlot = parentPlot;
1522 parentPlotInitialized(mParentPlot);
1523}
1524
1525/*! \internal
1526
1527 Sets the parent layerable of this layerable to \a parentLayerable. Note that \a parentLayerable does not
1528 become the QObject-parent (for memory management) of this layerable.
1529
1530 The parent layerable has influence on the return value of the \ref realVisibility method. Only
1531 layerables with a fully visible parent tree will return true for \ref realVisibility, and thus be
1532 drawn.
1533
1534 \see realVisibility
1535*/
1537{
1538 mParentLayerable = parentLayerable;
1539}
1540
1541/*! \internal
1542
1543 Moves this layerable object to \a layer. If \a prepend is true, this object will be prepended to
1544 the new layer's list, i.e. it will be drawn below the objects already on the layer. If it is
1545 false, the object will be appended.
1546
1547 Returns true on success, i.e. if \a layer is a valid layer.
1548*/
1549bool QCPLayerable::moveToLayer(QCPLayer *layer, bool prepend)
1550{
1551 if (layer && !mParentPlot)
1552 {
1553 qDebug() << Q_FUNC_INFO << "no parent QCustomPlot set";
1554 return false;
1555 }
1556 if (layer && layer->parentPlot() != mParentPlot)
1557 {
1558 qDebug() << Q_FUNC_INFO << "layer" << layer->name() << "is not in same QCustomPlot as this layerable";
1559 return false;
1560 }
1561
1562 QCPLayer *oldLayer = mLayer;
1563 if (mLayer)
1564 mLayer->removeChild(this);
1565 mLayer = layer;
1566 if (mLayer)
1567 mLayer->addChild(this, prepend);
1568 if (mLayer != oldLayer)
1569 emit layerChanged(mLayer);
1570 return true;
1571}
1572
1573/*! \internal
1574
1575 Sets the QCPainter::setAntialiasing state on the provided \a painter, depending on the \a
1576 localAntialiased value as well as the overrides \ref QCustomPlot::setAntialiasedElements and \ref
1577 QCustomPlot::setNotAntialiasedElements. Which override enum this function takes into account is
1578 controlled via \a overrideElement.
1579*/
1581{
1582 if (mParentPlot && mParentPlot->notAntialiasedElements().testFlag(overrideElement))
1583 painter->setAntialiasing(false);
1584 else if (mParentPlot && mParentPlot->antialiasedElements().testFlag(overrideElement))
1585 painter->setAntialiasing(true);
1586 else
1588}
1589
1590/*! \internal
1591
1592 This function is called by \ref initializeParentPlot, to allow subclasses to react on the setting
1593 of a parent plot. This is the case when \c nullptr was passed as parent plot in the constructor,
1594 and the parent plot is set at a later time.
1595
1596 For example, QCPLayoutElement/QCPLayout hierarchies may be created independently of any
1597 QCustomPlot at first. When they are then added to a layout inside the QCustomPlot, the top level
1598 element of the hierarchy gets its parent plot initialized with \ref initializeParentPlot. To
1599 propagate the parent plot to all the children of the hierarchy, the top level element then uses
1600 this function to pass the parent plot on to its child elements.
1601
1602 The default implementation does nothing.
1603
1604 \see initializeParentPlot
1605*/
1607{
1608 Q_UNUSED(parentPlot)
1609}
1610
1611/*! \internal
1612
1613 Returns the selection category this layerable shall belong to. The selection category is used in
1614 conjunction with \ref QCustomPlot::setInteractions to control which objects are selectable and
1615 which aren't.
1616
1617 Subclasses that don't fit any of the normal \ref QCP::Interaction values can use \ref
1618 QCP::iSelectOther. This is what the default implementation returns.
1619
1620 \see QCustomPlot::setInteractions
1621*/
1626
1627/*! \internal
1628
1629 Returns the clipping rectangle of this layerable object. By default, this is the viewport of the
1630 parent QCustomPlot. Specific subclasses may reimplement this function to provide different
1631 clipping rects.
1632
1633 The returned clipping rect is set on the painter before the draw function of the respective
1634 object is called.
1635*/
1637{
1638 if (mParentPlot)
1639 return mParentPlot->viewport();
1640 else
1641 return {};
1642}
1643
1644/*! \internal
1645
1646 This event is called when the layerable shall be selected, as a consequence of a click by the
1647 user. Subclasses should react to it by setting their selection state appropriately. The default
1648 implementation does nothing.
1649
1650 \a event is the mouse event that caused the selection. \a additive indicates, whether the user
1651 was holding the multi-select-modifier while performing the selection (see \ref
1652 QCustomPlot::setMultiSelectModifier). if \a additive is true, the selection state must be toggled
1653 (i.e. become selected when unselected and unselected when selected).
1654
1655 Every selectEvent is preceded by a call to \ref selectTest, which has returned positively (i.e.
1656 returned a value greater than 0 and less than the selection tolerance of the parent QCustomPlot).
1657 The \a details data you output from \ref selectTest is fed back via \a details here. You may
1658 use it to transport any kind of information from the selectTest to the possibly subsequent
1659 selectEvent. Usually \a details is used to transfer which part was clicked, if it is a layerable
1660 that has multiple individually selectable parts (like QCPAxis). This way selectEvent doesn't need
1661 to do the calculation again to find out which part was actually clicked.
1662
1663 \a selectionStateChanged is an output parameter. If the pointer is non-null, this function must
1664 set the value either to true or false, depending on whether the selection state of this layerable
1665 was actually changed. For layerables that only are selectable as a whole and not in parts, this
1666 is simple: if \a additive is true, \a selectionStateChanged must also be set to true, because the
1667 selection toggles. If \a additive is false, \a selectionStateChanged is only set to true, if the
1668 layerable was previously unselected and now is switched to the selected state.
1669
1670 \see selectTest, deselectEvent
1671*/
1673{
1676 Q_UNUSED(details)
1678}
1679
1680/*! \internal
1681
1682 This event is called when the layerable shall be deselected, either as consequence of a user
1683 interaction or a call to \ref QCustomPlot::deselectAll. Subclasses should react to it by
1684 unsetting their selection appropriately.
1685
1686 just as in \ref selectEvent, the output parameter \a selectionStateChanged (if non-null), must
1687 return true or false when the selection state of this layerable has changed or not changed,
1688 respectively.
1689
1690 \see selectTest, selectEvent
1691*/
1696
1697/*!
1698 This event gets called when the user presses a mouse button while the cursor is over the
1699 layerable. Whether a cursor is over the layerable is decided by a preceding call to \ref
1700 selectTest.
1701
1702 The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
1703 event->pos(). The parameter \a details contains layerable-specific details about the hit, which
1704 were generated in the previous call to \ref selectTest. For example, One-dimensional plottables
1705 like \ref QCPGraph or \ref QCPBars convey the clicked data point in the \a details parameter, as
1706 \ref QCPDataSelection packed as QVariant. Multi-part objects convey the specific \c
1707 SelectablePart that was hit (e.g. \ref QCPAxis::SelectablePart in the case of axes).
1708
1709 QCustomPlot uses an event propagation system that works the same as Qt's system. If your
1710 layerable doesn't reimplement the \ref mousePressEvent or explicitly calls \c event->ignore() in
1711 its reimplementation, the event will be propagated to the next layerable in the stacking order.
1712
1713 Once a layerable has accepted the \ref mousePressEvent, it is considered the mouse grabber and
1714 will receive all following calls to \ref mouseMoveEvent or \ref mouseReleaseEvent for this mouse
1715 interaction (a "mouse interaction" in this context ends with the release).
1716
1717 The default implementation does nothing except explicitly ignoring the event with \c
1718 event->ignore().
1719
1720 \see mouseMoveEvent, mouseReleaseEvent, mouseDoubleClickEvent, wheelEvent
1721*/
1723{
1724 Q_UNUSED(details)
1725 event->ignore();
1726}
1727
1728/*!
1729 This event gets called when the user moves the mouse while holding a mouse button, after this
1730 layerable has become the mouse grabber by accepting the preceding \ref mousePressEvent.
1731
1732 The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
1733 event->pos(). The parameter \a startPos indicates the position where the initial \ref
1734 mousePressEvent occurred, that started the mouse interaction.
1735
1736 The default implementation does nothing.
1737
1738 \see mousePressEvent, mouseReleaseEvent, mouseDoubleClickEvent, wheelEvent
1739*/
1741{
1742 Q_UNUSED(startPos)
1743 event->ignore();
1744}
1745
1746/*!
1747 This event gets called when the user releases the mouse button, after this layerable has become
1748 the mouse grabber by accepting the preceding \ref mousePressEvent.
1749
1750 The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
1751 event->pos(). The parameter \a startPos indicates the position where the initial \ref
1752 mousePressEvent occurred, that started the mouse interaction.
1753
1754 The default implementation does nothing.
1755
1756 \see mousePressEvent, mouseMoveEvent, mouseDoubleClickEvent, wheelEvent
1757*/
1759{
1760 Q_UNUSED(startPos)
1761 event->ignore();
1762}
1763
1764/*!
1765 This event gets called when the user presses the mouse button a second time in a double-click,
1766 while the cursor is over the layerable. Whether a cursor is over the layerable is decided by a
1767 preceding call to \ref selectTest.
1768
1769 The \ref mouseDoubleClickEvent is called instead of the second \ref mousePressEvent. So in the
1770 case of a double-click, the event succession is
1771 <i>pressEvent &ndash; releaseEvent &ndash; doubleClickEvent &ndash; releaseEvent</i>.
1772
1773 The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
1774 event->pos(). The parameter \a details contains layerable-specific details about the hit, which
1775 were generated in the previous call to \ref selectTest. For example, One-dimensional plottables
1776 like \ref QCPGraph or \ref QCPBars convey the clicked data point in the \a details parameter, as
1777 \ref QCPDataSelection packed as QVariant. Multi-part objects convey the specific \c
1778 SelectablePart that was hit (e.g. \ref QCPAxis::SelectablePart in the case of axes).
1779
1780 Similarly to \ref mousePressEvent, once a layerable has accepted the \ref mouseDoubleClickEvent,
1781 it is considered the mouse grabber and will receive all following calls to \ref mouseMoveEvent
1782 and \ref mouseReleaseEvent for this mouse interaction (a "mouse interaction" in this context ends
1783 with the release).
1784
1785 The default implementation does nothing except explicitly ignoring the event with \c
1786 event->ignore().
1787
1788 \see mousePressEvent, mouseMoveEvent, mouseReleaseEvent, wheelEvent
1789*/
1791{
1792 Q_UNUSED(details)
1793 event->ignore();
1794}
1795
1796/*!
1797 This event gets called when the user turns the mouse scroll wheel while the cursor is over the
1798 layerable. Whether a cursor is over the layerable is decided by a preceding call to \ref
1799 selectTest.
1800
1801 The current pixel position of the cursor on the QCustomPlot widget is accessible via \c
1802 event->pos().
1803
1804 The \c event->angleDelta() indicates how far the mouse wheel was turned, which is usually +/- 120
1805 for single rotation steps. However, if the mouse wheel is turned rapidly, multiple steps may
1806 accumulate to one event, making the delta larger. On the other hand, if the wheel has very smooth
1807 steps or none at all, the delta may be smaller.
1808
1809 The default implementation does nothing.
1810
1811 \see mousePressEvent, mouseMoveEvent, mouseReleaseEvent, mouseDoubleClickEvent
1812*/
1814{
1815 event->ignore();
1816}
1817/* end of 'src/layer.cpp' */
1818
1819
1820/* including file 'src/axis/range.cpp' */
1821/* modified 2021-03-29T02:30:44, size 12221 */
1822
1823////////////////////////////////////////////////////////////////////////////////////////////////////
1824//////////////////// QCPRange
1825////////////////////////////////////////////////////////////////////////////////////////////////////
1826/*! \class QCPRange
1827 \brief Represents the range an axis is encompassing.
1828
1829 contains a \a lower and \a upper double value and provides convenience input, output and
1830 modification functions.
1831
1832 \see QCPAxis::setRange
1833*/
1834
1835/* start of documentation of inline functions */
1836
1837/*! \fn double QCPRange::size() const
1838
1839 Returns the size of the range, i.e. \a upper-\a lower
1840*/
1841
1842/*! \fn double QCPRange::center() const
1843
1844 Returns the center of the range, i.e. (\a upper+\a lower)*0.5
1845*/
1846
1847/*! \fn void QCPRange::normalize()
1848
1849 Makes sure \a lower is numerically smaller than \a upper. If this is not the case, the values are
1850 swapped.
1851*/
1852
1853/*! \fn bool QCPRange::contains(double value) const
1854
1855 Returns true when \a value lies within or exactly on the borders of the range.
1856*/
1857
1858/*! \fn QCPRange &QCPRange::operator+=(const double& value)
1859
1860 Adds \a value to both boundaries of the range.
1861*/
1862
1863/*! \fn QCPRange &QCPRange::operator-=(const double& value)
1864
1865 Subtracts \a value from both boundaries of the range.
1866*/
1867
1868/*! \fn QCPRange &QCPRange::operator*=(const double& value)
1869
1870 Multiplies both boundaries of the range by \a value.
1871*/
1872
1873/*! \fn QCPRange &QCPRange::operator/=(const double& value)
1874
1875 Divides both boundaries of the range by \a value.
1876*/
1877
1878/* end of documentation of inline functions */
1879
1880/*!
1881 Minimum range size (\a upper - \a lower) the range changing functions will accept. Smaller
1882 intervals would cause errors due to the 11-bit exponent of double precision numbers,
1883 corresponding to a minimum magnitude of roughly 1e-308.
1884
1885 \warning Do not use this constant to indicate "arbitrarily small" values in plotting logic (as
1886 values that will appear in the plot)! It is intended only as a bound to compare against, e.g. to
1887 prevent axis ranges from obtaining underflowing ranges.
1888
1889 \see validRange, maxRange
1890*/
1891const double QCPRange::minRange = 1e-280;
1892
1893/*!
1894 Maximum values (negative and positive) the range will accept in range-changing functions.
1895 Larger absolute values would cause errors due to the 11-bit exponent of double precision numbers,
1896 corresponding to a maximum magnitude of roughly 1e308.
1897
1898 \warning Do not use this constant to indicate "arbitrarily large" values in plotting logic (as
1899 values that will appear in the plot)! It is intended only as a bound to compare against, e.g. to
1900 prevent axis ranges from obtaining overflowing ranges.
1901
1902 \see validRange, minRange
1903*/
1904const double QCPRange::maxRange = 1e250;
1905
1906/*!
1907 Constructs a range with \a lower and \a upper set to zero.
1908*/
1910 lower(0),
1911 upper(0)
1912{
1913}
1914
1915/*! \overload
1916
1917 Constructs a range with the specified \a lower and \a upper values.
1918
1919 The resulting range will be normalized (see \ref normalize), so if \a lower is not numerically
1920 smaller than \a upper, they will be swapped.
1921*/
1922QCPRange::QCPRange(double lower, double upper) :
1923 lower(lower),
1924 upper(upper)
1925{
1926 normalize();
1927}
1928
1929/*! \overload
1930
1931 Expands this range such that \a otherRange is contained in the new range. It is assumed that both
1932 this range and \a otherRange are normalized (see \ref normalize).
1933
1934 If this range contains NaN as lower or upper bound, it will be replaced by the respective bound
1935 of \a otherRange.
1936
1937 If \a otherRange is already inside the current range, this function does nothing.
1938
1939 \see expanded
1940*/
1942{
1943 if (lower > otherRange.lower || qIsNaN(lower))
1944 lower = otherRange.lower;
1945 if (upper < otherRange.upper || qIsNaN(upper))
1946 upper = otherRange.upper;
1947}
1948
1949/*! \overload
1950
1951 Expands this range such that \a includeCoord is contained in the new range. It is assumed that
1952 this range is normalized (see \ref normalize).
1953
1954 If this range contains NaN as lower or upper bound, the respective bound will be set to \a
1955 includeCoord.
1956
1957 If \a includeCoord is already inside the current range, this function does nothing.
1958
1959 \see expand
1960*/
1962{
1963 if (lower > includeCoord || qIsNaN(lower))
1964 lower = includeCoord;
1965 if (upper < includeCoord || qIsNaN(upper))
1966 upper = includeCoord;
1967}
1968
1969
1970/*! \overload
1971
1972 Returns an expanded range that contains this and \a otherRange. It is assumed that both this
1973 range and \a otherRange are normalized (see \ref normalize).
1974
1975 If this range contains NaN as lower or upper bound, the returned range's bound will be taken from
1976 \a otherRange.
1977
1978 \see expand
1979*/
1981{
1982 QCPRange result = *this;
1983 result.expand(otherRange);
1984 return result;
1985}
1986
1987/*! \overload
1988
1989 Returns an expanded range that includes the specified \a includeCoord. It is assumed that this
1990 range is normalized (see \ref normalize).
1991
1992 If this range contains NaN as lower or upper bound, the returned range's bound will be set to \a
1993 includeCoord.
1994
1995 \see expand
1996*/
1998{
1999 QCPRange result = *this;
2000 result.expand(includeCoord);
2001 return result;
2002}
2003
2004/*!
2005 Returns this range, possibly modified to not exceed the bounds provided as \a lowerBound and \a
2006 upperBound. If possible, the size of the current range is preserved in the process.
2007
2008 If the range shall only be bounded at the lower side, you can set \a upperBound to \ref
2009 QCPRange::maxRange. If it shall only be bounded at the upper side, set \a lowerBound to -\ref
2010 QCPRange::maxRange.
2011*/
2012QCPRange QCPRange::bounded(double lowerBound, double upperBound) const
2013{
2014 if (lowerBound > upperBound)
2015 qSwap(lowerBound, upperBound);
2016
2017 QCPRange result(lower, upper);
2018 if (result.lower < lowerBound)
2019 {
2020 result.lower = lowerBound;
2021 result.upper = lowerBound + size();
2022 if (result.upper > upperBound || qFuzzyCompare(size(), upperBound-lowerBound))
2023 result.upper = upperBound;
2024 } else if (result.upper > upperBound)
2025 {
2026 result.upper = upperBound;
2027 result.lower = upperBound - size();
2028 if (result.lower < lowerBound || qFuzzyCompare(size(), upperBound-lowerBound))
2029 result.lower = lowerBound;
2030 }
2031
2032 return result;
2033}
2034
2035/*!
2036 Returns a sanitized version of the range. Sanitized means for logarithmic scales, that
2037 the range won't span the positive and negative sign domain, i.e. contain zero. Further
2038 \a lower will always be numerically smaller (or equal) to \a upper.
2039
2040 If the original range does span positive and negative sign domains or contains zero,
2041 the returned range will try to approximate the original range as good as possible.
2042 If the positive interval of the original range is wider than the negative interval, the
2043 returned range will only contain the positive interval, with lower bound set to \a rangeFac or
2044 \a rangeFac *\a upper, whichever is closer to zero. Same procedure is used if the negative interval
2045 is wider than the positive interval, this time by changing the \a upper bound.
2046*/
2048{
2049 double rangeFac = 1e-3;
2050 QCPRange sanitizedRange(lower, upper);
2051 sanitizedRange.normalize();
2052 // can't have range spanning negative and positive values in log plot, so change range to fix it
2053 //if (qFuzzyCompare(sanitizedRange.lower+1, 1) && !qFuzzyCompare(sanitizedRange.upper+1, 1))
2054 if (sanitizedRange.lower == 0.0 && sanitizedRange.upper != 0.0)
2055 {
2056 // case lower is 0
2057 if (rangeFac < sanitizedRange.upper*rangeFac)
2058 sanitizedRange.lower = rangeFac;
2059 else
2061 } //else if (!qFuzzyCompare(lower+1, 1) && qFuzzyCompare(upper+1, 1))
2062 else if (sanitizedRange.lower != 0.0 && sanitizedRange.upper == 0.0)
2063 {
2064 // case upper is 0
2065 if (-rangeFac > sanitizedRange.lower*rangeFac)
2066 sanitizedRange.upper = -rangeFac;
2067 else
2069 } else if (sanitizedRange.lower < 0 && sanitizedRange.upper > 0)
2070 {
2071 // find out whether negative or positive interval is wider to decide which sign domain will be chosen
2072 if (-sanitizedRange.lower > sanitizedRange.upper)
2073 {
2074 // negative is wider, do same as in case upper is 0
2075 if (-rangeFac > sanitizedRange.lower*rangeFac)
2076 sanitizedRange.upper = -rangeFac;
2077 else
2079 } else
2080 {
2081 // positive is wider, do same as in case lower is 0
2082 if (rangeFac < sanitizedRange.upper*rangeFac)
2083 sanitizedRange.lower = rangeFac;
2084 else
2086 }
2087 }
2088 // due to normalization, case lower>0 && upper<0 should never occur, because that implies upper<lower
2089 return sanitizedRange;
2090}
2091
2092/*!
2093 Returns a sanitized version of the range. Sanitized means for linear scales, that
2094 \a lower will always be numerically smaller (or equal) to \a upper.
2095*/
2097{
2098 QCPRange sanitizedRange(lower, upper);
2099 sanitizedRange.normalize();
2100 return sanitizedRange;
2101}
2102
2103/*!
2104 Checks, whether the specified range is within valid bounds, which are defined
2105 as QCPRange::maxRange and QCPRange::minRange.
2106 A valid range means:
2107 \li range bounds within -maxRange and maxRange
2108 \li range size above minRange
2109 \li range size below maxRange
2110*/
2111bool QCPRange::validRange(double lower, double upper)
2112{
2113 return (lower > -maxRange &&
2114 upper < maxRange &&
2115 qAbs(lower-upper) > minRange &&
2116 qAbs(lower-upper) < maxRange &&
2117 !(lower > 0 && qIsInf(upper/lower)) &&
2118 !(upper < 0 && qIsInf(lower/upper)));
2119}
2120
2121/*!
2122 \overload
2123 Checks, whether the specified range is within valid bounds, which are defined
2124 as QCPRange::maxRange and QCPRange::minRange.
2125 A valid range means:
2126 \li range bounds within -maxRange and maxRange
2127 \li range size above minRange
2128 \li range size below maxRange
2129*/
2131{
2132 return (range.lower > -maxRange &&
2133 range.upper < maxRange &&
2134 qAbs(range.lower-range.upper) > minRange &&
2135 qAbs(range.lower-range.upper) < maxRange &&
2136 !(range.lower > 0 && qIsInf(range.upper/range.lower)) &&
2137 !(range.upper < 0 && qIsInf(range.lower/range.upper)));
2138}
2139/* end of 'src/axis/range.cpp' */
2140
2141
2142/* including file 'src/selection.cpp' */
2143/* modified 2021-03-29T02:30:44, size 21837 */
2144
2145////////////////////////////////////////////////////////////////////////////////////////////////////
2146//////////////////// QCPDataRange
2147////////////////////////////////////////////////////////////////////////////////////////////////////
2148
2149/*! \class QCPDataRange
2150 \brief Describes a data range given by begin and end index
2151
2152 QCPDataRange holds two integers describing the begin (\ref setBegin) and end (\ref setEnd) index
2153 of a contiguous set of data points. The \a end index corresponds to the data point just after the
2154 last data point of the data range, like in standard iterators.
2155
2156 Data Ranges are not bound to a certain plottable, thus they can be freely exchanged, created and
2157 modified. If a non-contiguous data set shall be described, the class \ref QCPDataSelection is
2158 used, which holds and manages multiple instances of \ref QCPDataRange. In most situations, \ref
2159 QCPDataSelection is thus used.
2160
2161 Both \ref QCPDataRange and \ref QCPDataSelection offer convenience methods to work with them,
2162 e.g. \ref bounded, \ref expanded, \ref intersects, \ref intersection, \ref adjusted, \ref
2163 contains. Further, addition and subtraction operators (defined in \ref QCPDataSelection) can be
2164 used to join/subtract data ranges and data selections (or mixtures), to retrieve a corresponding
2165 \ref QCPDataSelection.
2166
2167 %QCustomPlot's \ref dataselection "data selection mechanism" is based on \ref QCPDataSelection and
2168 QCPDataRange.
2169
2170 \note Do not confuse \ref QCPDataRange with \ref QCPRange. A \ref QCPRange describes an interval
2171 in floating point plot coordinates, e.g. the current axis range.
2172*/
2173
2174/* start documentation of inline functions */
2175
2176/*! \fn int QCPDataRange::size() const
2177
2178 Returns the number of data points described by this data range. This is equal to the end index
2179 minus the begin index.
2180
2181 \see length
2182*/
2183
2184/*! \fn int QCPDataRange::length() const
2185
2186 Returns the number of data points described by this data range. Equivalent to \ref size.
2187*/
2188
2189/*! \fn void QCPDataRange::setBegin(int begin)
2190
2191 Sets the begin of this data range. The \a begin index points to the first data point that is part
2192 of the data range.
2193
2194 No checks or corrections are made to ensure the resulting range is valid (\ref isValid).
2195
2196 \see setEnd
2197*/
2198
2199/*! \fn void QCPDataRange::setEnd(int end)
2200
2201 Sets the end of this data range. The \a end index points to the data point just after the last
2202 data point that is part of the data range.
2203
2204 No checks or corrections are made to ensure the resulting range is valid (\ref isValid).
2205
2206 \see setBegin
2207*/
2208
2209/*! \fn bool QCPDataRange::isValid() const
2210
2211 Returns whether this range is valid. A valid range has a begin index greater or equal to 0, and
2212 an end index greater or equal to the begin index.
2213
2214 \note Invalid ranges should be avoided and are never the result of any of QCustomPlot's methods
2215 (unless they are themselves fed with invalid ranges). Do not pass invalid ranges to QCustomPlot's
2216 methods. The invalid range is not inherently prevented in QCPDataRange, to allow temporary
2217 invalid begin/end values while manipulating the range. An invalid range is not necessarily empty
2218 (\ref isEmpty), since its \ref length can be negative and thus non-zero.
2219*/
2220
2221/*! \fn bool QCPDataRange::isEmpty() const
2222
2223 Returns whether this range is empty, i.e. whether its begin index equals its end index.
2224
2225 \see size, length
2226*/
2227
2228/*! \fn QCPDataRange QCPDataRange::adjusted(int changeBegin, int changeEnd) const
2229
2230 Returns a data range where \a changeBegin and \a changeEnd were added to the begin and end
2231 indices, respectively.
2232*/
2233
2234/* end documentation of inline functions */
2235
2236/*!
2237 Creates an empty QCPDataRange, with begin and end set to 0.
2238*/
2240 mBegin(0),
2241 mEnd(0)
2242{
2243}
2244
2245/*!
2246 Creates a QCPDataRange, initialized with the specified \a begin and \a end.
2247
2248 No checks or corrections are made to ensure the resulting range is valid (\ref isValid).
2249*/
2250QCPDataRange::QCPDataRange(int begin, int end) :
2251 mBegin(begin),
2252 mEnd(end)
2253{
2254}
2255
2256/*!
2257 Returns a data range that matches this data range, except that parts exceeding \a other are
2258 excluded.
2259
2260 This method is very similar to \ref intersection, with one distinction: If this range and the \a
2261 other range share no intersection, the returned data range will be empty with begin and end set
2262 to the respective boundary side of \a other, at which this range is residing. (\ref intersection
2263 would just return a range with begin and end set to 0.)
2264*/
2266{
2268 if (result.isEmpty()) // no intersection, preserve respective bounding side of otherRange as both begin and end of return value
2269 {
2270 if (mEnd <= other.mBegin)
2271 result = QCPDataRange(other.mBegin, other.mBegin);
2272 else
2273 result = QCPDataRange(other.mEnd, other.mEnd);
2274 }
2275 return result;
2276}
2277
2278/*!
2279 Returns a data range that contains both this data range as well as \a other.
2280*/
2282{
2283 return {qMin(mBegin, other.mBegin), qMax(mEnd, other.mEnd)};
2284}
2285
2286/*!
2287 Returns the data range which is contained in both this data range and \a other.
2288
2289 This method is very similar to \ref bounded, with one distinction: If this range and the \a other
2290 range share no intersection, the returned data range will be empty with begin and end set to 0.
2291 (\ref bounded would return a range with begin and end set to one of the boundaries of \a other,
2292 depending on which side this range is on.)
2293
2294 \see QCPDataSelection::intersection
2295*/
2297{
2298 QCPDataRange result(qMax(mBegin, other.mBegin), qMin(mEnd, other.mEnd));
2299 if (result.isValid())
2300 return result;
2301 else
2302 return {};
2303}
2304
2305/*!
2306 Returns whether this data range and \a other share common data points.
2307
2308 \see intersection, contains
2309*/
2311{
2312 return !( (mBegin > other.mBegin && mBegin >= other.mEnd) ||
2313 (mEnd <= other.mBegin && mEnd < other.mEnd) );
2314}
2315
2316/*!
2317 Returns whether all data points of \a other are also contained inside this data range.
2318
2319 \see intersects
2320*/
2322{
2323 return mBegin <= other.mBegin && mEnd >= other.mEnd;
2324}
2325
2326
2327
2328////////////////////////////////////////////////////////////////////////////////////////////////////
2329//////////////////// QCPDataSelection
2330////////////////////////////////////////////////////////////////////////////////////////////////////
2331
2332/*! \class QCPDataSelection
2333 \brief Describes a data set by holding multiple QCPDataRange instances
2334
2335 QCPDataSelection manages multiple instances of QCPDataRange in order to represent any (possibly
2336 disjoint) set of data selection.
2337
2338 The data selection can be modified with addition and subtraction operators which take
2339 QCPDataSelection and QCPDataRange instances, as well as methods such as \ref addDataRange and
2340 \ref clear. Read access is provided by \ref dataRange, \ref dataRanges, \ref dataRangeCount, etc.
2341
2342 The method \ref simplify is used to join directly adjacent or even overlapping QCPDataRange
2343 instances. QCPDataSelection automatically simplifies when using the addition/subtraction
2344 operators. The only case when \ref simplify is left to the user, is when calling \ref
2345 addDataRange, with the parameter \a simplify explicitly set to false. This is useful if many data
2346 ranges will be added to the selection successively and the overhead for simplifying after each
2347 iteration shall be avoided. In this case, you should make sure to call \ref simplify after
2348 completing the operation.
2349
2350 Use \ref enforceType to bring the data selection into a state complying with the constraints for
2351 selections defined in \ref QCP::SelectionType.
2352
2353 %QCustomPlot's \ref dataselection "data selection mechanism" is based on QCPDataSelection and
2354 QCPDataRange.
2355
2356 \section qcpdataselection-iterating Iterating over a data selection
2357
2358 As an example, the following code snippet calculates the average value of a graph's data
2359 \ref QCPAbstractPlottable::selection "selection":
2360
2361 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpdataselection-iterating-1
2362
2363*/
2364
2365/* start documentation of inline functions */
2366
2367/*! \fn int QCPDataSelection::dataRangeCount() const
2368
2369 Returns the number of ranges that make up the data selection. The ranges can be accessed by \ref
2370 dataRange via their index.
2371
2372 \see dataRange, dataPointCount
2373*/
2374
2375/*! \fn QList<QCPDataRange> QCPDataSelection::dataRanges() const
2376
2377 Returns all data ranges that make up the data selection. If the data selection is simplified (the
2378 usual state of the selection, see \ref simplify), the ranges are sorted by ascending data point
2379 index.
2380
2381 \see dataRange
2382*/
2383
2384/*! \fn bool QCPDataSelection::isEmpty() const
2385
2386 Returns true if there are no data ranges, and thus no data points, in this QCPDataSelection
2387 instance.
2388
2389 \see dataRangeCount
2390*/
2391
2392/* end documentation of inline functions */
2393
2394/*!
2395 Creates an empty QCPDataSelection.
2396*/
2400
2401/*!
2402 Creates a QCPDataSelection containing the provided \a range.
2403*/
2405{
2406 mDataRanges.append(range);
2407}
2408
2409/*!
2410 Returns true if this selection is identical (contains the same data ranges with the same begin
2411 and end indices) to \a other.
2412
2413 Note that both data selections must be in simplified state (the usual state of the selection, see
2414 \ref simplify) for this operator to return correct results.
2415*/
2417{
2418 if (mDataRanges.size() != other.mDataRanges.size())
2419 return false;
2420 for (int i=0; i<mDataRanges.size(); ++i)
2421 {
2422 if (mDataRanges.at(i) != other.mDataRanges.at(i))
2423 return false;
2424 }
2425 return true;
2426}
2427
2428/*!
2429 Adds the data selection of \a other to this data selection, and then simplifies this data
2430 selection (see \ref simplify).
2431*/
2433{
2434 mDataRanges << other.mDataRanges;
2435 simplify();
2436 return *this;
2437}
2438
2439/*!
2440 Adds the data range \a other to this data selection, and then simplifies this data selection (see
2441 \ref simplify).
2442*/
2448
2449/*!
2450 Removes all data point indices that are described by \a other from this data selection.
2451*/
2453{
2454 for (int i=0; i<other.dataRangeCount(); ++i)
2455 *this -= other.dataRange(i);
2456
2457 return *this;
2458}
2459
2460/*!
2461 Removes all data point indices that are described by \a other from this data selection.
2462*/
2464{
2465 if (other.isEmpty() || isEmpty())
2466 return *this;
2467
2468 simplify();
2469 int i=0;
2470 while (i < mDataRanges.size())
2471 {
2472 const int thisBegin = mDataRanges.at(i).begin();
2473 const int thisEnd = mDataRanges.at(i).end();
2474 if (thisBegin >= other.end())
2475 break; // since data ranges are sorted after the simplify() call, no ranges which contain other will come after this
2476
2477 if (thisEnd > other.begin()) // ranges which don't fulfill this are entirely before other and can be ignored
2478 {
2479 if (thisBegin >= other.begin()) // range leading segment is encompassed
2480 {
2481 if (thisEnd <= other.end()) // range fully encompassed, remove completely
2482 {
2483 mDataRanges.removeAt(i);
2484 continue;
2485 } else // only leading segment is encompassed, trim accordingly
2486 mDataRanges[i].setBegin(other.end());
2487 } else // leading segment is not encompassed
2488 {
2489 if (thisEnd <= other.end()) // only trailing segment is encompassed, trim accordingly
2490 {
2491 mDataRanges[i].setEnd(other.begin());
2492 } else // other lies inside this range, so split range
2493 {
2494 mDataRanges[i].setEnd(other.begin());
2495 mDataRanges.insert(i+1, QCPDataRange(other.end(), thisEnd));
2496 break; // since data ranges are sorted (and don't overlap) after simplify() call, we're done here
2497 }
2498 }
2499 }
2500 ++i;
2501 }
2502
2503 return *this;
2504}
2505
2506/*!
2507 Returns the total number of data points contained in all data ranges that make up this data
2508 selection.
2509*/
2511{
2512 int result = 0;
2513 foreach (QCPDataRange dataRange, mDataRanges)
2514 result += dataRange.length();
2515 return result;
2516}
2517
2518/*!
2519 Returns the data range with the specified \a index.
2520
2521 If the data selection is simplified (the usual state of the selection, see \ref simplify), the
2522 ranges are sorted by ascending data point index.
2523
2524 \see dataRangeCount
2525*/
2527{
2528 if (index >= 0 && index < mDataRanges.size())
2529 {
2530 return mDataRanges.at(index);
2531 } else
2532 {
2533 qDebug() << Q_FUNC_INFO << "index out of range:" << index;
2534 return {};
2535 }
2536}
2537
2538/*!
2539 Returns a \ref QCPDataRange which spans the entire data selection, including possible
2540 intermediate segments which are not part of the original data selection.
2541*/
2543{
2544 if (isEmpty())
2545 return {};
2546 else
2547 return {mDataRanges.first().begin(), mDataRanges.last().end()};
2548}
2549
2550/*!
2551 Adds the given \a dataRange to this data selection. This is equivalent to the += operator but
2552 allows disabling immediate simplification by setting \a simplify to false. This can improve
2553 performance if adding a very large amount of data ranges successively. In this case, make sure to
2554 call \ref simplify manually, after the operation.
2555*/
2556void QCPDataSelection::addDataRange(const QCPDataRange &dataRange, bool simplify)
2557{
2558 mDataRanges.append(dataRange);
2559 if (simplify)
2560 this->simplify();
2561}
2562
2563/*!
2564 Removes all data ranges. The data selection then contains no data points.
2565
2566 \ref isEmpty
2567*/
2569{
2570 mDataRanges.clear();
2571}
2572
2573/*!
2574 Sorts all data ranges by range begin index in ascending order, and then joins directly adjacent
2575 or overlapping ranges. This can reduce the number of individual data ranges in the selection, and
2576 prevents possible double-counting when iterating over the data points held by the data ranges.
2577
2578 This method is automatically called when using the addition/subtraction operators. The only case
2579 when \ref simplify is left to the user, is when calling \ref addDataRange, with the parameter \a
2580 simplify explicitly set to false.
2581*/
2583{
2584 // remove any empty ranges:
2585 for (int i=mDataRanges.size()-1; i>=0; --i)
2586 {
2587 if (mDataRanges.at(i).isEmpty())
2588 mDataRanges.removeAt(i);
2589 }
2590 if (mDataRanges.isEmpty())
2591 return;
2592
2593 // sort ranges by starting value, ascending:
2594 std::sort(mDataRanges.begin(), mDataRanges.end(), lessThanDataRangeBegin);
2595
2596 // join overlapping/contiguous ranges:
2597 int i = 1;
2598 while (i < mDataRanges.size())
2599 {
2600 if (mDataRanges.at(i-1).end() >= mDataRanges.at(i).begin()) // range i overlaps/joins with i-1, so expand range i-1 appropriately and remove range i from list
2601 {
2602 mDataRanges[i-1].setEnd(qMax(mDataRanges.at(i-1).end(), mDataRanges.at(i).end()));
2603 mDataRanges.removeAt(i);
2604 } else
2605 ++i;
2606 }
2607}
2608
2609/*!
2610 Makes sure this data selection conforms to the specified \a type selection type. Before the type
2611 is enforced, \ref simplify is called.
2612
2613 Depending on \a type, enforcing means adding new data points that were previously not part of the
2614 selection, or removing data points from the selection. If the current selection already conforms
2615 to \a type, the data selection is not changed.
2616
2617 \see QCP::SelectionType
2618*/
2620{
2621 simplify();
2622 switch (type)
2623 {
2624 case QCP::stNone:
2625 {
2626 mDataRanges.clear();
2627 break;
2628 }
2629 case QCP::stWhole:
2630 {
2631 // whole selection isn't defined by data range, so don't change anything (is handled in plottable methods)
2632 break;
2633 }
2634 case QCP::stSingleData:
2635 {
2636 // reduce all data ranges to the single first data point:
2637 if (!mDataRanges.isEmpty())
2638 {
2639 if (mDataRanges.size() > 1)
2640 mDataRanges = QList<QCPDataRange>() << mDataRanges.first();
2641 if (mDataRanges.first().length() > 1)
2642 mDataRanges.first().setEnd(mDataRanges.first().begin()+1);
2643 }
2644 break;
2645 }
2646 case QCP::stDataRange:
2647 {
2648 if (!isEmpty())
2649 mDataRanges = QList<QCPDataRange>() << span();
2650 break;
2651 }
2653 {
2654 // this is the selection type that allows all concievable combinations of ranges, so do nothing
2655 break;
2656 }
2657 }
2658}
2659
2660/*!
2661 Returns true if the data selection \a other is contained entirely in this data selection, i.e.
2662 all data point indices that are in \a other are also in this data selection.
2663
2664 \see QCPDataRange::contains
2665*/
2667{
2668 if (other.isEmpty()) return false;
2669
2670 int otherIndex = 0;
2671 int thisIndex = 0;
2672 while (thisIndex < mDataRanges.size() && otherIndex < other.mDataRanges.size())
2673 {
2674 if (mDataRanges.at(thisIndex).contains(other.mDataRanges.at(otherIndex)))
2675 ++otherIndex;
2676 else
2677 ++thisIndex;
2678 }
2679 return thisIndex < mDataRanges.size(); // if thisIndex ran all the way to the end to find a containing range for the current otherIndex, other is not contained in this
2680}
2681
2682/*!
2683 Returns a data selection containing the points which are both in this data selection and in the
2684 data range \a other.
2685
2686 A common use case is to limit an unknown data selection to the valid range of a data container,
2687 using \ref QCPDataContainer::dataRange as \a other. One can then safely iterate over the returned
2688 data selection without exceeding the data container's bounds.
2689*/
2691{
2692 QCPDataSelection result;
2693 foreach (QCPDataRange dataRange, mDataRanges)
2694 result.addDataRange(dataRange.intersection(other), false);
2695 result.simplify();
2696 return result;
2697}
2698
2699/*!
2700 Returns a data selection containing the points which are both in this data selection and in the
2701 data selection \a other.
2702*/
2704{
2705 QCPDataSelection result;
2706 for (int i=0; i<other.dataRangeCount(); ++i)
2707 result += intersection(other.dataRange(i));
2708 result.simplify();
2709 return result;
2710}
2711
2712/*!
2713 Returns a data selection which is the exact inverse of this data selection, with \a outerRange
2714 defining the base range on which to invert. If \a outerRange is smaller than the \ref span of
2715 this data selection, it is expanded accordingly.
2716
2717 For example, this method can be used to retrieve all unselected segments by setting \a outerRange
2718 to the full data range of the plottable, and calling this method on a data selection holding the
2719 selected segments.
2720*/
2722{
2723 if (isEmpty())
2725 QCPDataRange fullRange = outerRange.expanded(span());
2726
2727 QCPDataSelection result;
2728 // first unselected segment:
2729 if (mDataRanges.first().begin() != fullRange.begin())
2730 result.addDataRange(QCPDataRange(fullRange.begin(), mDataRanges.first().begin()), false);
2731 // intermediate unselected segments:
2732 for (int i=1; i<mDataRanges.size(); ++i)
2733 result.addDataRange(QCPDataRange(mDataRanges.at(i-1).end(), mDataRanges.at(i).begin()), false);
2734 // last unselected segment:
2735 if (mDataRanges.last().end() != fullRange.end())
2736 result.addDataRange(QCPDataRange(mDataRanges.last().end(), fullRange.end()), false);
2737 result.simplify();
2738 return result;
2739}
2740/* end of 'src/selection.cpp' */
2741
2742
2743/* including file 'src/selectionrect.cpp' */
2744/* modified 2021-03-29T02:30:44, size 9215 */
2745
2746////////////////////////////////////////////////////////////////////////////////////////////////////
2747//////////////////// QCPSelectionRect
2748////////////////////////////////////////////////////////////////////////////////////////////////////
2749
2750/*! \class QCPSelectionRect
2751 \brief Provides rect/rubber-band data selection and range zoom interaction
2752
2753 QCPSelectionRect is used by QCustomPlot when the \ref QCustomPlot::setSelectionRectMode is not
2754 \ref QCP::srmNone. When the user drags the mouse across the plot, the current selection rect
2755 instance (\ref QCustomPlot::setSelectionRect) is forwarded these events and makes sure an
2756 according rect shape is drawn. At the begin, during, and after completion of the interaction, it
2757 emits the corresponding signals \ref started, \ref changed, \ref canceled, and \ref accepted.
2758
2759 The QCustomPlot instance connects own slots to the current selection rect instance, in order to
2760 react to an accepted selection rect interaction accordingly.
2761
2762 \ref isActive can be used to check whether the selection rect is currently active. An ongoing
2763 selection interaction can be cancelled programmatically via calling \ref cancel at any time.
2764
2765 The appearance of the selection rect can be controlled via \ref setPen and \ref setBrush.
2766
2767 If you wish to provide custom behaviour, e.g. a different visual representation of the selection
2768 rect (\ref QCPSelectionRect::draw), you can subclass QCPSelectionRect and pass an instance of
2769 your subclass to \ref QCustomPlot::setSelectionRect.
2770*/
2771
2772/* start of documentation of inline functions */
2773
2774/*! \fn bool QCPSelectionRect::isActive() const
2775
2776 Returns true if there is currently a selection going on, i.e. the user has started dragging a
2777 selection rect, but hasn't released the mouse button yet.
2778
2779 \see cancel
2780*/
2781
2782/* end of documentation of inline functions */
2783/* start documentation of signals */
2784
2785/*! \fn void QCPSelectionRect::started(QMouseEvent *event);
2786
2787 This signal is emitted when a selection rect interaction was initiated, i.e. the user just
2788 started dragging the selection rect with the mouse.
2789*/
2790
2791/*! \fn void QCPSelectionRect::changed(const QRect &rect, QMouseEvent *event);
2792
2793 This signal is emitted while the selection rect interaction is ongoing and the \a rect has
2794 changed its size due to the user moving the mouse.
2795
2796 Note that \a rect may have a negative width or height, if the selection is being dragged to the
2797 upper or left side of the selection rect origin.
2798*/
2799
2800/*! \fn void QCPSelectionRect::canceled(const QRect &rect, QInputEvent *event);
2801
2802 This signal is emitted when the selection interaction was cancelled. Note that \a event is \c
2803 nullptr if the selection interaction was cancelled programmatically, by a call to \ref cancel.
2804
2805 The user may cancel the selection interaction by pressing the escape key. In this case, \a event
2806 holds the respective input event.
2807
2808 Note that \a rect may have a negative width or height, if the selection is being dragged to the
2809 upper or left side of the selection rect origin.
2810*/
2811
2812/*! \fn void QCPSelectionRect::accepted(const QRect &rect, QMouseEvent *event);
2813
2814 This signal is emitted when the selection interaction was completed by the user releasing the
2815 mouse button.
2816
2817 Note that \a rect may have a negative width or height, if the selection is being dragged to the
2818 upper or left side of the selection rect origin.
2819*/
2820
2821/* end documentation of signals */
2822
2823/*!
2824 Creates a new QCPSelectionRect instance. To make QCustomPlot use the selection rect instance,
2825 pass it to \ref QCustomPlot::setSelectionRect. \a parentPlot should be set to the same
2826 QCustomPlot widget.
2827*/
2829 QCPLayerable(parentPlot),
2830 mPen(QBrush(Qt::gray), 0, Qt::DashLine),
2831 mBrush(Qt::NoBrush),
2832 mActive(false)
2833{
2834}
2835
2836QCPSelectionRect::~QCPSelectionRect()
2837{
2838 cancel();
2839}
2840
2841/*!
2842 A convenience function which returns the coordinate range of the provided \a axis, that this
2843 selection rect currently encompasses.
2844*/
2846{
2847 if (axis)
2848 {
2849 if (axis->orientation() == Qt::Horizontal)
2850 return {axis->pixelToCoord(mRect.left()), axis->pixelToCoord(mRect.left()+mRect.width())};
2851 else
2852 return {axis->pixelToCoord(mRect.top()+mRect.height()), axis->pixelToCoord(mRect.top())};
2853 } else
2854 {
2855 qDebug() << Q_FUNC_INFO << "called with axis zero";
2856 return {};
2857 }
2858}
2859
2860/*!
2861 Sets the pen that will be used to draw the selection rect outline.
2862
2863 \see setBrush
2864*/
2866{
2867 mPen = pen;
2868}
2869
2870/*!
2871 Sets the brush that will be used to fill the selection rect. By default the selection rect is not
2872 filled, i.e. \a brush is <tt>Qt::NoBrush</tt>.
2873
2874 \see setPen
2875*/
2877{
2878 mBrush = brush;
2879}
2880
2881/*!
2882 If there is currently a selection interaction going on (\ref isActive), the interaction is
2883 canceled. The selection rect will emit the \ref canceled signal.
2884*/
2886{
2887 if (mActive)
2888 {
2889 mActive = false;
2890 emit canceled(mRect, nullptr);
2891 }
2892}
2893
2894/*! \internal
2895
2896 This method is called by QCustomPlot to indicate that a selection rect interaction was initiated.
2897 The default implementation sets the selection rect to active, initializes the selection rect
2898 geometry and emits the \ref started signal.
2899*/
2901{
2902 mActive = true;
2903 mRect = QRect(event->pos(), event->pos());
2905}
2906
2907/*! \internal
2908
2909 This method is called by QCustomPlot to indicate that an ongoing selection rect interaction needs
2910 to update its geometry. The default implementation updates the rect and emits the \ref changed
2911 signal.
2912*/
2914{
2915 mRect.setBottomRight(event->pos());
2916 emit changed(mRect, event);
2917 layer()->replot();
2918}
2919
2920/*! \internal
2921
2922 This method is called by QCustomPlot to indicate that an ongoing selection rect interaction has
2923 finished by the user releasing the mouse button. The default implementation deactivates the
2924 selection rect and emits the \ref accepted signal.
2925*/
2927{
2928 mRect.setBottomRight(event->pos());
2929 mActive = false;
2930 emit accepted(mRect, event);
2931}
2932
2933/*! \internal
2934
2935 This method is called by QCustomPlot when a key has been pressed by the user while the selection
2936 rect interaction is active. The default implementation allows to \ref cancel the interaction by
2937 hitting the escape key.
2938*/
2940{
2941 if (event->key() == Qt::Key_Escape && mActive)
2942 {
2943 mActive = false;
2944 emit canceled(mRect, event);
2945 }
2946}
2947
2948/* inherits documentation from base class */
2950{
2951 applyAntialiasingHint(painter, mAntialiased, QCP::aeOther);
2952}
2953
2954/*! \internal
2955
2956 If the selection rect is active (\ref isActive), draws the selection rect defined by \a mRect.
2957
2958 \seebaseclassmethod
2959*/
2961{
2962 if (mActive)
2963 {
2964 painter->setPen(mPen);
2965 painter->setBrush(mBrush);
2966 painter->drawRect(mRect);
2967 }
2968}
2969/* end of 'src/selectionrect.cpp' */
2970
2971
2972/* including file 'src/layout.cpp' */
2973/* modified 2021-03-29T02:30:44, size 78863 */
2974
2975////////////////////////////////////////////////////////////////////////////////////////////////////
2976//////////////////// QCPMarginGroup
2977////////////////////////////////////////////////////////////////////////////////////////////////////
2978
2979/*! \class QCPMarginGroup
2980 \brief A margin group allows synchronization of margin sides if working with multiple layout elements.
2981
2982 QCPMarginGroup allows you to tie a margin side of two or more layout elements together, such that
2983 they will all have the same size, based on the largest required margin in the group.
2984
2985 \n
2986 \image html QCPMarginGroup.png "Demonstration of QCPMarginGroup"
2987 \n
2988
2989 In certain situations it is desirable that margins at specific sides are synchronized across
2990 layout elements. For example, if one QCPAxisRect is below another one in a grid layout, it will
2991 provide a cleaner look to the user if the left and right margins of the two axis rects are of the
2992 same size. The left axis of the top axis rect will then be at the same horizontal position as the
2993 left axis of the lower axis rect, making them appear aligned. The same applies for the right
2994 axes. This is what QCPMarginGroup makes possible.
2995
2996 To add/remove a specific side of a layout element to/from a margin group, use the \ref
2997 QCPLayoutElement::setMarginGroup method. To completely break apart the margin group, either call
2998 \ref clear, or just delete the margin group.
2999
3000 \section QCPMarginGroup-example Example
3001
3002 First create a margin group:
3003 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpmargingroup-creation-1
3004 Then set this group on the layout element sides:
3005 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpmargingroup-creation-2
3006 Here, we've used the first two axis rects of the plot and synchronized their left margins with
3007 each other and their right margins with each other.
3008*/
3009
3010/* start documentation of inline functions */
3011
3012/*! \fn QList<QCPLayoutElement*> QCPMarginGroup::elements(QCP::MarginSide side) const
3013
3014 Returns a list of all layout elements that have their margin \a side associated with this margin
3015 group.
3016*/
3017
3018/* end documentation of inline functions */
3019
3020/*!
3021 Creates a new QCPMarginGroup instance in \a parentPlot.
3022*/
3024 QObject(parentPlot),
3025 mParentPlot(parentPlot)
3026{
3031}
3032
3033QCPMarginGroup::~QCPMarginGroup()
3034{
3035 clear();
3036}
3037
3038/*!
3039 Returns whether this margin group is empty. If this function returns true, no layout elements use
3040 this margin group to synchronize margin sides.
3041*/
3043{
3045 while (it.hasNext())
3046 {
3047 it.next();
3048 if (!it.value().isEmpty())
3049 return false;
3050 }
3051 return true;
3052}
3053
3054/*!
3055 Clears this margin group. The synchronization of the margin sides that use this margin group is
3056 lifted and they will use their individual margin sizes again.
3057*/
3059{
3060 // make all children remove themselves from this margin group:
3062 while (it.hasNext())
3063 {
3064 it.next();
3065 const QList<QCPLayoutElement*> elements = it.value();
3066 for (int i=elements.size()-1; i>=0; --i)
3067 elements.at(i)->setMarginGroup(it.key(), nullptr); // removes itself from mChildren via removeChild
3068 }
3069}
3070
3071/*! \internal
3072
3073 Returns the synchronized common margin for \a side. This is the margin value that will be used by
3074 the layout element on the respective side, if it is part of this margin group.
3075
3076 The common margin is calculated by requesting the automatic margin (\ref
3077 QCPLayoutElement::calculateAutoMargin) of each element associated with \a side in this margin
3078 group, and choosing the largest returned value. (QCPLayoutElement::minimumMargins is taken into
3079 account, too.)
3080*/
3082{
3083 // query all automatic margins of the layout elements in this margin group side and find maximum:
3084 int result = 0;
3085 foreach (QCPLayoutElement *el, mChildren.value(side))
3086 {
3087 if (!el->autoMargins().testFlag(side))
3088 continue;
3089 int m = qMax(el->calculateAutoMargin(side), QCP::getMarginValue(el->minimumMargins(), side));
3090 if (m > result)
3091 result = m;
3092 }
3093 return result;
3094}
3095
3096/*! \internal
3097
3098 Adds \a element to the internal list of child elements, for the margin \a side.
3099
3100 This function does not modify the margin group property of \a element.
3101*/
3103{
3104 if (!mChildren[side].contains(element))
3105 mChildren[side].append(element);
3106 else
3107 qDebug() << Q_FUNC_INFO << "element is already child of this margin group side" << reinterpret_cast<quintptr>(element);
3108}
3109
3110/*! \internal
3111
3112 Removes \a element from the internal list of child elements, for the margin \a side.
3113
3114 This function does not modify the margin group property of \a element.
3115*/
3117{
3118 if (!mChildren[side].removeOne(element))
3119 qDebug() << Q_FUNC_INFO << "element is not child of this margin group side" << reinterpret_cast<quintptr>(element);
3120}
3121
3122
3123////////////////////////////////////////////////////////////////////////////////////////////////////
3124//////////////////// QCPLayoutElement
3125////////////////////////////////////////////////////////////////////////////////////////////////////
3126
3127/*! \class QCPLayoutElement
3128 \brief The abstract base class for all objects that form \ref thelayoutsystem "the layout system".
3129
3130 This is an abstract base class. As such, it can't be instantiated directly, rather use one of its subclasses.
3131
3132 A Layout element is a rectangular object which can be placed in layouts. It has an outer rect
3133 (QCPLayoutElement::outerRect) and an inner rect (\ref QCPLayoutElement::rect). The difference
3134 between outer and inner rect is called its margin. The margin can either be set to automatic or
3135 manual (\ref setAutoMargins) on a per-side basis. If a side is set to manual, that margin can be
3136 set explicitly with \ref setMargins and will stay fixed at that value. If it's set to automatic,
3137 the layout element subclass will control the value itself (via \ref calculateAutoMargin).
3138
3139 Layout elements can be placed in layouts (base class QCPLayout) like QCPLayoutGrid. The top level
3140 layout is reachable via \ref QCustomPlot::plotLayout, and is a \ref QCPLayoutGrid. Since \ref
3141 QCPLayout itself derives from \ref QCPLayoutElement, layouts can be nested.
3142
3143 Thus in QCustomPlot one can divide layout elements into two categories: The ones that are
3144 invisible by themselves, because they don't draw anything. Their only purpose is to manage the
3145 position and size of other layout elements. This category of layout elements usually use
3146 QCPLayout as base class. Then there is the category of layout elements which actually draw
3147 something. For example, QCPAxisRect, QCPLegend and QCPTextElement are of this category. This does
3148 not necessarily mean that the latter category can't have child layout elements. QCPLegend for
3149 instance, actually derives from QCPLayoutGrid and the individual legend items are child layout
3150 elements in the grid layout.
3151*/
3152
3153/* start documentation of inline functions */
3154
3155/*! \fn QCPLayout *QCPLayoutElement::layout() const
3156
3157 Returns the parent layout of this layout element.
3158*/
3159
3160/*! \fn QRect QCPLayoutElement::rect() const
3161
3162 Returns the inner rect of this layout element. The inner rect is the outer rect (\ref outerRect, \ref
3163 setOuterRect) shrinked by the margins (\ref setMargins, \ref setAutoMargins).
3164
3165 In some cases, the area between outer and inner rect is left blank. In other cases the margin
3166 area is used to display peripheral graphics while the main content is in the inner rect. This is
3167 where automatic margin calculation becomes interesting because it allows the layout element to
3168 adapt the margins to the peripheral graphics it wants to draw. For example, \ref QCPAxisRect
3169 draws the axis labels and tick labels in the margin area, thus needs to adjust the margins (if
3170 \ref setAutoMargins is enabled) according to the space required by the labels of the axes.
3171
3172 \see outerRect
3173*/
3174
3175/*! \fn QRect QCPLayoutElement::outerRect() const
3176
3177 Returns the outer rect of this layout element. The outer rect is the inner rect expanded by the
3178 margins (\ref setMargins, \ref setAutoMargins). The outer rect is used (and set via \ref
3179 setOuterRect) by the parent \ref QCPLayout to control the size of this layout element.
3180
3181 \see rect
3182*/
3183
3184/* end documentation of inline functions */
3185
3186/*!
3187 Creates an instance of QCPLayoutElement and sets default values.
3188*/
3190 QCPLayerable(parentPlot), // parenthood is changed as soon as layout element gets inserted into a layout (except for top level layout)
3191 mParentLayout(nullptr),
3192 mMinimumSize(),
3193 mMaximumSize(QWIDGETSIZE_MAX, QWIDGETSIZE_MAX),
3194 mSizeConstraintRect(scrInnerRect),
3195 mRect(0, 0, 0, 0),
3196 mOuterRect(0, 0, 0, 0),
3197 mMargins(0, 0, 0, 0),
3198 mMinimumMargins(0, 0, 0, 0),
3199 mAutoMargins(QCP::msAll)
3200{
3201}
3202
3203QCPLayoutElement::~QCPLayoutElement()
3204{
3205 setMarginGroup(QCP::msAll, nullptr); // unregister at margin groups, if there are any
3206 // unregister at layout:
3207 if (qobject_cast<QCPLayout*>(mParentLayout)) // the qobject_cast is just a safeguard in case the layout forgets to call clear() in its dtor and this dtor is called by QObject dtor
3208 mParentLayout->take(this);
3209}
3210
3211/*!
3212 Sets the outer rect of this layout element. If the layout element is inside a layout, the layout
3213 sets the position and size of this layout element using this function.
3214
3215 Calling this function externally has no effect, since the layout will overwrite any changes to
3216 the outer rect upon the next replot.
3217
3218 The layout element will adapt its inner \ref rect by applying the margins inward to the outer rect.
3219
3220 \see rect
3221*/
3223{
3224 if (mOuterRect != rect)
3225 {
3226 mOuterRect = rect;
3227 mRect = mOuterRect.adjusted(mMargins.left(), mMargins.top(), -mMargins.right(), -mMargins.bottom());
3228 }
3229}
3230
3231/*!
3232 Sets the margins of this layout element. If \ref setAutoMargins is disabled for some or all
3233 sides, this function is used to manually set the margin on those sides. Sides that are still set
3234 to be handled automatically are ignored and may have any value in \a margins.
3235
3236 The margin is the distance between the outer rect (controlled by the parent layout via \ref
3237 setOuterRect) and the inner \ref rect (which usually contains the main content of this layout
3238 element).
3239
3240 \see setAutoMargins
3241*/
3243{
3244 if (mMargins != margins)
3245 {
3246 mMargins = margins;
3247 mRect = mOuterRect.adjusted(mMargins.left(), mMargins.top(), -mMargins.right(), -mMargins.bottom());
3248 }
3249}
3250
3251/*!
3252 If \ref setAutoMargins is enabled on some or all margins, this function is used to provide
3253 minimum values for those margins.
3254
3255 The minimum values are not enforced on margin sides that were set to be under manual control via
3256 \ref setAutoMargins.
3257
3258 \see setAutoMargins
3259*/
3261{
3262 if (mMinimumMargins != margins)
3263 {
3264 mMinimumMargins = margins;
3265 }
3266}
3267
3268/*!
3269 Sets on which sides the margin shall be calculated automatically. If a side is calculated
3270 automatically, a minimum margin value may be provided with \ref setMinimumMargins. If a side is
3271 set to be controlled manually, the value may be specified with \ref setMargins.
3272
3273 Margin sides that are under automatic control may participate in a \ref QCPMarginGroup (see \ref
3274 setMarginGroup), to synchronize (align) it with other layout elements in the plot.
3275
3276 \see setMinimumMargins, setMargins, QCP::MarginSide
3277*/
3279{
3280 mAutoMargins = sides;
3281}
3282
3283/*!
3284 Sets the minimum size of this layout element. A parent layout tries to respect the \a size here
3285 by changing row/column sizes in the layout accordingly.
3286
3287 If the parent layout size is not sufficient to satisfy all minimum size constraints of its child
3288 layout elements, the layout may set a size that is actually smaller than \a size. QCustomPlot
3289 propagates the layout's size constraints to the outside by setting its own minimum QWidget size
3290 accordingly, so violations of \a size should be exceptions.
3291
3292 Whether this constraint applies to the inner or the outer rect can be specified with \ref
3293 setSizeConstraintRect (see \ref rect and \ref outerRect).
3294*/
3296{
3297 if (mMinimumSize != size)
3298 {
3299 mMinimumSize = size;
3300 if (mParentLayout)
3301 mParentLayout->sizeConstraintsChanged();
3302 }
3303}
3304
3305/*! \overload
3306
3307 Sets the minimum size of this layout element.
3308
3309 Whether this constraint applies to the inner or the outer rect can be specified with \ref
3310 setSizeConstraintRect (see \ref rect and \ref outerRect).
3311*/
3312void QCPLayoutElement::setMinimumSize(int width, int height)
3313{
3314 setMinimumSize(QSize(width, height));
3315}
3316
3317/*!
3318 Sets the maximum size of this layout element. A parent layout tries to respect the \a size here
3319 by changing row/column sizes in the layout accordingly.
3320
3321 Whether this constraint applies to the inner or the outer rect can be specified with \ref
3322 setSizeConstraintRect (see \ref rect and \ref outerRect).
3323*/
3325{
3326 if (mMaximumSize != size)
3327 {
3328 mMaximumSize = size;
3329 if (mParentLayout)
3330 mParentLayout->sizeConstraintsChanged();
3331 }
3332}
3333
3334/*! \overload
3335
3336 Sets the maximum size of this layout element.
3337
3338 Whether this constraint applies to the inner or the outer rect can be specified with \ref
3339 setSizeConstraintRect (see \ref rect and \ref outerRect).
3340*/
3341void QCPLayoutElement::setMaximumSize(int width, int height)
3342{
3343 setMaximumSize(QSize(width, height));
3344}
3345
3346/*!
3347 Sets to which rect of a layout element the size constraints apply. Size constraints can be set
3348 via \ref setMinimumSize and \ref setMaximumSize.
3349
3350 The outer rect (\ref outerRect) includes the margins (e.g. in the case of a QCPAxisRect the axis
3351 labels), whereas the inner rect (\ref rect) does not.
3352
3353 \see setMinimumSize, setMaximumSize
3354*/
3356{
3357 if (mSizeConstraintRect != constraintRect)
3358 {
3359 mSizeConstraintRect = constraintRect;
3360 if (mParentLayout)
3361 mParentLayout->sizeConstraintsChanged();
3362 }
3363}
3364
3365/*!
3366 Sets the margin \a group of the specified margin \a sides.
3367
3368 Margin groups allow synchronizing specified margins across layout elements, see the documentation
3369 of \ref QCPMarginGroup.
3370
3371 To unset the margin group of \a sides, set \a group to \c nullptr.
3372
3373 Note that margin groups only work for margin sides that are set to automatic (\ref
3374 setAutoMargins).
3375
3376 \see QCP::MarginSide
3377*/
3379{
3385
3386 foreach (QCP::MarginSide side, sideVector)
3387 {
3388 if (marginGroup(side) != group)
3389 {
3390 QCPMarginGroup *oldGroup = marginGroup(side);
3391 if (oldGroup) // unregister at old group
3392 oldGroup->removeChild(side, this);
3393
3394 if (!group) // if setting to 0, remove hash entry. Else set hash entry to new group and register there
3395 {
3396 mMarginGroups.remove(side);
3397 } else // setting to a new group
3398 {
3399 mMarginGroups[side] = group;
3400 group->addChild(side, this);
3401 }
3402 }
3403 }
3404}
3405
3406/*!
3407 Updates the layout element and sub-elements. This function is automatically called before every
3408 replot by the parent layout element. It is called multiple times, once for every \ref
3409 UpdatePhase. The phases are run through in the order of the enum values. For details about what
3410 happens at the different phases, see the documentation of \ref UpdatePhase.
3411
3412 Layout elements that have child elements should call the \ref update method of their child
3413 elements, and pass the current \a phase unchanged.
3414
3415 The default implementation executes the automatic margin mechanism in the \ref upMargins phase.
3416 Subclasses should make sure to call the base class implementation.
3417*/
3419{
3420 if (phase == upMargins)
3421 {
3422 if (mAutoMargins != QCP::msNone)
3423 {
3424 // set the margins of this layout element according to automatic margin calculation, either directly or via a margin group:
3425 QMargins newMargins = mMargins;
3427 foreach (QCP::MarginSide side, allMarginSides)
3428 {
3429 if (mAutoMargins.testFlag(side)) // this side's margin shall be calculated automatically
3430 {
3431 if (mMarginGroups.contains(side))
3432 QCP::setMarginValue(newMargins, side, mMarginGroups[side]->commonMargin(side)); // this side is part of a margin group, so get the margin value from that group
3433 else
3434 QCP::setMarginValue(newMargins, side, calculateAutoMargin(side)); // this side is not part of a group, so calculate the value directly
3435 // apply minimum margin restrictions:
3436 if (QCP::getMarginValue(newMargins, side) < QCP::getMarginValue(mMinimumMargins, side))
3437 QCP::setMarginValue(newMargins, side, QCP::getMarginValue(mMinimumMargins, side));
3438 }
3439 }
3441 }
3442 }
3443}
3444
3445/*!
3446 Returns the suggested minimum size this layout element (the \ref outerRect) may be compressed to,
3447 if no manual minimum size is set.
3448
3449 if a minimum size (\ref setMinimumSize) was not set manually, parent layouts use the returned size
3450 (usually indirectly through \ref QCPLayout::getFinalMinimumOuterSize) to determine the minimum
3451 allowed size of this layout element.
3452
3453 A manual minimum size is considered set if it is non-zero.
3454
3455 The default implementation simply returns the sum of the horizontal margins for the width and the
3456 sum of the vertical margins for the height. Reimplementations may use their detailed knowledge
3457 about the layout element's content to provide size hints.
3458*/
3460{
3461 return {mMargins.left()+mMargins.right(), mMargins.top()+mMargins.bottom()};
3462}
3463
3464/*!
3465 Returns the suggested maximum size this layout element (the \ref outerRect) may be expanded to,
3466 if no manual maximum size is set.
3467
3468 if a maximum size (\ref setMaximumSize) was not set manually, parent layouts use the returned
3469 size (usually indirectly through \ref QCPLayout::getFinalMaximumOuterSize) to determine the
3470 maximum allowed size of this layout element.
3471
3472 A manual maximum size is considered set if it is smaller than Qt's \c QWIDGETSIZE_MAX.
3473
3474 The default implementation simply returns \c QWIDGETSIZE_MAX for both width and height, implying
3475 no suggested maximum size. Reimplementations may use their detailed knowledge about the layout
3476 element's content to provide size hints.
3477*/
3479{
3480 return {QWIDGETSIZE_MAX, QWIDGETSIZE_MAX};
3481}
3482
3483/*!
3484 Returns a list of all child elements in this layout element. If \a recursive is true, all
3485 sub-child elements are included in the list, too.
3486
3487 \warning There may be \c nullptr entries in the returned list. For example, QCPLayoutGrid may
3488 have empty cells which yield \c nullptr at the respective index.
3489*/
3491{
3492 Q_UNUSED(recursive)
3493 return QList<QCPLayoutElement*>();
3494}
3495
3496/*!
3497 Layout elements are sensitive to events inside their outer rect. If \a pos is within the outer
3498 rect, this method returns a value corresponding to 0.99 times the parent plot's selection
3499 tolerance. However, layout elements are not selectable by default. So if \a onlySelectable is
3500 true, -1.0 is returned.
3501
3502 See \ref QCPLayerable::selectTest for a general explanation of this virtual method.
3503
3504 QCPLayoutElement subclasses may reimplement this method to provide more specific selection test
3505 behaviour.
3506*/
3507double QCPLayoutElement::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
3508{
3509 Q_UNUSED(details)
3510
3511 if (onlySelectable)
3512 return -1;
3513
3514 if (QRectF(mOuterRect).contains(pos))
3515 {
3516 if (mParentPlot)
3517 return mParentPlot->selectionTolerance()*0.99;
3518 else
3519 {
3520 qDebug() << Q_FUNC_INFO << "parent plot not defined";
3521 return -1;
3522 }
3523 } else
3524 return -1;
3525}
3526
3527/*! \internal
3528
3529 propagates the parent plot initialization to all child elements, by calling \ref
3530 QCPLayerable::initializeParentPlot on them.
3531*/
3533{
3534 foreach (QCPLayoutElement *el, elements(false))
3535 {
3536 if (!el->parentPlot())
3537 el->initializeParentPlot(parentPlot);
3538 }
3539}
3540
3541/*! \internal
3542
3543 Returns the margin size for this \a side. It is used if automatic margins is enabled for this \a
3544 side (see \ref setAutoMargins). If a minimum margin was set with \ref setMinimumMargins, the
3545 returned value will not be smaller than the specified minimum margin.
3546
3547 The default implementation just returns the respective manual margin (\ref setMargins) or the
3548 minimum margin, whichever is larger.
3549*/
3551{
3552 return qMax(QCP::getMarginValue(mMargins, side), QCP::getMarginValue(mMinimumMargins, side));
3553}
3554
3555/*! \internal
3556
3557 This virtual method is called when this layout element was moved to a different QCPLayout, or
3558 when this layout element has changed its logical position (e.g. row and/or column) within the
3559 same QCPLayout. Subclasses may use this to react accordingly.
3560
3561 Since this method is called after the completion of the move, you can access the new parent
3562 layout via \ref layout().
3563
3564 The default implementation does nothing.
3565*/
3569
3570////////////////////////////////////////////////////////////////////////////////////////////////////
3571//////////////////// QCPLayout
3572////////////////////////////////////////////////////////////////////////////////////////////////////
3573
3574/*! \class QCPLayout
3575 \brief The abstract base class for layouts
3576
3577 This is an abstract base class for layout elements whose main purpose is to define the position
3578 and size of other child layout elements. In most cases, layouts don't draw anything themselves
3579 (but there are exceptions to this, e.g. QCPLegend).
3580
3581 QCPLayout derives from QCPLayoutElement, and thus can itself be nested in other layouts.
3582
3583 QCPLayout introduces a common interface for accessing and manipulating the child elements. Those
3584 functions are most notably \ref elementCount, \ref elementAt, \ref takeAt, \ref take, \ref
3585 simplify, \ref removeAt, \ref remove and \ref clear. Individual subclasses may add more functions
3586 to this interface which are more specialized to the form of the layout. For example, \ref
3587 QCPLayoutGrid adds functions that take row and column indices to access cells of the layout grid
3588 more conveniently.
3589
3590 Since this is an abstract base class, you can't instantiate it directly. Rather use one of its
3591 subclasses like QCPLayoutGrid or QCPLayoutInset.
3592
3593 For a general introduction to the layout system, see the dedicated documentation page \ref
3594 thelayoutsystem "The Layout System".
3595*/
3596
3597/* start documentation of pure virtual functions */
3598
3599/*! \fn virtual int QCPLayout::elementCount() const = 0
3600
3601 Returns the number of elements/cells in the layout.
3602
3603 \see elements, elementAt
3604*/
3605
3606/*! \fn virtual QCPLayoutElement* QCPLayout::elementAt(int index) const = 0
3607
3608 Returns the element in the cell with the given \a index. If \a index is invalid, returns \c
3609 nullptr.
3610
3611 Note that even if \a index is valid, the respective cell may be empty in some layouts (e.g.
3612 QCPLayoutGrid), so this function may return \c nullptr in those cases. You may use this function
3613 to check whether a cell is empty or not.
3614
3615 \see elements, elementCount, takeAt
3616*/
3617
3618/*! \fn virtual QCPLayoutElement* QCPLayout::takeAt(int index) = 0
3619
3620 Removes the element with the given \a index from the layout and returns it.
3621
3622 If the \a index is invalid or the cell with that index is empty, returns \c nullptr.
3623
3624 Note that some layouts don't remove the respective cell right away but leave an empty cell after
3625 successful removal of the layout element. To collapse empty cells, use \ref simplify.
3626
3627 \see elementAt, take
3628*/
3629
3630/*! \fn virtual bool QCPLayout::take(QCPLayoutElement* element) = 0
3631
3632 Removes the specified \a element from the layout and returns true on success.
3633
3634 If the \a element isn't in this layout, returns false.
3635
3636 Note that some layouts don't remove the respective cell right away but leave an empty cell after
3637 successful removal of the layout element. To collapse empty cells, use \ref simplify.
3638
3639 \see takeAt
3640*/
3641
3642/* end documentation of pure virtual functions */
3643
3644/*!
3645 Creates an instance of QCPLayout and sets default values. Note that since QCPLayout
3646 is an abstract base class, it can't be instantiated directly.
3647*/
3651
3652/*!
3653 If \a phase is \ref upLayout, calls \ref updateLayout, which subclasses may reimplement to
3654 reposition and resize their cells.
3655
3656 Finally, the call is propagated down to all child \ref QCPLayoutElement "QCPLayoutElements".
3657
3658 For details about this method and the update phases, see the documentation of \ref
3659 QCPLayoutElement::update.
3660*/
3662{
3664
3665 // set child element rects according to layout:
3666 if (phase == upLayout)
3667 updateLayout();
3668
3669 // propagate update call to child elements:
3670 const int elCount = elementCount();
3671 for (int i=0; i<elCount; ++i)
3672 {
3673 if (QCPLayoutElement *el = elementAt(i))
3674 el->update(phase);
3675 }
3676}
3677
3678/* inherits documentation from base class */
3680{
3681 const int c = elementCount();
3683#if QT_VERSION >= QT_VERSION_CHECK(4, 7, 0)
3684 result.reserve(c);
3685#endif
3686 for (int i=0; i<c; ++i)
3687 result.append(elementAt(i));
3688 if (recursive)
3689 {
3690 for (int i=0; i<c; ++i)
3691 {
3692 if (result.at(i))
3693 result << result.at(i)->elements(recursive);
3694 }
3695 }
3696 return result;
3697}
3698
3699/*!
3700 Simplifies the layout by collapsing empty cells. The exact behavior depends on subclasses, the
3701 default implementation does nothing.
3702
3703 Not all layouts need simplification. For example, QCPLayoutInset doesn't use explicit
3704 simplification while QCPLayoutGrid does.
3705*/
3707{
3708}
3709
3710/*!
3711 Removes and deletes the element at the provided \a index. Returns true on success. If \a index is
3712 invalid or points to an empty cell, returns false.
3713
3714 This function internally uses \ref takeAt to remove the element from the layout and then deletes
3715 the returned element. Note that some layouts don't remove the respective cell right away but leave an
3716 empty cell after successful removal of the layout element. To collapse empty cells, use \ref
3717 simplify.
3718
3719 \see remove, takeAt
3720*/
3721bool QCPLayout::removeAt(int index)
3722{
3723 if (QCPLayoutElement *el = takeAt(index))
3724 {
3725 delete el;
3726 return true;
3727 } else
3728 return false;
3729}
3730
3731/*!
3732 Removes and deletes the provided \a element. Returns true on success. If \a element is not in the
3733 layout, returns false.
3734
3735 This function internally uses \ref takeAt to remove the element from the layout and then deletes
3736 the element. Note that some layouts don't remove the respective cell right away but leave an
3737 empty cell after successful removal of the layout element. To collapse empty cells, use \ref
3738 simplify.
3739
3740 \see removeAt, take
3741*/
3743{
3744 if (take(element))
3745 {
3746 delete element;
3747 return true;
3748 } else
3749 return false;
3750}
3751
3752/*!
3753 Removes and deletes all layout elements in this layout. Finally calls \ref simplify to make sure
3754 all empty cells are collapsed.
3755
3756 \see remove, removeAt
3757*/
3759{
3760 for (int i=elementCount()-1; i>=0; --i)
3761 {
3762 if (elementAt(i))
3763 removeAt(i);
3764 }
3765 simplify();
3766}
3767
3768/*!
3769 Subclasses call this method to report changed (minimum/maximum) size constraints.
3770
3771 If the parent of this layout is again a QCPLayout, forwards the call to the parent's \ref
3772 sizeConstraintsChanged. If the parent is a QWidget (i.e. is the \ref QCustomPlot::plotLayout of
3773 QCustomPlot), calls QWidget::updateGeometry, so if the QCustomPlot widget is inside a Qt QLayout,
3774 it may update itself and resize cells accordingly.
3775*/
3777{
3779 w->updateGeometry();
3780 else if (QCPLayout *l = qobject_cast<QCPLayout*>(parent()))
3781 l->sizeConstraintsChanged();
3782}
3783
3784/*! \internal
3785
3786 Subclasses reimplement this method to update the position and sizes of the child elements/cells
3787 via calling their \ref QCPLayoutElement::setOuterRect. The default implementation does nothing.
3788
3789 The geometry used as a reference is the inner \ref rect of this layout. Child elements should stay
3790 within that rect.
3791
3792 \ref getSectionSizes may help with the reimplementation of this function.
3793
3794 \see update
3795*/
3797{
3798}
3799
3800
3801/*! \internal
3802
3803 Associates \a el with this layout. This is done by setting the \ref QCPLayoutElement::layout, the
3804 \ref QCPLayerable::parentLayerable and the QObject parent to this layout.
3805
3806 Further, if \a el didn't previously have a parent plot, calls \ref
3807 QCPLayerable::initializeParentPlot on \a el to set the paret plot.
3808
3809 This method is used by subclass specific methods that add elements to the layout. Note that this
3810 method only changes properties in \a el. The removal from the old layout and the insertion into
3811 the new layout must be done additionally.
3812*/
3814{
3815 if (el)
3816 {
3817 el->mParentLayout = this;
3818 el->setParentLayerable(this);
3819 el->setParent(this);
3820 if (!el->parentPlot())
3821 el->initializeParentPlot(mParentPlot);
3822 el->layoutChanged();
3823 } else
3824 qDebug() << Q_FUNC_INFO << "Null element passed";
3825}
3826
3827/*! \internal
3828
3829 Disassociates \a el from this layout. This is done by setting the \ref QCPLayoutElement::layout
3830 and the \ref QCPLayerable::parentLayerable to zero. The QObject parent is set to the parent
3831 QCustomPlot.
3832
3833 This method is used by subclass specific methods that remove elements from the layout (e.g. \ref
3834 take or \ref takeAt). Note that this method only changes properties in \a el. The removal from
3835 the old layout must be done additionally.
3836*/
3838{
3839 if (el)
3840 {
3841 el->mParentLayout = nullptr;
3842 el->setParentLayerable(nullptr);
3843 el->setParent(mParentPlot);
3844 // Note: Don't initializeParentPlot(0) here, because layout element will stay in same parent plot
3845 } else
3846 qDebug() << Q_FUNC_INFO << "Null element passed";
3847}
3848
3849/*! \internal
3850
3851 This is a helper function for the implementation of \ref updateLayout in subclasses.
3852
3853 It calculates the sizes of one-dimensional sections with provided constraints on maximum section
3854 sizes, minimum section sizes, relative stretch factors and the final total size of all sections.
3855
3856 The QVector entries refer to the sections. Thus all QVectors must have the same size.
3857
3858 \a maxSizes gives the maximum allowed size of each section. If there shall be no maximum size
3859 imposed, set all vector values to Qt's QWIDGETSIZE_MAX.
3860
3861 \a minSizes gives the minimum allowed size of each section. If there shall be no minimum size
3862 imposed, set all vector values to zero. If the \a minSizes entries add up to a value greater than
3863 \a totalSize, sections will be scaled smaller than the proposed minimum sizes. (In other words,
3864 not exceeding the allowed total size is taken to be more important than not going below minimum
3865 section sizes.)
3866
3867 \a stretchFactors give the relative proportions of the sections to each other. If all sections
3868 shall be scaled equally, set all values equal. If the first section shall be double the size of
3869 each individual other section, set the first number of \a stretchFactors to double the value of
3870 the other individual values (e.g. {2, 1, 1, 1}).
3871
3872 \a totalSize is the value that the final section sizes will add up to. Due to rounding, the
3873 actual sum may differ slightly. If you want the section sizes to sum up to exactly that value,
3874 you could distribute the remaining difference on the sections.
3875
3876 The return value is a QVector containing the section sizes.
3877*/
3879{
3880 if (maxSizes.size() != minSizes.size() || minSizes.size() != stretchFactors.size())
3881 {
3882 qDebug() << Q_FUNC_INFO << "Passed vector sizes aren't equal:" << maxSizes << minSizes << stretchFactors;
3883 return QVector<int>();
3884 }
3885 if (stretchFactors.isEmpty())
3886 return QVector<int>();
3887 int sectionCount = stretchFactors.size();
3888 QVector<double> sectionSizes(sectionCount);
3889 // if provided total size is forced smaller than total minimum size, ignore minimum sizes (squeeze sections):
3890 int minSizeSum = 0;
3891 for (int i=0; i<sectionCount; ++i)
3892 minSizeSum += minSizes.at(i);
3893 if (totalSize < minSizeSum)
3894 {
3895 // new stretch factors are minimum sizes and minimum sizes are set to zero:
3896 for (int i=0; i<sectionCount; ++i)
3897 {
3898 stretchFactors[i] = minSizes.at(i);
3899 minSizes[i] = 0;
3900 }
3901 }
3902
3905 for (int i=0; i<sectionCount; ++i)
3906 unfinishedSections.append(i);
3907 double freeSize = totalSize;
3908
3909 int outerIterations = 0;
3910 while (!unfinishedSections.isEmpty() && outerIterations < sectionCount*2) // the iteration check ist just a failsafe in case something really strange happens
3911 {
3913 int innerIterations = 0;
3914 while (!unfinishedSections.isEmpty() && innerIterations < sectionCount*2) // the iteration check ist just a failsafe in case something really strange happens
3915 {
3917 // find section that hits its maximum next:
3918 int nextId = -1;
3919 double nextMax = 1e12;
3920 foreach (int secId, unfinishedSections)
3921 {
3923 if (hitsMaxAt < nextMax)
3924 {
3926 nextId = secId;
3927 }
3928 }
3929 // check if that maximum is actually within the bounds of the total size (i.e. can we stretch all remaining sections so far that the found section
3930 // actually hits its maximum, without exceeding the total size when we add up all sections)
3931 double stretchFactorSum = 0;
3932 foreach (int secId, unfinishedSections)
3934 double nextMaxLimit = freeSize/stretchFactorSum;
3935 if (nextMax < nextMaxLimit) // next maximum is actually hit, move forward to that point and fix the size of that section
3936 {
3937 foreach (int secId, unfinishedSections)
3938 {
3939 sectionSizes[secId] += nextMax*stretchFactors.at(secId); // increment all sections
3940 freeSize -= nextMax*stretchFactors.at(secId);
3941 }
3942 unfinishedSections.removeOne(nextId); // exclude the section that is now at maximum from further changes
3943 } else // next maximum isn't hit, just distribute rest of free space on remaining sections
3944 {
3945 foreach (int secId, unfinishedSections)
3946 sectionSizes[secId] += nextMaxLimit*stretchFactors.at(secId); // increment all sections
3947 unfinishedSections.clear();
3948 }
3949 }
3950 if (innerIterations == sectionCount*2)
3951 qDebug() << Q_FUNC_INFO << "Exceeded maximum expected inner iteration count, layouting aborted. Input was:" << maxSizes << minSizes << stretchFactors << totalSize;
3952
3953 // now check whether the resulting section sizes violate minimum restrictions:
3954 bool foundMinimumViolation = false;
3955 for (int i=0; i<sectionSizes.size(); ++i)
3956 {
3957 if (minimumLockedSections.contains(i))
3958 continue;
3959 if (sectionSizes.at(i) < minSizes.at(i)) // section violates minimum
3960 {
3961 sectionSizes[i] = minSizes.at(i); // set it to minimum
3962 foundMinimumViolation = true; // make sure we repeat the whole optimization process
3963 minimumLockedSections.append(i);
3964 }
3965 }
3967 {
3968 freeSize = totalSize;
3969 for (int i=0; i<sectionCount; ++i)
3970 {
3971 if (!minimumLockedSections.contains(i)) // only put sections that haven't hit their minimum back into the pool
3972 unfinishedSections.append(i);
3973 else
3974 freeSize -= sectionSizes.at(i); // remove size of minimum locked sections from available space in next round
3975 }
3976 // reset all section sizes to zero that are in unfinished sections (all others have been set to their minimum):
3977 foreach (int secId, unfinishedSections)
3978 sectionSizes[secId] = 0;
3979 }
3980 }
3981 if (outerIterations == sectionCount*2)
3982 qDebug() << Q_FUNC_INFO << "Exceeded maximum expected outer iteration count, layouting aborted. Input was:" << maxSizes << minSizes << stretchFactors << totalSize;
3983
3984 QVector<int> result(sectionCount);
3985 for (int i=0; i<sectionCount; ++i)
3986 result[i] = qRound(sectionSizes.at(i));
3987 return result;
3988}
3989
3990/*! \internal
3991
3992 This is a helper function for the implementation of subclasses.
3993
3994 It returns the minimum size that should finally be used for the outer rect of the passed layout
3995 element \a el.
3996
3997 It takes into account whether a manual minimum size is set (\ref
3998 QCPLayoutElement::setMinimumSize), which size constraint is set (\ref
3999 QCPLayoutElement::setSizeConstraintRect), as well as the minimum size hint, if no manual minimum
4000 size was set (\ref QCPLayoutElement::minimumOuterSizeHint).
4001*/
4003{
4005 QSize minOuter = el->minimumSize(); // depending on sizeConstraitRect this might be with respect to inner rect, so possibly add margins in next four lines (preserving unset minimum of 0)
4006 if (minOuter.width() > 0 && el->sizeConstraintRect() == QCPLayoutElement::scrInnerRect)
4007 minOuter.rwidth() += el->margins().left() + el->margins().right();
4008 if (minOuter.height() > 0 && el->sizeConstraintRect() == QCPLayoutElement::scrInnerRect)
4009 minOuter.rheight() += el->margins().top() + el->margins().bottom();
4010
4011 return {minOuter.width() > 0 ? minOuter.width() : minOuterHint.width(),
4012 minOuter.height() > 0 ? minOuter.height() : minOuterHint.height()};
4013}
4014
4015/*! \internal
4016
4017 This is a helper function for the implementation of subclasses.
4018
4019 It returns the maximum size that should finally be used for the outer rect of the passed layout
4020 element \a el.
4021
4022 It takes into account whether a manual maximum size is set (\ref
4023 QCPLayoutElement::setMaximumSize), which size constraint is set (\ref
4024 QCPLayoutElement::setSizeConstraintRect), as well as the maximum size hint, if no manual maximum
4025 size was set (\ref QCPLayoutElement::maximumOuterSizeHint).
4026*/
4028{
4030 QSize maxOuter = el->maximumSize(); // depending on sizeConstraitRect this might be with respect to inner rect, so possibly add margins in next four lines (preserving unset maximum of QWIDGETSIZE_MAX)
4031 if (maxOuter.width() < QWIDGETSIZE_MAX && el->sizeConstraintRect() == QCPLayoutElement::scrInnerRect)
4032 maxOuter.rwidth() += el->margins().left() + el->margins().right();
4033 if (maxOuter.height() < QWIDGETSIZE_MAX && el->sizeConstraintRect() == QCPLayoutElement::scrInnerRect)
4034 maxOuter.rheight() += el->margins().top() + el->margins().bottom();
4035
4036 return {maxOuter.width() < QWIDGETSIZE_MAX ? maxOuter.width() : maxOuterHint.width(),
4037 maxOuter.height() < QWIDGETSIZE_MAX ? maxOuter.height() : maxOuterHint.height()};
4038}
4039
4040
4041////////////////////////////////////////////////////////////////////////////////////////////////////
4042//////////////////// QCPLayoutGrid
4043////////////////////////////////////////////////////////////////////////////////////////////////////
4044
4045/*! \class QCPLayoutGrid
4046 \brief A layout that arranges child elements in a grid
4047
4048 Elements are laid out in a grid with configurable stretch factors (\ref setColumnStretchFactor,
4049 \ref setRowStretchFactor) and spacing (\ref setColumnSpacing, \ref setRowSpacing).
4050
4051 Elements can be added to cells via \ref addElement. The grid is expanded if the specified row or
4052 column doesn't exist yet. Whether a cell contains a valid layout element can be checked with \ref
4053 hasElement, that element can be retrieved with \ref element. If rows and columns that only have
4054 empty cells shall be removed, call \ref simplify. Removal of elements is either done by just
4055 adding the element to a different layout or by using the QCPLayout interface \ref take or \ref
4056 remove.
4057
4058 If you use \ref addElement(QCPLayoutElement*) without explicit parameters for \a row and \a
4059 column, the grid layout will choose the position according to the current \ref setFillOrder and
4060 the wrapping (\ref setWrap).
4061
4062 Row and column insertion can be performed with \ref insertRow and \ref insertColumn.
4063*/
4064
4065/* start documentation of inline functions */
4066
4067/*! \fn int QCPLayoutGrid::rowCount() const
4068
4069 Returns the number of rows in the layout.
4070
4071 \see columnCount
4072*/
4073
4074/*! \fn int QCPLayoutGrid::columnCount() const
4075
4076 Returns the number of columns in the layout.
4077
4078 \see rowCount
4079*/
4080
4081/* end documentation of inline functions */
4082
4083/*!
4084 Creates an instance of QCPLayoutGrid and sets default values.
4085*/
4087 mColumnSpacing(5),
4088 mRowSpacing(5),
4089 mWrap(0),
4090 mFillOrder(foColumnsFirst)
4091{
4092}
4093
4094QCPLayoutGrid::~QCPLayoutGrid()
4095{
4096 // clear all child layout elements. This is important because only the specific layouts know how
4097 // to handle removing elements (clear calls virtual removeAt method to do that).
4098 clear();
4099}
4100
4101/*!
4102 Returns the element in the cell in \a row and \a column.
4103
4104 Returns \c nullptr if either the row/column is invalid or if the cell is empty. In those cases, a
4105 qDebug message is printed. To check whether a cell exists and isn't empty, use \ref hasElement.
4106
4107 \see addElement, hasElement
4108*/
4109QCPLayoutElement *QCPLayoutGrid::element(int row, int column) const
4110{
4111 if (row >= 0 && row < mElements.size())
4112 {
4113 if (column >= 0 && column < mElements.first().size())
4114 {
4115 if (QCPLayoutElement *result = mElements.at(row).at(column))
4116 return result;
4117 else
4118 qDebug() << Q_FUNC_INFO << "Requested cell is empty. Row:" << row << "Column:" << column;
4119 } else
4120 qDebug() << Q_FUNC_INFO << "Invalid column. Row:" << row << "Column:" << column;
4121 } else
4122 qDebug() << Q_FUNC_INFO << "Invalid row. Row:" << row << "Column:" << column;
4123 return nullptr;
4124}
4125
4126
4127/*! \overload
4128
4129 Adds the \a element to cell with \a row and \a column. If \a element is already in a layout, it
4130 is first removed from there. If \a row or \a column don't exist yet, the layout is expanded
4131 accordingly.
4132
4133 Returns true if the element was added successfully, i.e. if the cell at \a row and \a column
4134 didn't already have an element.
4135
4136 Use the overload of this method without explicit row/column index to place the element according
4137 to the configured fill order and wrapping settings.
4138
4139 \see element, hasElement, take, remove
4140*/
4141bool QCPLayoutGrid::addElement(int row, int column, QCPLayoutElement *element)
4142{
4143 if (!hasElement(row, column))
4144 {
4145 if (element && element->layout()) // remove from old layout first
4147 expandTo(row+1, column+1);
4148 mElements[row][column] = element;
4149 if (element)
4151 return true;
4152 } else
4153 qDebug() << Q_FUNC_INFO << "There is already an element in the specified row/column:" << row << column;
4154 return false;
4155}
4156
4157/*! \overload
4158
4159 Adds the \a element to the next empty cell according to the current fill order (\ref
4160 setFillOrder) and wrapping (\ref setWrap). If \a element is already in a layout, it is first
4161 removed from there. If necessary, the layout is expanded to hold the new element.
4162
4163 Returns true if the element was added successfully.
4164
4165 \see setFillOrder, setWrap, element, hasElement, take, remove
4166*/
4168{
4169 int rowIndex = 0;
4170 int colIndex = 0;
4171 if (mFillOrder == foColumnsFirst)
4172 {
4173 while (hasElement(rowIndex, colIndex))
4174 {
4175 ++colIndex;
4176 if (colIndex >= mWrap && mWrap > 0)
4177 {
4178 colIndex = 0;
4179 ++rowIndex;
4180 }
4181 }
4182 } else
4183 {
4184 while (hasElement(rowIndex, colIndex))
4185 {
4186 ++rowIndex;
4187 if (rowIndex >= mWrap && mWrap > 0)
4188 {
4189 rowIndex = 0;
4190 ++colIndex;
4191 }
4192 }
4193 }
4194 return addElement(rowIndex, colIndex, element);
4195}
4196
4197/*!
4198 Returns whether the cell at \a row and \a column exists and contains a valid element, i.e. isn't
4199 empty.
4200
4201 \see element
4202*/
4203bool QCPLayoutGrid::hasElement(int row, int column)
4204{
4205 if (row >= 0 && row < rowCount() && column >= 0 && column < columnCount())
4206 return mElements.at(row).at(column);
4207 else
4208 return false;
4209}
4210
4211/*!
4212 Sets the stretch \a factor of \a column.
4213
4214 Stretch factors control the relative sizes of rows and columns. Cells will not be resized beyond
4215 their minimum and maximum widths/heights, regardless of the stretch factor. (see \ref
4216 QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize, \ref
4217 QCPLayoutElement::setSizeConstraintRect.)
4218
4219 The default stretch factor of newly created rows/columns is 1.
4220
4221 \see setColumnStretchFactors, setRowStretchFactor
4222*/
4223void QCPLayoutGrid::setColumnStretchFactor(int column, double factor)
4224{
4225 if (column >= 0 && column < columnCount())
4226 {
4227 if (factor > 0)
4228 mColumnStretchFactors[column] = factor;
4229 else
4230 qDebug() << Q_FUNC_INFO << "Invalid stretch factor, must be positive:" << factor;
4231 } else
4232 qDebug() << Q_FUNC_INFO << "Invalid column:" << column;
4233}
4234
4235/*!
4236 Sets the stretch \a factors of all columns. \a factors must have the size \ref columnCount.
4237
4238 Stretch factors control the relative sizes of rows and columns. Cells will not be resized beyond
4239 their minimum and maximum widths/heights, regardless of the stretch factor. (see \ref
4240 QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize, \ref
4241 QCPLayoutElement::setSizeConstraintRect.)
4242
4243 The default stretch factor of newly created rows/columns is 1.
4244
4245 \see setColumnStretchFactor, setRowStretchFactors
4246*/
4248{
4249 if (factors.size() == mColumnStretchFactors.size())
4250 {
4251 mColumnStretchFactors = factors;
4252 for (int i=0; i<mColumnStretchFactors.size(); ++i)
4253 {
4254 if (mColumnStretchFactors.at(i) <= 0)
4255 {
4256 qDebug() << Q_FUNC_INFO << "Invalid stretch factor, must be positive:" << mColumnStretchFactors.at(i);
4257 mColumnStretchFactors[i] = 1;
4258 }
4259 }
4260 } else
4261 qDebug() << Q_FUNC_INFO << "Column count not equal to passed stretch factor count:" << factors;
4262}
4263
4264/*!
4265 Sets the stretch \a factor of \a row.
4266
4267 Stretch factors control the relative sizes of rows and columns. Cells will not be resized beyond
4268 their minimum and maximum widths/heights, regardless of the stretch factor. (see \ref
4269 QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize, \ref
4270 QCPLayoutElement::setSizeConstraintRect.)
4271
4272 The default stretch factor of newly created rows/columns is 1.
4273
4274 \see setColumnStretchFactors, setRowStretchFactor
4275*/
4276void QCPLayoutGrid::setRowStretchFactor(int row, double factor)
4277{
4278 if (row >= 0 && row < rowCount())
4279 {
4280 if (factor > 0)
4281 mRowStretchFactors[row] = factor;
4282 else
4283 qDebug() << Q_FUNC_INFO << "Invalid stretch factor, must be positive:" << factor;
4284 } else
4285 qDebug() << Q_FUNC_INFO << "Invalid row:" << row;
4286}
4287
4288/*!
4289 Sets the stretch \a factors of all rows. \a factors must have the size \ref rowCount.
4290
4291 Stretch factors control the relative sizes of rows and columns. Cells will not be resized beyond
4292 their minimum and maximum widths/heights, regardless of the stretch factor. (see \ref
4293 QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize, \ref
4294 QCPLayoutElement::setSizeConstraintRect.)
4295
4296 The default stretch factor of newly created rows/columns is 1.
4297
4298 \see setRowStretchFactor, setColumnStretchFactors
4299*/
4301{
4302 if (factors.size() == mRowStretchFactors.size())
4303 {
4304 mRowStretchFactors = factors;
4305 for (int i=0; i<mRowStretchFactors.size(); ++i)
4306 {
4307 if (mRowStretchFactors.at(i) <= 0)
4308 {
4309 qDebug() << Q_FUNC_INFO << "Invalid stretch factor, must be positive:" << mRowStretchFactors.at(i);
4310 mRowStretchFactors[i] = 1;
4311 }
4312 }
4313 } else
4314 qDebug() << Q_FUNC_INFO << "Row count not equal to passed stretch factor count:" << factors;
4315}
4316
4317/*!
4318 Sets the gap that is left blank between columns to \a pixels.
4319
4320 \see setRowSpacing
4321*/
4323{
4324 mColumnSpacing = pixels;
4325}
4326
4327/*!
4328 Sets the gap that is left blank between rows to \a pixels.
4329
4330 \see setColumnSpacing
4331*/
4333{
4334 mRowSpacing = pixels;
4335}
4336
4337/*!
4338 Sets the maximum number of columns or rows that are used, before new elements added with \ref
4339 addElement(QCPLayoutElement*) will start to fill the next row or column, respectively. It depends
4340 on \ref setFillOrder, whether rows or columns are wrapped.
4341
4342 If \a count is set to zero, no wrapping will ever occur.
4343
4344 If you wish to re-wrap the elements currently in the layout, call \ref setFillOrder with \a
4345 rearrange set to true (the actual fill order doesn't need to be changed for the rearranging to be
4346 done).
4347
4348 Note that the method \ref addElement(int row, int column, QCPLayoutElement *element) with
4349 explicitly stated row and column is not subject to wrapping and can place elements even beyond
4350 the specified wrapping point.
4351
4352 \see setFillOrder
4353*/
4355{
4356 mWrap = qMax(0, count);
4357}
4358
4359/*!
4360 Sets the filling order and wrapping behaviour that is used when adding new elements with the
4361 method \ref addElement(QCPLayoutElement*).
4362
4363 The specified \a order defines whether rows or columns are filled first. Using \ref setWrap, you
4364 can control at which row/column count wrapping into the next column/row will occur. If you set it
4365 to zero, no wrapping will ever occur. Changing the fill order also changes the meaning of the
4366 linear index used e.g. in \ref elementAt and \ref takeAt. The default fill order for \ref
4367 QCPLayoutGrid is \ref foColumnsFirst.
4368
4369 If you want to have all current elements arranged in the new order, set \a rearrange to true. The
4370 elements will be rearranged in a way that tries to preserve their linear index. However, empty
4371 cells are skipped during build-up of the new cell order, which shifts the succeeding element's
4372 index. The rearranging is performed even if the specified \a order is already the current fill
4373 order. Thus this method can be used to re-wrap the current elements.
4374
4375 If \a rearrange is false, the current element arrangement is not changed, which means the
4376 linear indexes change (because the linear index is dependent on the fill order).
4377
4378 Note that the method \ref addElement(int row, int column, QCPLayoutElement *element) with
4379 explicitly stated row and column is not subject to wrapping and can place elements even beyond
4380 the specified wrapping point.
4381
4382 \see setWrap, addElement(QCPLayoutElement*)
4383*/
4385{
4386 // if rearranging, take all elements via linear index of old fill order:
4387 const int elCount = elementCount();
4389 if (rearrange)
4390 {
4391 tempElements.reserve(elCount);
4392 for (int i=0; i<elCount; ++i)
4393 {
4394 if (elementAt(i))
4395 tempElements.append(takeAt(i));
4396 }
4397 simplify();
4398 }
4399 // change fill order as requested:
4400 mFillOrder = order;
4401 // if rearranging, re-insert via linear index according to new fill order:
4402 if (rearrange)
4403 {
4406 }
4407}
4408
4409/*!
4410 Expands the layout to have \a newRowCount rows and \a newColumnCount columns. So the last valid
4411 row index will be \a newRowCount-1, the last valid column index will be \a newColumnCount-1.
4412
4413 If the current column/row count is already larger or equal to \a newColumnCount/\a newRowCount,
4414 this function does nothing in that dimension.
4415
4416 Newly created cells are empty, new rows and columns have the stretch factor 1.
4417
4418 Note that upon a call to \ref addElement, the layout is expanded automatically to contain the
4419 specified row and column, using this function.
4420
4421 \see simplify
4422*/
4424{
4425 // add rows as necessary:
4426 while (rowCount() < newRowCount)
4427 {
4428 mElements.append(QList<QCPLayoutElement*>());
4429 mRowStretchFactors.append(1);
4430 }
4431 // go through rows and expand columns as necessary:
4433 for (int i=0; i<rowCount(); ++i)
4434 {
4435 while (mElements.at(i).size() < newColCount)
4436 mElements[i].append(nullptr);
4437 }
4438 while (mColumnStretchFactors.size() < newColCount)
4439 mColumnStretchFactors.append(1);
4440}
4441
4442/*!
4443 Inserts a new row with empty cells at the row index \a newIndex. Valid values for \a newIndex
4444 range from 0 (inserts a row at the top) to \a rowCount (appends a row at the bottom).
4445
4446 \see insertColumn
4447*/
4449{
4450 if (mElements.isEmpty() || mElements.first().isEmpty()) // if grid is completely empty, add first cell
4451 {
4452 expandTo(1, 1);
4453 return;
4454 }
4455
4456 if (newIndex < 0)
4457 newIndex = 0;
4458 if (newIndex > rowCount())
4459 newIndex = rowCount();
4460
4461 mRowStretchFactors.insert(newIndex, 1);
4463 for (int col=0; col<columnCount(); ++col)
4464 newRow.append(nullptr);
4465 mElements.insert(newIndex, newRow);
4466}
4467
4468/*!
4469 Inserts a new column with empty cells at the column index \a newIndex. Valid values for \a
4470 newIndex range from 0 (inserts a column at the left) to \a columnCount (appends a column at the
4471 right).
4472
4473 \see insertRow
4474*/
4476{
4477 if (mElements.isEmpty() || mElements.first().isEmpty()) // if grid is completely empty, add first cell
4478 {
4479 expandTo(1, 1);
4480 return;
4481 }
4482
4483 if (newIndex < 0)
4484 newIndex = 0;
4485 if (newIndex > columnCount())
4487
4488 mColumnStretchFactors.insert(newIndex, 1);
4489 for (int row=0; row<rowCount(); ++row)
4490 mElements[row].insert(newIndex, nullptr);
4491}
4492
4493/*!
4494 Converts the given \a row and \a column to the linear index used by some methods of \ref
4495 QCPLayoutGrid and \ref QCPLayout.
4496
4497 The way the cells are indexed depends on \ref setFillOrder. If it is \ref foRowsFirst, the
4498 indices increase left to right and then top to bottom. If it is \ref foColumnsFirst, the indices
4499 increase top to bottom and then left to right.
4500
4501 For the returned index to be valid, \a row and \a column must be valid indices themselves, i.e.
4502 greater or equal to zero and smaller than the current \ref rowCount/\ref columnCount.
4503
4504 \see indexToRowCol
4505*/
4506int QCPLayoutGrid::rowColToIndex(int row, int column) const
4507{
4508 if (row >= 0 && row < rowCount())
4509 {
4510 if (column >= 0 && column < columnCount())
4511 {
4512 switch (mFillOrder)
4513 {
4514 case foRowsFirst: return column*rowCount() + row;
4515 case foColumnsFirst: return row*columnCount() + column;
4516 }
4517 } else
4518 qDebug() << Q_FUNC_INFO << "row index out of bounds:" << row;
4519 } else
4520 qDebug() << Q_FUNC_INFO << "column index out of bounds:" << column;
4521 return 0;
4522}
4523
4524/*!
4525 Converts the linear index to row and column indices and writes the result to \a row and \a
4526 column.
4527
4528 The way the cells are indexed depends on \ref setFillOrder. If it is \ref foRowsFirst, the
4529 indices increase left to right and then top to bottom. If it is \ref foColumnsFirst, the indices
4530 increase top to bottom and then left to right.
4531
4532 If there are no cells (i.e. column or row count is zero), sets \a row and \a column to -1.
4533
4534 For the retrieved \a row and \a column to be valid, the passed \a index must be valid itself,
4535 i.e. greater or equal to zero and smaller than the current \ref elementCount.
4536
4537 \see rowColToIndex
4538*/
4539void QCPLayoutGrid::indexToRowCol(int index, int &row, int &column) const
4540{
4541 row = -1;
4542 column = -1;
4543 const int nCols = columnCount();
4544 const int nRows = rowCount();
4545 if (nCols == 0 || nRows == 0)
4546 return;
4548 {
4549 qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
4550 return;
4551 }
4552
4553 switch (mFillOrder)
4554 {
4555 case foRowsFirst:
4556 {
4557 column = index / nRows;
4558 row = index % nRows;
4559 break;
4560 }
4561 case foColumnsFirst:
4562 {
4563 row = index / nCols;
4564 column = index % nCols;
4565 break;
4566 }
4567 }
4568}
4569
4570/* inherits documentation from base class */
4572{
4576
4577 int totalRowSpacing = (rowCount()-1) * mRowSpacing;
4578 int totalColSpacing = (columnCount()-1) * mColumnSpacing;
4581
4582 // go through cells and set rects accordingly:
4583 int yOffset = mRect.top();
4584 for (int row=0; row<rowCount(); ++row)
4585 {
4586 if (row > 0)
4587 yOffset += rowHeights.at(row-1)+mRowSpacing;
4588 int xOffset = mRect.left();
4589 for (int col=0; col<columnCount(); ++col)
4590 {
4591 if (col > 0)
4592 xOffset += colWidths.at(col-1)+mColumnSpacing;
4593 if (mElements.at(row).at(col))
4594 mElements.at(row).at(col)->setOuterRect(QRect(xOffset, yOffset, colWidths.at(col), rowHeights.at(row)));
4595 }
4596 }
4597}
4598
4599/*!
4600 \seebaseclassmethod
4601
4602 Note that the association of the linear \a index to the row/column based cells depends on the
4603 current setting of \ref setFillOrder.
4604
4605 \see rowColToIndex
4606*/
4608{
4609 if (index >= 0 && index < elementCount())
4610 {
4611 int row, col;
4612 indexToRowCol(index, row, col);
4613 return mElements.at(row).at(col);
4614 } else
4615 return nullptr;
4616}
4617
4618/*!
4619 \seebaseclassmethod
4620
4621 Note that the association of the linear \a index to the row/column based cells depends on the
4622 current setting of \ref setFillOrder.
4623
4624 \see rowColToIndex
4625*/
4627{
4628 if (QCPLayoutElement *el = elementAt(index))
4629 {
4630 releaseElement(el);
4631 int row, col;
4632 indexToRowCol(index, row, col);
4633 mElements[row][col] = nullptr;
4634 return el;
4635 } else
4636 {
4637 qDebug() << Q_FUNC_INFO << "Attempt to take invalid index:" << index;
4638 return nullptr;
4639 }
4640}
4641
4642/* inherits documentation from base class */
4644{
4645 if (element)
4646 {
4647 for (int i=0; i<elementCount(); ++i)
4648 {
4649 if (elementAt(i) == element)
4650 {
4651 takeAt(i);
4652 return true;
4653 }
4654 }
4655 qDebug() << Q_FUNC_INFO << "Element not in this layout, couldn't take";
4656 } else
4657 qDebug() << Q_FUNC_INFO << "Can't take nullptr element";
4658 return false;
4659}
4660
4661/* inherits documentation from base class */
4663{
4665 const int elCount = elementCount();
4666#if QT_VERSION >= QT_VERSION_CHECK(4, 7, 0)
4667 result.reserve(elCount);
4668#endif
4669 for (int i=0; i<elCount; ++i)
4670 result.append(elementAt(i));
4671 if (recursive)
4672 {
4673 for (int i=0; i<elCount; ++i)
4674 {
4675 if (result.at(i))
4676 result << result.at(i)->elements(recursive);
4677 }
4678 }
4679 return result;
4680}
4681
4682/*!
4683 Simplifies the layout by collapsing rows and columns which only contain empty cells.
4684*/
4686{
4687 // remove rows with only empty cells:
4688 for (int row=rowCount()-1; row>=0; --row)
4689 {
4690 bool hasElements = false;
4691 for (int col=0; col<columnCount(); ++col)
4692 {
4693 if (mElements.at(row).at(col))
4694 {
4695 hasElements = true;
4696 break;
4697 }
4698 }
4699 if (!hasElements)
4700 {
4701 mRowStretchFactors.removeAt(row);
4702 mElements.removeAt(row);
4703 if (mElements.isEmpty()) // removed last element, also remove stretch factor (wouldn't happen below because also columnCount changed to 0 now)
4704 mColumnStretchFactors.clear();
4705 }
4706 }
4707
4708 // remove columns with only empty cells:
4709 for (int col=columnCount()-1; col>=0; --col)
4710 {
4711 bool hasElements = false;
4712 for (int row=0; row<rowCount(); ++row)
4713 {
4714 if (mElements.at(row).at(col))
4715 {
4716 hasElements = true;
4717 break;
4718 }
4719 }
4720 if (!hasElements)
4721 {
4722 mColumnStretchFactors.removeAt(col);
4723 for (int row=0; row<rowCount(); ++row)
4724 mElements[row].removeAt(col);
4725 }
4726 }
4727}
4728
4729/* inherits documentation from base class */
4731{
4734 QSize result(0, 0);
4735 foreach (int w, minColWidths)
4736 result.rwidth() += w;
4737 foreach (int h, minRowHeights)
4738 result.rheight() += h;
4739 result.rwidth() += qMax(0, columnCount()-1) * mColumnSpacing;
4740 result.rheight() += qMax(0, rowCount()-1) * mRowSpacing;
4741 result.rwidth() += mMargins.left()+mMargins.right();
4742 result.rheight() += mMargins.top()+mMargins.bottom();
4743 return result;
4744}
4745
4746/* inherits documentation from base class */
4748{
4751
4752 QSize result(0, 0);
4753 foreach (int w, maxColWidths)
4754 result.setWidth(qMin(result.width()+w, QWIDGETSIZE_MAX));
4755 foreach (int h, maxRowHeights)
4756 result.setHeight(qMin(result.height()+h, QWIDGETSIZE_MAX));
4757 result.rwidth() += qMax(0, columnCount()-1) * mColumnSpacing;
4758 result.rheight() += qMax(0, rowCount()-1) * mRowSpacing;
4759 result.rwidth() += mMargins.left()+mMargins.right();
4760 result.rheight() += mMargins.top()+mMargins.bottom();
4761 if (result.height() > QWIDGETSIZE_MAX)
4762 result.setHeight(QWIDGETSIZE_MAX);
4763 if (result.width() > QWIDGETSIZE_MAX)
4764 result.setWidth(QWIDGETSIZE_MAX);
4765 return result;
4766}
4767
4768/*! \internal
4769
4770 Places the minimum column widths and row heights into \a minColWidths and \a minRowHeights
4771 respectively.
4772
4773 The minimum height of a row is the largest minimum height of any element's outer rect in that
4774 row. The minimum width of a column is the largest minimum width of any element's outer rect in
4775 that column.
4776
4777 This is a helper function for \ref updateLayout.
4778
4779 \see getMaximumRowColSizes
4780*/
4782{
4785 for (int row=0; row<rowCount(); ++row)
4786 {
4787 for (int col=0; col<columnCount(); ++col)
4788 {
4789 if (QCPLayoutElement *el = mElements.at(row).at(col))
4790 {
4792 if (minColWidths->at(col) < minSize.width())
4793 (*minColWidths)[col] = minSize.width();
4794 if (minRowHeights->at(row) < minSize.height())
4795 (*minRowHeights)[row] = minSize.height();
4796 }
4797 }
4798 }
4799}
4800
4801/*! \internal
4802
4803 Places the maximum column widths and row heights into \a maxColWidths and \a maxRowHeights
4804 respectively.
4805
4806 The maximum height of a row is the smallest maximum height of any element's outer rect in that
4807 row. The maximum width of a column is the smallest maximum width of any element's outer rect in
4808 that column.
4809
4810 This is a helper function for \ref updateLayout.
4811
4812 \see getMinimumRowColSizes
4813*/
4815{
4816 *maxColWidths = QVector<int>(columnCount(), QWIDGETSIZE_MAX);
4817 *maxRowHeights = QVector<int>(rowCount(), QWIDGETSIZE_MAX);
4818 for (int row=0; row<rowCount(); ++row)
4819 {
4820 for (int col=0; col<columnCount(); ++col)
4821 {
4822 if (QCPLayoutElement *el = mElements.at(row).at(col))
4823 {
4824 QSize maxSize = getFinalMaximumOuterSize(el);
4825 if (maxColWidths->at(col) > maxSize.width())
4826 (*maxColWidths)[col] = maxSize.width();
4827 if (maxRowHeights->at(row) > maxSize.height())
4828 (*maxRowHeights)[row] = maxSize.height();
4829 }
4830 }
4831 }
4832}
4833
4834
4835////////////////////////////////////////////////////////////////////////////////////////////////////
4836//////////////////// QCPLayoutInset
4837////////////////////////////////////////////////////////////////////////////////////////////////////
4838/*! \class QCPLayoutInset
4839 \brief A layout that places child elements aligned to the border or arbitrarily positioned
4840
4841 Elements are placed either aligned to the border or at arbitrary position in the area of the
4842 layout. Which placement applies is controlled with the \ref InsetPlacement (\ref
4843 setInsetPlacement).
4844
4845 Elements are added via \ref addElement(QCPLayoutElement *element, Qt::Alignment alignment) or
4846 addElement(QCPLayoutElement *element, const QRectF &rect). If the first method is used, the inset
4847 placement will default to \ref ipBorderAligned and the element will be aligned according to the
4848 \a alignment parameter. The second method defaults to \ref ipFree and allows placing elements at
4849 arbitrary position and size, defined by \a rect.
4850
4851 The alignment or rect can be set via \ref setInsetAlignment or \ref setInsetRect, respectively.
4852
4853 This is the layout that every QCPAxisRect has as \ref QCPAxisRect::insetLayout.
4854*/
4855
4856/* start documentation of inline functions */
4857
4858/*! \fn virtual void QCPLayoutInset::simplify()
4859
4860 The QCPInsetLayout does not need simplification since it can never have empty cells due to its
4861 linear index structure. This method does nothing.
4862*/
4863
4864/* end documentation of inline functions */
4865
4866/*!
4867 Creates an instance of QCPLayoutInset and sets default values.
4868*/
4872
4873QCPLayoutInset::~QCPLayoutInset()
4874{
4875 // clear all child layout elements. This is important because only the specific layouts know how
4876 // to handle removing elements (clear calls virtual removeAt method to do that).
4877 clear();
4878}
4879
4880/*!
4881 Returns the placement type of the element with the specified \a index.
4882*/
4884{
4885 if (elementAt(index))
4886 return mInsetPlacement.at(index);
4887 else
4888 {
4889 qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
4890 return ipFree;
4891 }
4892}
4893
4894/*!
4895 Returns the alignment of the element with the specified \a index. The alignment only has a
4896 meaning, if the inset placement (\ref setInsetPlacement) is \ref ipBorderAligned.
4897*/
4899{
4900 if (elementAt(index))
4901 return mInsetAlignment.at(index);
4902 else
4903 {
4904 qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
4905#if QT_VERSION < QT_VERSION_CHECK(5, 2, 0)
4906 return nullptr;
4907#else
4908 return {};
4909#endif
4910 }
4911}
4912
4913/*!
4914 Returns the rect of the element with the specified \a index. The rect only has a
4915 meaning, if the inset placement (\ref setInsetPlacement) is \ref ipFree.
4916*/
4918{
4919 if (elementAt(index))
4920 return mInsetRect.at(index);
4921 else
4922 {
4923 qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
4924 return {};
4925 }
4926}
4927
4928/*!
4929 Sets the inset placement type of the element with the specified \a index to \a placement.
4930
4931 \see InsetPlacement
4932*/
4934{
4935 if (elementAt(index))
4936 mInsetPlacement[index] = placement;
4937 else
4938 qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
4939}
4940
4941/*!
4942 If the inset placement (\ref setInsetPlacement) is \ref ipBorderAligned, this function
4943 is used to set the alignment of the element with the specified \a index to \a alignment.
4944
4945 \a alignment is an or combination of the following alignment flags: Qt::AlignLeft,
4946 Qt::AlignHCenter, Qt::AlighRight, Qt::AlignTop, Qt::AlignVCenter, Qt::AlignBottom. Any other
4947 alignment flags will be ignored.
4948*/
4950{
4951 if (elementAt(index))
4952 mInsetAlignment[index] = alignment;
4953 else
4954 qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
4955}
4956
4957/*!
4958 If the inset placement (\ref setInsetPlacement) is \ref ipFree, this function is used to set the
4959 position and size of the element with the specified \a index to \a rect.
4960
4961 \a rect is given in fractions of the whole inset layout rect. So an inset with rect (0, 0, 1, 1)
4962 will span the entire layout. An inset with rect (0.6, 0.1, 0.35, 0.35) will be in the top right
4963 corner of the layout, with 35% width and height of the parent layout.
4964
4965 Note that the minimum and maximum sizes of the embedded element (\ref
4966 QCPLayoutElement::setMinimumSize, \ref QCPLayoutElement::setMaximumSize) are enforced.
4968void QCPLayoutInset::setInsetRect(int index, const QRectF &rect)
4969{
4970 if (elementAt(index))
4971 mInsetRect[index] = rect;
4972 else
4973 qDebug() << Q_FUNC_INFO << "Invalid element index:" << index;
4974}
4975
4976/* inherits documentation from base class */
4978{
4979 for (int i=0; i<mElements.size(); ++i)
4980 {
4981 QCPLayoutElement *el = mElements.at(i);
4985 if (mInsetPlacement.at(i) == ipFree)
4986 {
4987 insetRect = QRect(int( rect().x()+rect().width()*mInsetRect.at(i).x() ),
4988 int( rect().y()+rect().height()*mInsetRect.at(i).y() ),
4989 int( rect().width()*mInsetRect.at(i).width() ),
4990 int( rect().height()*mInsetRect.at(i).height() ));
4991 if (insetRect.size().width() < finalMinSize.width())
4993 if (insetRect.size().height() < finalMinSize.height())
4995 if (insetRect.size().width() > finalMaxSize.width())
4997 if (insetRect.size().height() > finalMaxSize.height())
4999 } else if (mInsetPlacement.at(i) == ipBorderAligned)
5000 {
5002 Qt::Alignment al = mInsetAlignment.at(i);
5004 else if (al.testFlag(Qt::AlignRight)) insetRect.moveRight(rect().x()+rect().width());
5005 else insetRect.moveLeft(int( rect().x()+rect().width()*0.5-finalMinSize.width()*0.5 )); // default to Qt::AlignHCenter
5007 else if (al.testFlag(Qt::AlignBottom)) insetRect.moveBottom(rect().y()+rect().height());
5008 else insetRect.moveTop(int( rect().y()+rect().height()*0.5-finalMinSize.height()*0.5 )); // default to Qt::AlignVCenter
5009 }
5010 mElements.at(i)->setOuterRect(insetRect);
5011 }
5012}
5013
5014/* inherits documentation from base class */
5016{
5017 return mElements.size();
5018}
5019
5020/* inherits documentation from base class */
5022{
5023 if (index >= 0 && index < mElements.size())
5024 return mElements.at(index);
5025 else
5026 return nullptr;
5027}
5028
5029/* inherits documentation from base class */
5031{
5032 if (QCPLayoutElement *el = elementAt(index))
5033 {
5034 releaseElement(el);
5035 mElements.removeAt(index);
5036 mInsetPlacement.removeAt(index);
5037 mInsetAlignment.removeAt(index);
5038 mInsetRect.removeAt(index);
5039 return el;
5040 } else
5041 {
5042 qDebug() << Q_FUNC_INFO << "Attempt to take invalid index:" << index;
5043 return nullptr;
5044 }
5045}
5046
5047/* inherits documentation from base class */
5049{
5050 if (element)
5051 {
5052 for (int i=0; i<elementCount(); ++i)
5053 {
5054 if (elementAt(i) == element)
5055 {
5056 takeAt(i);
5057 return true;
5058 }
5059 }
5060 qDebug() << Q_FUNC_INFO << "Element not in this layout, couldn't take";
5061 } else
5062 qDebug() << Q_FUNC_INFO << "Can't take nullptr element";
5063 return false;
5064}
5065
5066/*!
5067 The inset layout is sensitive to events only at areas where its (visible) child elements are
5068 sensitive. If the selectTest method of any of the child elements returns a positive number for \a
5069 pos, this method returns a value corresponding to 0.99 times the parent plot's selection
5070 tolerance. The inset layout is not selectable itself by default. So if \a onlySelectable is true,
5071 -1.0 is returned.
5072
5073 See \ref QCPLayerable::selectTest for a general explanation of this virtual method.
5074*/
5075double QCPLayoutInset::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
5076{
5077 Q_UNUSED(details)
5078 if (onlySelectable)
5079 return -1;
5080
5081 foreach (QCPLayoutElement *el, mElements)
5082 {
5083 // inset layout shall only return positive selectTest, if actually an inset object is at pos
5084 // else it would block the entire underlying QCPAxisRect with its surface.
5085 if (el->realVisibility() && el->selectTest(pos, onlySelectable) >= 0)
5086 return mParentPlot->selectionTolerance()*0.99;
5087 }
5088 return -1;
5089}
5090
5091/*!
5092 Adds the specified \a element to the layout as an inset aligned at the border (\ref
5093 setInsetAlignment is initialized with \ref ipBorderAligned). The alignment is set to \a
5094 alignment.
5095
5096 \a alignment is an or combination of the following alignment flags: Qt::AlignLeft,
5097 Qt::AlignHCenter, Qt::AlighRight, Qt::AlignTop, Qt::AlignVCenter, Qt::AlignBottom. Any other
5098 alignment flags will be ignored.
5099
5100 \see addElement(QCPLayoutElement *element, const QRectF &rect)
5101*/
5103{
5104 if (element)
5105 {
5106 if (element->layout()) // remove from old layout first
5107 element->layout()->take(element);
5108 mElements.append(element);
5109 mInsetPlacement.append(ipBorderAligned);
5110 mInsetAlignment.append(alignment);
5111 mInsetRect.append(QRectF(0.6, 0.6, 0.4, 0.4));
5112 adoptElement(element);
5113 } else
5114 qDebug() << Q_FUNC_INFO << "Can't add nullptr element";
5115}
5116
5117/*!
5118 Adds the specified \a element to the layout as an inset with free positioning/sizing (\ref
5119 setInsetAlignment is initialized with \ref ipFree). The position and size is set to \a
5120 rect.
5121
5122 \a rect is given in fractions of the whole inset layout rect. So an inset with rect (0, 0, 1, 1)
5123 will span the entire layout. An inset with rect (0.6, 0.1, 0.35, 0.35) will be in the top right
5124 corner of the layout, with 35% width and height of the parent layout.
5125
5126 \see addElement(QCPLayoutElement *element, Qt::Alignment alignment)
5127*/
5129{
5130 if (element)
5131 {
5132 if (element->layout()) // remove from old layout first
5133 element->layout()->take(element);
5134 mElements.append(element);
5135 mInsetPlacement.append(ipFree);
5136 mInsetAlignment.append(Qt::AlignRight|Qt::AlignTop);
5137 mInsetRect.append(rect);
5138 adoptElement(element);
5139 } else
5140 qDebug() << Q_FUNC_INFO << "Can't add nullptr element";
5141}
5142/* end of 'src/layout.cpp' */
5143
5144
5145/* including file 'src/lineending.cpp' */
5146/* modified 2021-03-29T02:30:44, size 11189 */
5147
5148////////////////////////////////////////////////////////////////////////////////////////////////////
5149//////////////////// QCPLineEnding
5150////////////////////////////////////////////////////////////////////////////////////////////////////
5151
5152/*! \class QCPLineEnding
5153 \brief Handles the different ending decorations for line-like items
5154
5155 \image html QCPLineEnding.png "The various ending styles currently supported"
5156
5157 For every ending a line-like item has, an instance of this class exists. For example, QCPItemLine
5158 has two endings which can be set with QCPItemLine::setHead and QCPItemLine::setTail.
5159
5160 The styles themselves are defined via the enum QCPLineEnding::EndingStyle. Most decorations can
5161 be modified regarding width and length, see \ref setWidth and \ref setLength. The direction of
5162 the ending decoration (e.g. direction an arrow is pointing) is controlled by the line-like item.
5163 For example, when both endings of a QCPItemLine are set to be arrows, they will point to opposite
5164 directions, e.g. "outward". This can be changed by \ref setInverted, which would make the
5165 respective arrow point inward.
5166
5167 Note that due to the overloaded QCPLineEnding constructor, you may directly specify a
5168 QCPLineEnding::EndingStyle where actually a QCPLineEnding is expected, e.g.
5169 \snippet documentation/doc-code-snippets/mainwindow.cpp qcplineending-sethead
5170*/
5171
5172/*!
5173 Creates a QCPLineEnding instance with default values (style \ref esNone).
5174*/
5176 mStyle(esNone),
5177 mWidth(8),
5178 mLength(10),
5179 mInverted(false)
5180{
5181}
5182
5183/*!
5184 Creates a QCPLineEnding instance with the specified values.
5185*/
5186QCPLineEnding::QCPLineEnding(QCPLineEnding::EndingStyle style, double width, double length, bool inverted) :
5187 mStyle(style),
5188 mWidth(width),
5189 mLength(length),
5190 mInverted(inverted)
5191{
5192}
5193
5194/*!
5195 Sets the style of the ending decoration.
5196*/
5198{
5199 mStyle = style;
5200}
5201
5202/*!
5203 Sets the width of the ending decoration, if the style supports it. On arrows, for example, the
5204 width defines the size perpendicular to the arrow's pointing direction.
5205
5206 \see setLength
5207*/
5208void QCPLineEnding::setWidth(double width)
5209{
5210 mWidth = width;
5211}
5212
5213/*!
5214 Sets the length of the ending decoration, if the style supports it. On arrows, for example, the
5215 length defines the size in pointing direction.
5216
5217 \see setWidth
5218*/
5219void QCPLineEnding::setLength(double length)
5220{
5221 mLength = length;
5222}
5223
5224/*!
5225 Sets whether the ending decoration shall be inverted. For example, an arrow decoration will point
5226 inward when \a inverted is set to true.
5227
5228 Note that also the \a width direction is inverted. For symmetrical ending styles like arrows or
5229 discs, this doesn't make a difference. However, asymmetric styles like \ref esHalfBar are
5230 affected by it, which can be used to control to which side the half bar points to.
5231*/
5233{
5234 mInverted = inverted;
5235}
5236
5237/*! \internal
5238
5239 Returns the maximum pixel radius the ending decoration might cover, starting from the position
5240 the decoration is drawn at (typically a line ending/\ref QCPItemPosition of an item).
5241
5242 This is relevant for clipping. Only omit painting of the decoration when the position where the
5243 decoration is supposed to be drawn is farther away from the clipping rect than the returned
5244 distance.
5245*/
5247{
5248 switch (mStyle)
5249 {
5250 case esNone:
5251 return 0;
5252
5253 case esFlatArrow:
5254 case esSpikeArrow:
5255 case esLineArrow:
5256 case esSkewedBar:
5257 return qSqrt(mWidth*mWidth+mLength*mLength); // items that have width and length
5258
5259 case esDisc:
5260 case esSquare:
5261 case esDiamond:
5262 case esBar:
5263 case esHalfBar:
5264 return mWidth*1.42; // items that only have a width -> width*sqrt(2)
5265
5266 }
5267 return 0;
5268}
5269
5270/*!
5271 Starting from the origin of this line ending (which is style specific), returns the length
5272 covered by the line ending symbol, in backward direction.
5273
5274 For example, the \ref esSpikeArrow has a shorter real length than a \ref esFlatArrow, even if
5275 both have the same \ref setLength value, because the spike arrow has an inward curved back, which
5276 reduces the length along its center axis (the drawing origin for arrows is at the tip).
5277
5278 This function is used for precise, style specific placement of line endings, for example in
5279 QCPAxes.
5280*/
5282{
5283 switch (mStyle)
5284 {
5285 case esNone:
5286 case esLineArrow:
5287 case esSkewedBar:
5288 case esBar:
5289 case esHalfBar:
5290 return 0;
5291
5292 case esFlatArrow:
5293 return mLength;
5294
5295 case esDisc:
5296 case esSquare:
5297 case esDiamond:
5298 return mWidth*0.5;
5299
5300 case esSpikeArrow:
5301 return mLength*0.8;
5302 }
5303 return 0;
5304}
5305
5306/*! \internal
5307
5308 Draws the line ending with the specified \a painter at the position \a pos. The direction of the
5309 line ending is controlled with \a dir.
5310*/
5311void QCPLineEnding::draw(QCPPainter *painter, const QCPVector2D &pos, const QCPVector2D &dir) const
5312{
5313 if (mStyle == esNone)
5314 return;
5315
5316 QCPVector2D lengthVec = dir.normalized() * mLength*(mInverted ? -1 : 1);
5317 if (lengthVec.isNull())
5318 lengthVec = QCPVector2D(1, 0);
5319 QCPVector2D widthVec = dir.normalized().perpendicular() * mWidth*0.5*(mInverted ? -1 : 1);
5320
5321 QPen penBackup = painter->pen();
5322 QBrush brushBackup = painter->brush();
5324 miterPen.setJoinStyle(Qt::MiterJoin); // to make arrow heads spikey
5325 QBrush brush(painter->pen().color(), Qt::SolidPattern);
5326 switch (mStyle)
5327 {
5328 case esNone: break;
5329 case esFlatArrow:
5330 {
5331 QPointF points[3] = {pos.toPointF(),
5332 (pos-lengthVec+widthVec).toPointF(),
5333 (pos-lengthVec-widthVec).toPointF()
5334 };
5335 painter->setPen(miterPen);
5336 painter->setBrush(brush);
5337 painter->drawConvexPolygon(points, 3);
5338 painter->setBrush(brushBackup);
5339 painter->setPen(penBackup);
5340 break;
5341 }
5342 case esSpikeArrow:
5343 {
5344 QPointF points[4] = {pos.toPointF(),
5345 (pos-lengthVec+widthVec).toPointF(),
5346 (pos-lengthVec*0.8).toPointF(),
5347 (pos-lengthVec-widthVec).toPointF()
5348 };
5349 painter->setPen(miterPen);
5350 painter->setBrush(brush);
5351 painter->drawConvexPolygon(points, 4);
5352 painter->setBrush(brushBackup);
5353 painter->setPen(penBackup);
5354 break;
5355 }
5356 case esLineArrow:
5357 {
5358 QPointF points[3] = {(pos-lengthVec+widthVec).toPointF(),
5359 pos.toPointF(),
5360 (pos-lengthVec-widthVec).toPointF()
5361 };
5362 painter->setPen(miterPen);
5363 painter->drawPolyline(points, 3);
5364 painter->setPen(penBackup);
5365 break;
5366 }
5367 case esDisc:
5368 {
5369 painter->setBrush(brush);
5370 painter->drawEllipse(pos.toPointF(), mWidth*0.5, mWidth*0.5);
5371 painter->setBrush(brushBackup);
5372 break;
5373 }
5374 case esSquare:
5375 {
5376 QCPVector2D widthVecPerp = widthVec.perpendicular();
5377 QPointF points[4] = {(pos-widthVecPerp+widthVec).toPointF(),
5378 (pos-widthVecPerp-widthVec).toPointF(),
5379 (pos+widthVecPerp-widthVec).toPointF(),
5380 (pos+widthVecPerp+widthVec).toPointF()
5381 };
5382 painter->setPen(miterPen);
5383 painter->setBrush(brush);
5384 painter->drawConvexPolygon(points, 4);
5385 painter->setBrush(brushBackup);
5386 painter->setPen(penBackup);
5387 break;
5388 }
5389 case esDiamond:
5390 {
5391 QCPVector2D widthVecPerp = widthVec.perpendicular();
5392 QPointF points[4] = {(pos-widthVecPerp).toPointF(),
5393 (pos-widthVec).toPointF(),
5394 (pos+widthVecPerp).toPointF(),
5395 (pos+widthVec).toPointF()
5396 };
5397 painter->setPen(miterPen);
5398 painter->setBrush(brush);
5399 painter->drawConvexPolygon(points, 4);
5400 painter->setBrush(brushBackup);
5401 painter->setPen(penBackup);
5402 break;
5403 }
5404 case esBar:
5405 {
5406 painter->drawLine((pos+widthVec).toPointF(), (pos-widthVec).toPointF());
5407 break;
5408 }
5409 case esHalfBar:
5410 {
5411 painter->drawLine((pos+widthVec).toPointF(), pos.toPointF());
5412 break;
5413 }
5414 case esSkewedBar:
5415 {
5417 if (!qFuzzyIsNull(painter->pen().widthF()) || painter->modes().testFlag(QCPPainter::pmNonCosmetic))
5418 shift = dir.normalized()*qMax(qreal(1.0), painter->pen().widthF())*qreal(0.5);
5419 // if drawing with thick (non-cosmetic) pen, shift bar a little in line direction to prevent line from sticking through bar slightly
5420 painter->drawLine((pos+widthVec+lengthVec*0.2*(mInverted?-1:1)+shift).toPointF(),
5421 (pos-widthVec-lengthVec*0.2*(mInverted?-1:1)+shift).toPointF());
5422 break;
5423 }
5424 }
5425}
5426
5427/*! \internal
5428 \overload
5429
5430 Draws the line ending. The direction is controlled with the \a angle parameter in radians.
5431*/
5432void QCPLineEnding::draw(QCPPainter *painter, const QCPVector2D &pos, double angle) const
5433{
5434 draw(painter, pos, QCPVector2D(qCos(angle), qSin(angle)));
5435}
5436/* end of 'src/lineending.cpp' */
5437
5438
5439/* including file 'src/axis/labelpainter.cpp' */
5440/* modified 2021-03-29T02:30:44, size 27296 */
5441
5442
5443////////////////////////////////////////////////////////////////////////////////////////////////////
5444//////////////////// QCPLabelPainterPrivate
5445////////////////////////////////////////////////////////////////////////////////////////////////////
5446
5447/*! \class QCPLabelPainterPrivate
5448
5449 \internal
5450 \brief (Private)
5451
5452 This is a private class and not part of the public QCustomPlot interface.
5453
5454*/
5455
5456const QChar QCPLabelPainterPrivate::SymbolDot(183);
5457const QChar QCPLabelPainterPrivate::SymbolCross(215);
5458
5459/*!
5460 Constructs a QCPLabelPainterPrivate instance. Make sure to not create a new
5461 instance on every redraw, to utilize the caching mechanisms.
5462
5463 the \a parentPlot does not take ownership of the label painter. Make sure
5464 to delete it appropriately.
5465*/
5467 mAnchorMode(amRectangular),
5468 mAnchorSide(asLeft),
5469 mAnchorReferenceType(artNormal),
5470 mColor(Qt::black),
5471 mPadding(0),
5472 mRotation(0),
5473 mSubstituteExponent(true),
5474 mMultiplicationSymbol(QChar(215)),
5475 mAbbreviateDecimalPowers(false),
5476 mParentPlot(parentPlot),
5477 mLabelCache(16)
5478{
5479 analyzeFontMetrics();
5480}
5481
5482QCPLabelPainterPrivate::~QCPLabelPainterPrivate()
5483{
5484}
5485
5486void QCPLabelPainterPrivate::setAnchorSide(AnchorSide side)
5487{
5488 mAnchorSide = side;
5489}
5490
5491void QCPLabelPainterPrivate::setAnchorMode(AnchorMode mode)
5492{
5493 mAnchorMode = mode;
5494}
5495
5496void QCPLabelPainterPrivate::setAnchorReference(const QPointF &pixelPoint)
5497{
5498 mAnchorReference = pixelPoint;
5499}
5500
5501void QCPLabelPainterPrivate::setAnchorReferenceType(AnchorReferenceType type)
5502{
5503 mAnchorReferenceType = type;
5504}
5505
5506void QCPLabelPainterPrivate::setFont(const QFont &font)
5507{
5508 if (mFont != font)
5509 {
5510 mFont = font;
5511 analyzeFontMetrics();
5512 }
5513}
5514
5515void QCPLabelPainterPrivate::setColor(const QColor &color)
5516{
5517 mColor = color;
5518}
5519
5520void QCPLabelPainterPrivate::setPadding(int padding)
5521{
5522 mPadding = padding;
5523}
5524
5525void QCPLabelPainterPrivate::setRotation(double rotation)
5526{
5527 mRotation = qBound(-90.0, rotation, 90.0);
5528}
5529
5530void QCPLabelPainterPrivate::setSubstituteExponent(bool enabled)
5531{
5532 mSubstituteExponent = enabled;
5533}
5534
5535void QCPLabelPainterPrivate::setMultiplicationSymbol(QChar symbol)
5536{
5537 mMultiplicationSymbol = symbol;
5538}
5539
5540void QCPLabelPainterPrivate::setAbbreviateDecimalPowers(bool enabled)
5541{
5542 mAbbreviateDecimalPowers = enabled;
5543}
5544
5545void QCPLabelPainterPrivate::setCacheSize(int labelCount)
5546{
5547 mLabelCache.setMaxCost(labelCount);
5548}
5549
5550int QCPLabelPainterPrivate::cacheSize() const
5551{
5552 return mLabelCache.maxCost();
5553}
5554
5555void QCPLabelPainterPrivate::drawTickLabel(QCPPainter *painter, const QPointF &tickPos, const QString &text)
5556{
5557 double realRotation = mRotation;
5558
5559 AnchorSide realSide = mAnchorSide;
5560 // for circular axes, the anchor side is determined depending on the quadrant of tickPos with respect to mCircularReference
5561 if (mAnchorMode == amSkewedUpright)
5562 {
5563 realSide = skewedAnchorSide(tickPos, 0.2, 0.3);
5564 } else if (mAnchorMode == amSkewedRotated) // in this mode every label is individually rotated to match circle tangent
5565 {
5566 realSide = skewedAnchorSide(tickPos, 0, 0);
5567 realRotation += QCPVector2D(tickPos-mAnchorReference).angle()/M_PI*180.0;
5568 if (realRotation > 90) realRotation -= 180;
5569 else if (realRotation < -90) realRotation += 180;
5570 }
5571
5572 realSide = rotationCorrectedSide(realSide, realRotation); // rotation angles may change the true anchor side of the label
5573 drawLabelMaybeCached(painter, mFont, mColor, getAnchorPos(tickPos), realSide, realRotation, text);
5574}
5575
5576/*! \internal
5577
5578 Returns the size ("margin" in QCPAxisRect context, so measured perpendicular to the axis backbone
5579 direction) needed to fit the axis.
5580*/
5581/* TODO: needed?
5582int QCPLabelPainterPrivate::size() const
5583{
5584 int result = 0;
5585 // get length of tick marks pointing outwards:
5586 if (!tickPositions.isEmpty())
5587 result += qMax(0, qMax(tickLengthOut, subTickLengthOut));
5588
5589 // calculate size of tick labels:
5590 if (tickLabelSide == QCPAxis::lsOutside)
5591 {
5592 QSize tickLabelsSize(0, 0);
5593 if (!tickLabels.isEmpty())
5594 {
5595 for (int i=0; i<tickLabels.size(); ++i)
5596 getMaxTickLabelSize(tickLabelFont, tickLabels.at(i), &tickLabelsSize);
5597 result += QCPAxis::orientation(type) == Qt::Horizontal ? tickLabelsSize.height() : tickLabelsSize.width();
5598 result += tickLabelPadding;
5599 }
5600 }
5601
5602 // calculate size of axis label (only height needed, because left/right labels are rotated by 90 degrees):
5603 if (!label.isEmpty())
5604 {
5605 QFontMetrics fontMetrics(labelFont);
5606 QRect bounds;
5607 bounds = fontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip | Qt::AlignHCenter | Qt::AlignVCenter, label);
5608 result += bounds.height() + labelPadding;
5609 }
5610
5611 return result;
5612}
5613*/
5614
5615/*! \internal
5616
5617 Clears the internal label cache. Upon the next \ref draw, all labels will be created new. This
5618 method is called automatically if any parameters have changed that invalidate the cached labels,
5619 such as font, color, etc. Usually you won't need to call this method manually.
5620*/
5622{
5623 mLabelCache.clear();
5624}
5625
5626/*! \internal
5627
5628 Returns a hash that allows uniquely identifying whether the label parameters have changed such
5629 that the cached labels must be refreshed (\ref clearCache). It is used in \ref draw. If the
5630 return value of this method hasn't changed since the last redraw, the respective label parameters
5631 haven't changed and cached labels may be used.
5632*/
5634{
5635 QByteArray result;
5636 result.append(QByteArray::number(mParentPlot->bufferDevicePixelRatio()));
5637 result.append(QByteArray::number(mRotation));
5638 //result.append(QByteArray::number((int)tickLabelSide)); TODO: check whether this is really a cache-invalidating property
5639 result.append(QByteArray::number((int)mSubstituteExponent));
5640 result.append(QString(mMultiplicationSymbol).toUtf8());
5641 result.append(mColor.name().toLatin1()+QByteArray::number(mColor.alpha(), 16));
5642 result.append(mFont.toString().toLatin1());
5643 return result;
5644}
5645
5646/*! \internal
5647
5648 Draws a single tick label with the provided \a painter, utilizing the internal label cache to
5649 significantly speed up drawing of labels that were drawn in previous calls. The tick label is
5650 always bound to an axis, the distance to the axis is controllable via \a distanceToAxis in
5651 pixels. The pixel position in the axis direction is passed in the \a position parameter. Hence
5652 for the bottom axis, \a position would indicate the horizontal pixel position (not coordinate),
5653 at which the label should be drawn.
5654
5655 In order to later draw the axis label in a place that doesn't overlap with the tick labels, the
5656 largest tick label size is needed. This is acquired by passing a \a tickLabelsSize to the \ref
5657 drawTickLabel calls during the process of drawing all tick labels of one axis. In every call, \a
5658 tickLabelsSize is expanded, if the drawn label exceeds the value \a tickLabelsSize currently
5659 holds.
5660
5661 The label is drawn with the font and pen that are currently set on the \a painter. To draw
5662 superscripted powers, the font is temporarily made smaller by a fixed factor (see \ref
5663 getTickLabelData).
5664*/
5665void QCPLabelPainterPrivate::drawLabelMaybeCached(QCPPainter *painter, const QFont &font, const QColor &color, const QPointF &pos, AnchorSide side, double rotation, const QString &text)
5666{
5667 // warning: if you change anything here, also adapt getMaxTickLabelSize() accordingly!
5668 if (text.isEmpty()) return;
5670
5671 if (mParentPlot->plottingHints().testFlag(QCP::phCacheLabels) && !painter->modes().testFlag(QCPPainter::pmNoCaching)) // label caching enabled
5672 {
5673 QByteArray key = cacheKey(text, color, rotation, side);
5674 CachedLabel *cachedLabel = mLabelCache.take(QString::fromUtf8(key)); // attempt to take label from cache (don't use object() because we want ownership/prevent deletion during our operations, we re-insert it afterwards)
5675 if (!cachedLabel) // no cached label existed, create it
5676 {
5677 LabelData labelData = getTickLabelData(font, color, rotation, side, text);
5679 }
5680 // if label would be partly clipped by widget border on sides, don't draw it (only for outside tick labels):
5681 bool labelClippedByBorder = false;
5682 /*
5683 if (tickLabelSide == QCPAxis::lsOutside)
5684 {
5685 if (QCPAxis::orientation(type) == Qt::Horizontal)
5686 labelClippedByBorder = labelAnchor.x()+cachedLabel->offset.x()+cachedLabel->pixmap.width()/mParentPlot->bufferDevicePixelRatio() > viewportRect.right() || labelAnchor.x()+cachedLabel->offset.x() < viewportRect.left();
5687 else
5688 labelClippedByBorder = labelAnchor.y()+cachedLabel->offset.y()+cachedLabel->pixmap.height()/mParentPlot->bufferDevicePixelRatio() > viewportRect.bottom() || labelAnchor.y()+cachedLabel->offset.y() < viewportRect.top();
5689 }
5690 */
5692 {
5693 painter->drawPixmap(pos+cachedLabel->offset, cachedLabel->pixmap);
5694 finalSize = cachedLabel->pixmap.size()/mParentPlot->bufferDevicePixelRatio(); // TODO: collect this in a member rect list?
5695 }
5696 mLabelCache.insert(QString::fromUtf8(key), cachedLabel);
5697 } else // label caching disabled, draw text directly on surface:
5698 {
5699 LabelData labelData = getTickLabelData(font, color, rotation, side, text);
5700 // if label would be partly clipped by widget border on sides, don't draw it (only for outside tick labels):
5701 bool labelClippedByBorder = false;
5702 /*
5703 if (tickLabelSide == QCPAxis::lsOutside)
5704 {
5705 if (QCPAxis::orientation(type) == Qt::Horizontal)
5706 labelClippedByBorder = finalPosition.x()+(labelData.rotatedTotalBounds.width()+labelData.rotatedTotalBounds.left()) > viewportRect.right() || finalPosition.x()+labelData.rotatedTotalBounds.left() < viewportRect.left();
5707 else
5708 labelClippedByBorder = finalPosition.y()+(labelData.rotatedTotalBounds.height()+labelData.rotatedTotalBounds.top()) > viewportRect.bottom() || finalPosition.y()+labelData.rotatedTotalBounds.top() < viewportRect.top();
5709 }
5710 */
5712 {
5713 drawText(painter, pos, labelData);
5714 finalSize = labelData.rotatedTotalBounds.size();
5715 }
5716 }
5717 /*
5718 // expand passed tickLabelsSize if current tick label is larger:
5719 if (finalSize.width() > tickLabelsSize->width())
5720 tickLabelsSize->setWidth(finalSize.width());
5721 if (finalSize.height() > tickLabelsSize->height())
5722 tickLabelsSize->setHeight(finalSize.height());
5723 */
5724}
5725
5726QPointF QCPLabelPainterPrivate::getAnchorPos(const QPointF &tickPos)
5727{
5728 switch (mAnchorMode)
5729 {
5730 case amRectangular:
5731 {
5732 switch (mAnchorSide)
5733 {
5734 case asLeft: return tickPos+QPointF(mPadding, 0);
5735 case asRight: return tickPos+QPointF(-mPadding, 0);
5736 case asTop: return tickPos+QPointF(0, mPadding);
5737 case asBottom: return tickPos+QPointF(0, -mPadding);
5738 case asTopLeft: return tickPos+QPointF(mPadding*M_SQRT1_2, mPadding*M_SQRT1_2);
5739 case asTopRight: return tickPos+QPointF(-mPadding*M_SQRT1_2, mPadding*M_SQRT1_2);
5740 case asBottomRight: return tickPos+QPointF(-mPadding*M_SQRT1_2, -mPadding*M_SQRT1_2);
5741 case asBottomLeft: return tickPos+QPointF(mPadding*M_SQRT1_2, -mPadding*M_SQRT1_2);
5742 }
5743 break; // To appease the compiler. All possible values in above case.
5744 }
5745 case amSkewedUpright:
5746 case amSkewedRotated:
5747 {
5748 QCPVector2D anchorNormal(tickPos-mAnchorReference);
5749 if (mAnchorReferenceType == artTangent)
5750 anchorNormal = anchorNormal.perpendicular();
5751 anchorNormal.normalize();
5752 return tickPos+(anchorNormal*mPadding).toPointF();
5753 }
5754 }
5755 return tickPos;
5756}
5757
5758/*! \internal
5759
5760 This is a \ref placeTickLabel helper function.
5761
5762 Draws the tick label specified in \a labelData with \a painter at the pixel positions \a x and \a
5763 y. This function is used by \ref placeTickLabel to create new tick labels for the cache, or to
5764 directly draw the labels on the QCustomPlot surface when label caching is disabled, i.e. when
5765 QCP::phCacheLabels plotting hint is not set.
5766*/
5767void QCPLabelPainterPrivate::drawText(QCPPainter *painter, const QPointF &pos, const LabelData &labelData) const
5768{
5769 // backup painter settings that we're about to change:
5770 QTransform oldTransform = painter->transform();
5771 QFont oldFont = painter->font();
5772 QPen oldPen = painter->pen();
5773
5774 // transform painter to position/rotation:
5775 painter->translate(pos);
5776 painter->setTransform(labelData.transform, true);
5777
5778 // draw text:
5779 painter->setFont(labelData.baseFont);
5780 painter->setPen(QPen(labelData.color));
5781 if (!labelData.expPart.isEmpty()) // use superscripted exponent typesetting
5782 {
5783 painter->drawText(0, 0, 0, 0, Qt::TextDontClip, labelData.basePart);
5784 if (!labelData.suffixPart.isEmpty())
5785 painter->drawText(labelData.baseBounds.width()+1+labelData.expBounds.width(), 0, 0, 0, Qt::TextDontClip, labelData.suffixPart);
5786 painter->setFont(labelData.expFont);
5787 painter->drawText(labelData.baseBounds.width()+1, 0, labelData.expBounds.width(), labelData.expBounds.height(), Qt::TextDontClip, labelData.expPart);
5788 } else
5789 {
5790 painter->drawText(0, 0, labelData.totalBounds.width(), labelData.totalBounds.height(), Qt::TextDontClip | Qt::AlignHCenter, labelData.basePart);
5791 }
5792
5793 /* Debug code to draw label bounding boxes, baseline, and capheight
5794 painter->save();
5795 painter->setPen(QPen(QColor(0, 0, 0, 150)));
5796 painter->drawRect(labelData.totalBounds);
5797 const int baseline = labelData.totalBounds.height()-mLetterDescent;
5798 painter->setPen(QPen(QColor(255, 0, 0, 150)));
5799 painter->drawLine(QLineF(0, baseline, labelData.totalBounds.width(), baseline));
5800 painter->setPen(QPen(QColor(0, 0, 255, 150)));
5801 painter->drawLine(QLineF(0, baseline-mLetterCapHeight, labelData.totalBounds.width(), baseline-mLetterCapHeight));
5802 painter->restore();
5803 */
5804
5805 // reset painter settings to what it was before:
5806 painter->setTransform(oldTransform);
5807 painter->setFont(oldFont);
5808 painter->setPen(oldPen);
5809}
5810
5811/*! \internal
5812
5813 This is a \ref placeTickLabel helper function.
5814
5815 Transforms the passed \a text and \a font to a tickLabelData structure that can then be further
5816 processed by \ref getTickLabelDrawOffset and \ref drawTickLabel. It splits the text into base and
5817 exponent if necessary (member substituteExponent) and calculates appropriate bounding boxes.
5818*/
5819QCPLabelPainterPrivate::LabelData QCPLabelPainterPrivate::getTickLabelData(const QFont &font, const QColor &color, double rotation, AnchorSide side, const QString &text) const
5820{
5821 LabelData result;
5822 result.rotation = rotation;
5823 result.side = side;
5824 result.color = color;
5825
5826 // determine whether beautiful decimal powers should be used
5827 bool useBeautifulPowers = false;
5828 int ePos = -1; // first index of exponent part, text before that will be basePart, text until eLast will be expPart
5829 int eLast = -1; // last index of exponent part, rest of text after this will be suffixPart
5830 if (mSubstituteExponent)
5831 {
5832 ePos = text.indexOf(QLatin1Char('e'));
5833 if (ePos > 0 && text.at(ePos-1).isDigit())
5834 {
5835 eLast = ePos;
5836 while (eLast+1 < text.size() && (text.at(eLast+1) == QLatin1Char('+') || text.at(eLast+1) == QLatin1Char('-') || text.at(eLast+1).isDigit()))
5837 ++eLast;
5838 if (eLast > ePos) // only if also to right of 'e' is a digit/+/- interpret it as beautifiable power
5839 useBeautifulPowers = true;
5840 }
5841 }
5842
5843 // calculate text bounding rects and do string preparation for beautiful decimal powers:
5844 result.baseFont = font;
5845 if (result.baseFont.pointSizeF() > 0) // might return -1 if specified with setPixelSize, in that case we can't do correction in next line
5846 result.baseFont.setPointSizeF(result.baseFont.pointSizeF()+0.05); // QFontMetrics.boundingRect has a bug for exact point sizes that make the results oscillate due to internal rounding
5847
5848 QFontMetrics baseFontMetrics(result.baseFont);
5850 {
5851 // split text into parts of number/symbol that will be drawn normally and part that will be drawn as exponent:
5852 result.basePart = text.left(ePos);
5853 result.suffixPart = text.mid(eLast+1); // also drawn normally but after exponent
5854 // in log scaling, we want to turn "1*10^n" into "10^n", else add multiplication sign and decimal base:
5855 if (mAbbreviateDecimalPowers && result.basePart == QLatin1String("1"))
5856 result.basePart = QLatin1String("10");
5857 else
5858 result.basePart += QString(mMultiplicationSymbol) + QLatin1String("10");
5859 result.expPart = text.mid(ePos+1, eLast-ePos);
5860 // clip "+" and leading zeros off expPart:
5861 while (result.expPart.length() > 2 && result.expPart.at(1) == QLatin1Char('0')) // length > 2 so we leave one zero when numberFormatChar is 'e'
5862 result.expPart.remove(1, 1);
5863 if (!result.expPart.isEmpty() && result.expPart.at(0) == QLatin1Char('+'))
5864 result.expPart.remove(0, 1);
5865 // prepare smaller font for exponent:
5866 result.expFont = font;
5867 if (result.expFont.pointSize() > 0)
5868 result.expFont.setPointSize(result.expFont.pointSize()*0.75);
5869 else
5870 result.expFont.setPixelSize(result.expFont.pixelSize()*0.75);
5871 // calculate bounding rects of base part(s), exponent part and total one:
5872 result.baseBounds = baseFontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.basePart);
5873 result.expBounds = QFontMetrics(result.expFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.expPart);
5874 if (!result.suffixPart.isEmpty())
5875 result.suffixBounds = QFontMetrics(result.baseFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.suffixPart);
5876 result.totalBounds = result.baseBounds.adjusted(0, 0, result.expBounds.width()+result.suffixBounds.width()+2, 0); // +2 consists of the 1 pixel spacing between base and exponent (see drawTickLabel) and an extra pixel to include AA
5877 } else // useBeautifulPowers == false
5878 {
5879 result.basePart = text;
5880 result.totalBounds = baseFontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip | Qt::AlignHCenter, result.basePart);
5881 }
5882 result.totalBounds.moveTopLeft(QPoint(0, 0));
5883 applyAnchorTransform(result);
5884 result.rotatedTotalBounds = result.transform.mapRect(result.totalBounds);
5885
5886 return result;
5887}
5888
5889void QCPLabelPainterPrivate::applyAnchorTransform(LabelData &labelData) const
5890{
5891 if (!qFuzzyIsNull(labelData.rotation))
5892 labelData.transform.rotate(labelData.rotation); // rotates effectively clockwise (due to flipped y axis of painter vs widget coordinate system)
5893
5894 // from now on we translate in rotated label-local coordinate system.
5895 // shift origin of coordinate system to appropriate point on label:
5896 labelData.transform.translate(0, -labelData.totalBounds.height()+mLetterDescent+mLetterCapHeight); // shifts origin to true top of capital (or number) characters
5897
5898 if (labelData.side == asLeft || labelData.side == asRight) // anchor is centered vertically
5899 labelData.transform.translate(0, -mLetterCapHeight/2.0);
5900 else if (labelData.side == asTop || labelData.side == asBottom) // anchor is centered horizontally
5901 labelData.transform.translate(-labelData.totalBounds.width()/2.0, 0);
5902
5903 if (labelData.side == asTopRight || labelData.side == asRight || labelData.side == asBottomRight) // anchor is at right
5904 labelData.transform.translate(-labelData.totalBounds.width(), 0);
5905 if (labelData.side == asBottomLeft || labelData.side == asBottom || labelData.side == asBottomRight) // anchor is at bottom (no elseif!)
5906 labelData.transform.translate(0, -mLetterCapHeight);
5907}
5908
5909/*! \internal
5910
5911 Simulates the steps done by \ref placeTickLabel by calculating bounding boxes of the text label
5912 to be drawn, depending on number format etc. Since only the largest tick label is wanted for the
5913 margin calculation, the passed \a tickLabelsSize is only expanded, if it's currently set to a
5914 smaller width/height.
5915*/
5916/*
5917void QCPLabelPainterPrivate::getMaxTickLabelSize(const QFont &font, const QString &text, QSize *tickLabelsSize) const
5918{
5919 // note: this function must return the same tick label sizes as the placeTickLabel function.
5920 QSize finalSize;
5921 if (mParentPlot->plottingHints().testFlag(QCP::phCacheLabels) && mLabelCache.contains(text)) // label caching enabled and have cached label
5922 {
5923 const CachedLabel *cachedLabel = mLabelCache.object(text);
5924 finalSize = cachedLabel->pixmap.size()/mParentPlot->bufferDevicePixelRatio();
5925 } else // label caching disabled or no label with this text cached:
5926 {
5927 // TODO: LabelData labelData = getTickLabelData(font, text);
5928 // TODO: finalSize = labelData.rotatedTotalBounds.size();
5929 }
5930
5931 // expand passed tickLabelsSize if current tick label is larger:
5932 if (finalSize.width() > tickLabelsSize->width())
5933 tickLabelsSize->setWidth(finalSize.width());
5934 if (finalSize.height() > tickLabelsSize->height())
5935 tickLabelsSize->setHeight(finalSize.height());
5936}
5937*/
5938
5939QCPLabelPainterPrivate::CachedLabel *QCPLabelPainterPrivate::createCachedLabel(const LabelData &labelData) const
5940{
5941 CachedLabel *result = new CachedLabel;
5942
5943 // allocate pixmap with the correct size and pixel ratio:
5944 if (!qFuzzyCompare(1.0, mParentPlot->bufferDevicePixelRatio()))
5945 {
5946 result->pixmap = QPixmap(labelData.rotatedTotalBounds.size()*mParentPlot->bufferDevicePixelRatio());
5947#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
5948# ifdef QCP_DEVICEPIXELRATIO_FLOAT
5949 result->pixmap.setDevicePixelRatio(mParentPlot->devicePixelRatioF());
5950# else
5951 result->pixmap.setDevicePixelRatio(mParentPlot->devicePixelRatio());
5952# endif
5953#endif
5954 } else
5955 result->pixmap = QPixmap(labelData.rotatedTotalBounds.size());
5956 result->pixmap.fill(Qt::transparent);
5957
5958 // draw the label into the pixmap
5959 // offset is between label anchor and topleft of cache pixmap, so pixmap can be drawn at pos+offset to make the label anchor appear at pos.
5960 // We use rotatedTotalBounds.topLeft() because rotatedTotalBounds is in a coordinate system where the label anchor is at (0, 0)
5961 result->offset = labelData.rotatedTotalBounds.topLeft();
5962 QCPPainter cachePainter(&result->pixmap);
5963 drawText(&cachePainter, -result->offset, labelData);
5964 return result;
5965}
5966
5967QByteArray QCPLabelPainterPrivate::cacheKey(const QString &text, const QColor &color, double rotation, AnchorSide side) const
5968{
5969 return text.toUtf8()+
5970 QByteArray::number(color.red()+256*color.green()+65536*color.blue(), 36)+
5971 QByteArray::number(color.alpha()+256*(int)side, 36)+
5972 QByteArray::number((int)(rotation*100)%36000, 36);
5973}
5974
5975QCPLabelPainterPrivate::AnchorSide QCPLabelPainterPrivate::skewedAnchorSide(const QPointF &tickPos, double sideExpandHorz, double sideExpandVert) const
5976{
5977 QCPVector2D anchorNormal = QCPVector2D(tickPos-mAnchorReference);
5978 if (mAnchorReferenceType == artTangent)
5979 anchorNormal = anchorNormal.perpendicular();
5980 const double radius = anchorNormal.length();
5981 const double sideHorz = sideExpandHorz*radius;
5982 const double sideVert = sideExpandVert*radius;
5983 if (anchorNormal.x() > sideHorz)
5984 {
5985 if (anchorNormal.y() > sideVert) return asTopLeft;
5986 else if (anchorNormal.y() < -sideVert) return asBottomLeft;
5987 else return asLeft;
5988 } else if (anchorNormal.x() < -sideHorz)
5989 {
5990 if (anchorNormal.y() > sideVert) return asTopRight;
5991 else if (anchorNormal.y() < -sideVert) return asBottomRight;
5992 else return asRight;
5993 } else
5994 {
5995 if (anchorNormal.y() > 0) return asTop;
5996 else return asBottom;
5997 }
5998 return asBottom; // should never be reached
5999}
6000
6001QCPLabelPainterPrivate::AnchorSide QCPLabelPainterPrivate::rotationCorrectedSide(AnchorSide side, double rotation) const
6002{
6003 AnchorSide result = side;
6004 const bool rotateClockwise = rotation > 0;
6005 if (!qFuzzyIsNull(rotation))
6006 {
6007 if (!qFuzzyCompare(qAbs(rotation), 90)) // avoid graphical collision with anchor tangent (e.g. axis line) when rotating, so change anchor side appropriately:
6008 {
6009 if (side == asTop) result = rotateClockwise ? asLeft : asRight;
6010 else if (side == asBottom) result = rotateClockwise ? asRight : asLeft;
6011 else if (side == asTopLeft) result = rotateClockwise ? asLeft : asTop;
6012 else if (side == asTopRight) result = rotateClockwise ? asTop : asRight;
6013 else if (side == asBottomLeft) result = rotateClockwise ? asBottom : asLeft;
6014 else if (side == asBottomRight) result = rotateClockwise ? asRight : asBottom;
6015 } else // for full rotation by +/-90 degrees, other sides are more appropriate for centering on anchor:
6016 {
6017 if (side == asLeft) result = rotateClockwise ? asBottom : asTop;
6018 else if (side == asRight) result = rotateClockwise ? asTop : asBottom;
6019 else if (side == asTop) result = rotateClockwise ? asLeft : asRight;
6020 else if (side == asBottom) result = rotateClockwise ? asRight : asLeft;
6021 else if (side == asTopLeft) result = rotateClockwise ? asBottomLeft : asTopRight;
6022 else if (side == asTopRight) result = rotateClockwise ? asTopLeft : asBottomRight;
6023 else if (side == asBottomLeft) result = rotateClockwise ? asBottomRight : asTopLeft;
6024 else if (side == asBottomRight) result = rotateClockwise ? asTopRight : asBottomLeft;
6025 }
6026 }
6027 return result;
6028}
6029
6030void QCPLabelPainterPrivate::analyzeFontMetrics()
6031{
6032 const QFontMetrics fm(mFont);
6033 mLetterCapHeight = fm.tightBoundingRect(QLatin1String("8")).height(); // this method is slow, that's why we query it only upon font change
6034 mLetterDescent = fm.descent();
6035}
6036/* end of 'src/axis/labelpainter.cpp' */
6037
6038
6039/* including file 'src/axis/axisticker.cpp' */
6040/* modified 2021-03-29T02:30:44, size 18688 */
6041
6042////////////////////////////////////////////////////////////////////////////////////////////////////
6043//////////////////// QCPAxisTicker
6044////////////////////////////////////////////////////////////////////////////////////////////////////
6045/*! \class QCPAxisTicker
6046 \brief The base class tick generator used by QCPAxis to create tick positions and tick labels
6047
6048 Each QCPAxis has an internal QCPAxisTicker (or a subclass) in order to generate tick positions
6049 and tick labels for the current axis range. The ticker of an axis can be set via \ref
6050 QCPAxis::setTicker. Since that method takes a <tt>QSharedPointer<QCPAxisTicker></tt>, multiple
6051 axes can share the same ticker instance.
6052
6053 This base class generates normal tick coordinates and numeric labels for linear axes. It picks a
6054 reasonable tick step (the separation between ticks) which results in readable tick labels. The
6055 number of ticks that should be approximately generated can be set via \ref setTickCount.
6056 Depending on the current tick step strategy (\ref setTickStepStrategy), the algorithm either
6057 sacrifices readability to better match the specified tick count (\ref
6058 QCPAxisTicker::tssMeetTickCount) or relaxes the tick count in favor of better tick steps (\ref
6059 QCPAxisTicker::tssReadability), which is the default.
6060
6061 The following more specialized axis ticker subclasses are available, see details in the
6062 respective class documentation:
6063
6064 <center>
6065 <table>
6066 <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerFixed</td><td>\image html axisticker-fixed.png</td></tr>
6067 <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerLog</td><td>\image html axisticker-log.png</td></tr>
6068 <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerPi</td><td>\image html axisticker-pi.png</td></tr>
6069 <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerText</td><td>\image html axisticker-text.png</td></tr>
6070 <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerDateTime</td><td>\image html axisticker-datetime.png</td></tr>
6071 <tr><td style="text-align:right; padding: 0 1em">QCPAxisTickerTime</td><td>\image html axisticker-time.png
6072 \image html axisticker-time2.png</td></tr>
6073 </table>
6074 </center>
6075
6076 \section axisticker-subclassing Creating own axis tickers
6077
6078 Creating own axis tickers can be achieved very easily by sublassing QCPAxisTicker and
6079 reimplementing some or all of the available virtual methods.
6080
6081 In the simplest case you might wish to just generate different tick steps than the other tickers,
6082 so you only reimplement the method \ref getTickStep. If you additionally want control over the
6083 string that will be shown as tick label, reimplement \ref getTickLabel.
6084
6085 If you wish to have complete control, you can generate the tick vectors and tick label vectors
6086 yourself by reimplementing \ref createTickVector and \ref createLabelVector. The default
6087 implementations use the previously mentioned virtual methods \ref getTickStep and \ref
6088 getTickLabel, but your reimplementations don't necessarily need to do so. For example in the case
6089 of unequal tick steps, the method \ref getTickStep loses its usefulness and can be ignored.
6090
6091 The sub tick count between major ticks can be controlled with \ref getSubTickCount. Full sub tick
6092 placement control is obtained by reimplementing \ref createSubTickVector.
6093
6094 See the documentation of all these virtual methods in QCPAxisTicker for detailed information
6095 about the parameters and expected return values.
6096*/
6097
6098/*!
6099 Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
6100 managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
6101*/
6103 mTickStepStrategy(tssReadability),
6104 mTickCount(5),
6105 mTickOrigin(0)
6106{
6107}
6108
6109QCPAxisTicker::~QCPAxisTicker()
6110{
6111
6112}
6113
6114/*!
6115 Sets which strategy the axis ticker follows when choosing the size of the tick step. For the
6116 available strategies, see \ref TickStepStrategy.
6117*/
6122
6123/*!
6124 Sets how many ticks this ticker shall aim to generate across the axis range. Note that \a count
6125 is not guaranteed to be matched exactly, as generating readable tick intervals may conflict with
6126 the requested number of ticks.
6127
6128 Whether the readability has priority over meeting the requested \a count can be specified with
6129 \ref setTickStepStrategy.
6130*/
6132{
6133 if (count > 0)
6134 mTickCount = count;
6135 else
6136 qDebug() << Q_FUNC_INFO << "tick count must be greater than zero:" << count;
6137}
6138
6139/*!
6140 Sets the mathematical coordinate (or "offset") of the zeroth tick. This tick coordinate is just a
6141 concept and doesn't need to be inside the currently visible axis range.
6142
6143 By default \a origin is zero, which for example yields ticks {-5, 0, 5, 10, 15,...} when the tick
6144 step is five. If \a origin is now set to 1 instead, the correspondingly generated ticks would be
6145 {-4, 1, 6, 11, 16,...}.
6146*/
6148{
6149 mTickOrigin = origin;
6150}
6151
6152/*!
6153 This is the method called by QCPAxis in order to actually generate tick coordinates (\a ticks),
6154 tick label strings (\a tickLabels) and sub tick coordinates (\a subTicks).
6155
6156 The ticks are generated for the specified \a range. The generated labels typically follow the
6157 specified \a locale, \a formatChar and number \a precision, however this might be different (or
6158 even irrelevant) for certain QCPAxisTicker subclasses.
6159
6160 The output parameter \a ticks is filled with the generated tick positions in axis coordinates.
6161 The output parameters \a subTicks and \a tickLabels are optional (set them to \c nullptr if not
6162 needed) and are respectively filled with sub tick coordinates, and tick label strings belonging
6163 to \a ticks by index.
6164*/
6165void QCPAxisTicker::generate(const QCPRange &range, const QLocale &locale, QChar formatChar, int precision, QVector<double> &ticks, QVector<double> *subTicks, QVector<QString> *tickLabels)
6166{
6167 // generate (major) ticks:
6168 double tickStep = getTickStep(range);
6169 ticks = createTickVector(tickStep, range);
6170 trimTicks(range, ticks, true); // trim ticks to visible range plus one outer tick on each side (incase a subclass createTickVector creates more)
6171
6172 // generate sub ticks between major ticks:
6173 if (subTicks)
6174 {
6175 if (!ticks.isEmpty())
6176 {
6177 *subTicks = createSubTickVector(getSubTickCount(tickStep), ticks);
6178 trimTicks(range, *subTicks, false);
6179 } else
6180 *subTicks = QVector<double>();
6181 }
6182
6183 // finally trim also outliers (no further clipping happens in axis drawing):
6184 trimTicks(range, ticks, false);
6185 // generate labels for visible ticks if requested:
6186 if (tickLabels)
6187 *tickLabels = createLabelVector(ticks, locale, formatChar, precision);
6188}
6189
6190/*! \internal
6191
6192 Takes the entire currently visible axis range and returns a sensible tick step in
6193 order to provide readable tick labels as well as a reasonable number of tick counts (see \ref
6194 setTickCount, \ref setTickStepStrategy).
6195
6196 If a QCPAxisTicker subclass only wants a different tick step behaviour than the default
6197 implementation, it should reimplement this method. See \ref cleanMantissa for a possible helper
6198 function.
6199*/
6201{
6202 double exactStep = range.size()/double(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
6203 return cleanMantissa(exactStep);
6204}
6205
6206/*! \internal
6207
6208 Takes the \a tickStep, i.e. the distance between two consecutive ticks, and returns
6209 an appropriate number of sub ticks for that specific tick step.
6210
6211 Note that a returned sub tick count of e.g. 4 will split each tick interval into 5 sections.
6212*/
6214{
6215 int result = 1; // default to 1, if no proper value can be found
6216
6217 // separate integer and fractional part of mantissa:
6218 double epsilon = 0.01;
6219 double intPartf;
6220 int intPart;
6221 double fracPart = modf(getMantissa(tickStep), &intPartf);
6222 intPart = int(intPartf);
6223
6224 // handle cases with (almost) integer mantissa:
6225 if (fracPart < epsilon || 1.0-fracPart < epsilon)
6226 {
6227 if (1.0-fracPart < epsilon)
6228 ++intPart;
6229 switch (intPart)
6230 {
6231 case 1: result = 4; break; // 1.0 -> 0.2 substep
6232 case 2: result = 3; break; // 2.0 -> 0.5 substep
6233 case 3: result = 2; break; // 3.0 -> 1.0 substep
6234 case 4: result = 3; break; // 4.0 -> 1.0 substep
6235 case 5: result = 4; break; // 5.0 -> 1.0 substep
6236 case 6: result = 2; break; // 6.0 -> 2.0 substep
6237 case 7: result = 6; break; // 7.0 -> 1.0 substep
6238 case 8: result = 3; break; // 8.0 -> 2.0 substep
6239 case 9: result = 2; break; // 9.0 -> 3.0 substep
6240 }
6241 } else
6242 {
6243 // handle cases with significantly fractional mantissa:
6244 if (qAbs(fracPart-0.5) < epsilon) // *.5 mantissa
6245 {
6246 switch (intPart)
6247 {
6248 case 1: result = 2; break; // 1.5 -> 0.5 substep
6249 case 2: result = 4; break; // 2.5 -> 0.5 substep
6250 case 3: result = 4; break; // 3.5 -> 0.7 substep
6251 case 4: result = 2; break; // 4.5 -> 1.5 substep
6252 case 5: result = 4; break; // 5.5 -> 1.1 substep (won't occur with default getTickStep from here on)
6253 case 6: result = 4; break; // 6.5 -> 1.3 substep
6254 case 7: result = 2; break; // 7.5 -> 2.5 substep
6255 case 8: result = 4; break; // 8.5 -> 1.7 substep
6256 case 9: result = 4; break; // 9.5 -> 1.9 substep
6257 }
6258 }
6259 // if mantissa fraction isn't 0.0 or 0.5, don't bother finding good sub tick marks, leave default
6260 }
6261
6262 return result;
6263}
6264
6265/*! \internal
6266
6267 This method returns the tick label string as it should be printed under the \a tick coordinate.
6268 If a textual number is returned, it should respect the provided \a locale, \a formatChar and \a
6269 precision.
6270
6271 If the returned value contains exponentials of the form "2e5" and beautifully typeset powers is
6272 enabled in the QCPAxis number format (\ref QCPAxis::setNumberFormat), the exponential part will
6273 be formatted accordingly using multiplication symbol and superscript during rendering of the
6274 label automatically.
6275*/
6276QString QCPAxisTicker::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
6277{
6278 return locale.toString(tick, formatChar.toLatin1(), precision);
6279}
6280
6281/*! \internal
6282
6283 Returns a vector containing all coordinates of sub ticks that should be drawn. It generates \a
6284 subTickCount sub ticks between each tick pair given in \a ticks.
6285
6286 If a QCPAxisTicker subclass needs maximal control over the generated sub ticks, it should
6287 reimplement this method. Depending on the purpose of the subclass it doesn't necessarily need to
6288 base its result on \a subTickCount or \a ticks.
6289*/
6291{
6292 QVector<double> result;
6293 if (subTickCount <= 0 || ticks.size() < 2)
6294 return result;
6295
6296 result.reserve((ticks.size()-1)*subTickCount);
6297 for (int i=1; i<ticks.size(); ++i)
6298 {
6299 double subTickStep = (ticks.at(i)-ticks.at(i-1))/double(subTickCount+1);
6300 for (int k=1; k<=subTickCount; ++k)
6301 result.append(ticks.at(i-1) + k*subTickStep);
6302 }
6303 return result;
6304}
6305
6306/*! \internal
6307
6308 Returns a vector containing all coordinates of ticks that should be drawn. The default
6309 implementation generates ticks with a spacing of \a tickStep (mathematically starting at the tick
6310 step origin, see \ref setTickOrigin) distributed over the passed \a range.
6311
6312 In order for the axis ticker to generate proper sub ticks, it is necessary that the first and
6313 last tick coordinates returned by this method are just below/above the provided \a range.
6314 Otherwise the outer intervals won't contain any sub ticks.
6315
6316 If a QCPAxisTicker subclass needs maximal control over the generated ticks, it should reimplement
6317 this method. Depending on the purpose of the subclass it doesn't necessarily need to base its
6318 result on \a tickStep, e.g. when the ticks are spaced unequally like in the case of
6319 QCPAxisTickerLog.
6320*/
6322{
6323 QVector<double> result;
6324 // Generate tick positions according to tickStep:
6325 qint64 firstStep = qint64(floor((range.lower-mTickOrigin)/tickStep)); // do not use qFloor here, or we'll lose 64 bit precision
6326 qint64 lastStep = qint64(ceil((range.upper-mTickOrigin)/tickStep)); // do not use qCeil here, or we'll lose 64 bit precision
6327 int tickcount = int(lastStep-firstStep+1);
6328 if (tickcount < 0) tickcount = 0;
6329 result.resize(tickcount);
6330 for (int i=0; i<tickcount; ++i)
6331 result[i] = mTickOrigin + (firstStep+i)*tickStep;
6332 return result;
6333}
6334
6335/*! \internal
6336
6337 Returns a vector containing all tick label strings corresponding to the tick coordinates provided
6338 in \a ticks. The default implementation calls \ref getTickLabel to generate the respective
6339 strings.
6340
6341 It is possible but uncommon for QCPAxisTicker subclasses to reimplement this method, as
6342 reimplementing \ref getTickLabel often achieves the intended result easier.
6343*/
6345{
6346 QVector<QString> result;
6347 result.reserve(ticks.size());
6348 foreach (double tickCoord, ticks)
6349 result.append(getTickLabel(tickCoord, locale, formatChar, precision));
6350 return result;
6351}
6352
6353/*! \internal
6354
6355 Removes tick coordinates from \a ticks which lie outside the specified \a range. If \a
6356 keepOneOutlier is true, it preserves one tick just outside the range on both sides, if present.
6357
6358 The passed \a ticks must be sorted in ascending order.
6359*/
6361{
6362 bool lowFound = false;
6363 bool highFound = false;
6364 int lowIndex = 0;
6365 int highIndex = -1;
6366
6367 for (int i=0; i < ticks.size(); ++i)
6368 {
6369 if (ticks.at(i) >= range.lower)
6370 {
6371 lowFound = true;
6372 lowIndex = i;
6373 break;
6374 }
6375 }
6376 for (int i=ticks.size()-1; i >= 0; --i)
6377 {
6378 if (ticks.at(i) <= range.upper)
6379 {
6380 highFound = true;
6381 highIndex = i;
6382 break;
6383 }
6384 }
6385
6386 if (highFound && lowFound)
6387 {
6388 int trimFront = qMax(0, lowIndex-(keepOneOutlier ? 1 : 0));
6389 int trimBack = qMax(0, ticks.size()-(keepOneOutlier ? 2 : 1)-highIndex);
6390 if (trimFront > 0 || trimBack > 0)
6391 ticks = ticks.mid(trimFront, ticks.size()-trimFront-trimBack);
6392 } else // all ticks are either all below or all above the range
6393 ticks.clear();
6394}
6395
6396/*! \internal
6397
6398 Returns the coordinate contained in \a candidates which is closest to the provided \a target.
6399
6400 This method assumes \a candidates is not empty and sorted in ascending order.
6401*/
6402double QCPAxisTicker::pickClosest(double target, const QVector<double> &candidates) const
6403{
6404 if (candidates.size() == 1)
6405 return candidates.first();
6406 QVector<double>::const_iterator it = std::lower_bound(candidates.constBegin(), candidates.constEnd(), target);
6407 if (it == candidates.constEnd())
6408 return *(it-1);
6409 else if (it == candidates.constBegin())
6410 return *it;
6411 else
6412 return target-*(it-1) < *it-target ? *(it-1) : *it;
6413}
6414
6415/*! \internal
6416
6417 Returns the decimal mantissa of \a input. Optionally, if \a magnitude is not set to zero, it also
6418 returns the magnitude of \a input as a power of 10.
6419
6420 For example, an input of 142.6 will return a mantissa of 1.426 and a magnitude of 100.
6421*/
6422double QCPAxisTicker::getMantissa(double input, double *magnitude) const
6423{
6424 const double mag = qPow(10.0, qFloor(qLn(input)/qLn(10.0)));
6425 if (magnitude) *magnitude = mag;
6426 return input/mag;
6427}
6428
6429/*! \internal
6430
6431 Returns a number that is close to \a input but has a clean, easier human readable mantissa. How
6432 strongly the mantissa is altered, and thus how strong the result deviates from the original \a
6433 input, depends on the current tick step strategy (see \ref setTickStepStrategy).
6434*/
6435double QCPAxisTicker::cleanMantissa(double input) const
6436{
6437 double magnitude;
6438 const double mantissa = getMantissa(input, &magnitude);
6439 switch (mTickStepStrategy)
6440 {
6441 case tssReadability:
6442 {
6443 return pickClosest(mantissa, QVector<double>() << 1.0 << 2.0 << 2.5 << 5.0 << 10.0)*magnitude;
6444 }
6445 case tssMeetTickCount:
6446 {
6447 // this gives effectively a mantissa of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 8.0, 10.0
6448 if (mantissa <= 5.0)
6449 return int(mantissa*2)/2.0*magnitude; // round digit after decimal point to 0.5
6450 else
6451 return int(mantissa/2.0)*2.0*magnitude; // round to first digit in multiples of 2
6452 }
6453 }
6454 return input;
6455}
6456/* end of 'src/axis/axisticker.cpp' */
6457
6458
6459/* including file 'src/axis/axistickerdatetime.cpp' */
6460/* modified 2021-03-29T02:30:44, size 18829 */
6461
6462////////////////////////////////////////////////////////////////////////////////////////////////////
6463//////////////////// QCPAxisTickerDateTime
6464////////////////////////////////////////////////////////////////////////////////////////////////////
6465/*! \class QCPAxisTickerDateTime
6466 \brief Specialized axis ticker for calendar dates and times as axis ticks
6467
6468 \image html axisticker-datetime.png
6469
6470 This QCPAxisTicker subclass generates ticks that correspond to real calendar dates and times. The
6471 plot axis coordinate is interpreted as Unix Time, so seconds since Epoch (January 1, 1970, 00:00
6472 UTC). This is also used for example by QDateTime in the <tt>toTime_t()/setTime_t()</tt> methods
6473 with a precision of one second. Since Qt 4.7, millisecond accuracy can be obtained from QDateTime
6474 by using <tt>QDateTime::fromMSecsSinceEpoch()/1000.0</tt>. The static methods \ref dateTimeToKey
6475 and \ref keyToDateTime conveniently perform this conversion achieving a precision of one
6476 millisecond on all Qt versions.
6477
6478 The format of the date/time display in the tick labels is controlled with \ref setDateTimeFormat.
6479 If a different time spec or time zone shall be used for the tick label appearance, see \ref
6480 setDateTimeSpec or \ref setTimeZone, respectively.
6481
6482 This ticker produces unequal tick spacing in order to provide intuitive date and time-of-day
6483 ticks. For example, if the axis range spans a few years such that there is one tick per year,
6484 ticks will be positioned on 1. January of every year. This is intuitive but, due to leap years,
6485 will result in slightly unequal tick intervals (visually unnoticeable). The same can be seen in
6486 the image above: even though the number of days varies month by month, this ticker generates
6487 ticks on the same day of each month.
6488
6489 If you would like to change the date/time that is used as a (mathematical) starting date for the
6490 ticks, use the \ref setTickOrigin(const QDateTime &origin) method overload, which takes a
6491 QDateTime. If you pass 15. July, 9:45 to this method, the yearly ticks will end up on 15. July at
6492 9:45 of every year.
6493
6494 The ticker can be created and assigned to an axis like this:
6495 \snippet documentation/doc-image-generator/mainwindow.cpp axistickerdatetime-creation
6496
6497 \note If you rather wish to display relative times in terms of days, hours, minutes, seconds and
6498 milliseconds, and are not interested in the intricacies of real calendar dates with months and
6499 (leap) years, have a look at QCPAxisTickerTime instead.
6500*/
6501
6502/*!
6503 Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
6504 managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
6505*/
6507 mDateTimeFormat(QLatin1String("hh:mm:ss\ndd.MM.yy")),
6508 mDateTimeSpec(Qt::LocalTime),
6509 mDateStrategy(dsNone)
6510{
6511 setTickCount(4);
6512}
6513
6514/*!
6515 Sets the format in which dates and times are displayed as tick labels. For details about the \a
6516 format string, see the documentation of QDateTime::toString().
6517
6518 Typical expressions are
6519 <table>
6520 <tr><td>\c d</td><td>The day as a number without a leading zero (1 to 31)</td></tr>
6521 <tr><td>\c dd</td><td>The day as a number with a leading zero (01 to 31)</td></tr>
6522 <tr><td>\c ddd</td><td>The abbreviated localized day name (e.g. 'Mon' to 'Sun'). Uses the system locale to localize the name, i.e. QLocale::system().</td></tr>
6523 <tr><td>\c dddd</td><td>The long localized day name (e.g. 'Monday' to 'Sunday'). Uses the system locale to localize the name, i.e. QLocale::system().</td></tr>
6524 <tr><td>\c M</td><td>The month as a number without a leading zero (1 to 12)</td></tr>
6525 <tr><td>\c MM</td><td>The month as a number with a leading zero (01 to 12)</td></tr>
6526 <tr><td>\c MMM</td><td>The abbreviated localized month name (e.g. 'Jan' to 'Dec'). Uses the system locale to localize the name, i.e. QLocale::system().</td></tr>
6527 <tr><td>\c MMMM</td><td>The long localized month name (e.g. 'January' to 'December'). Uses the system locale to localize the name, i.e. QLocale::system().</td></tr>
6528 <tr><td>\c yy</td><td>The year as a two digit number (00 to 99)</td></tr>
6529 <tr><td>\c yyyy</td><td>The year as a four digit number. If the year is negative, a minus sign is prepended, making five characters.</td></tr>
6530 <tr><td>\c h</td><td>The hour without a leading zero (0 to 23 or 1 to 12 if AM/PM display)</td></tr>
6531 <tr><td>\c hh</td><td>The hour with a leading zero (00 to 23 or 01 to 12 if AM/PM display)</td></tr>
6532 <tr><td>\c H</td><td>The hour without a leading zero (0 to 23, even with AM/PM display)</td></tr>
6533 <tr><td>\c HH</td><td>The hour with a leading zero (00 to 23, even with AM/PM display)</td></tr>
6534 <tr><td>\c m</td><td>The minute without a leading zero (0 to 59)</td></tr>
6535 <tr><td>\c mm</td><td>The minute with a leading zero (00 to 59)</td></tr>
6536 <tr><td>\c s</td><td>The whole second, without any leading zero (0 to 59)</td></tr>
6537 <tr><td>\c ss</td><td>The whole second, with a leading zero where applicable (00 to 59)</td></tr>
6538 <tr><td>\c z</td><td>The fractional part of the second, to go after a decimal point, without trailing zeroes (0 to 999). Thus "s.z" reports the seconds to full available (millisecond) precision without trailing zeroes.</td></tr>
6539 <tr><td>\c zzz</td><td>The fractional part of the second, to millisecond precision, including trailing zeroes where applicable (000 to 999).</td></tr>
6540 <tr><td>\c AP or \c A</td><td>Use AM/PM display. A/AP will be replaced by an upper-case version of either QLocale::amText() or QLocale::pmText().</td></tr>
6541 <tr><td>\c ap or \c a</td><td>Use am/pm display. a/ap will be replaced by a lower-case version of either QLocale::amText() or QLocale::pmText().</td></tr>
6542 <tr><td>\c t</td><td>The timezone (for example "CEST")</td></tr>
6543 </table>
6544
6545 Newlines can be inserted with \c "\n", literal strings (even when containing above expressions)
6546 by encapsulating them using single-quotes. A literal single quote can be generated by using two
6547 consecutive single quotes in the format.
6548
6549 \see setDateTimeSpec, setTimeZone
6550*/
6552{
6553 mDateTimeFormat = format;
6554}
6555
6556/*!
6557 Sets the time spec that is used for creating the tick labels from corresponding dates/times.
6558
6559 The default value of QDateTime objects (and also QCPAxisTickerDateTime) is
6560 <tt>Qt::LocalTime</tt>. However, if the displayed tick labels shall be given in UTC, set \a spec
6561 to <tt>Qt::UTC</tt>.
6562
6563 Tick labels corresponding to other time zones can be achieved with \ref setTimeZone (which sets
6564 \a spec to \c Qt::TimeZone internally). Note that if \a spec is afterwards set to not be \c
6565 Qt::TimeZone again, the \ref setTimeZone setting will be ignored accordingly.
6566
6567 \see setDateTimeFormat, setTimeZone
6568*/
6570{
6571 mDateTimeSpec = spec;
6572}
6573
6574# if QT_VERSION >= QT_VERSION_CHECK(5, 2, 0)
6575/*!
6576 Sets the time zone that is used for creating the tick labels from corresponding dates/times. The
6577 time spec (\ref setDateTimeSpec) is set to \c Qt::TimeZone.
6578
6579 \see setDateTimeFormat, setTimeZone
6580*/
6582{
6583 mTimeZone = zone;
6584 mDateTimeSpec = Qt::TimeZone;
6585}
6586#endif
6587
6588/*!
6589 Sets the tick origin (see \ref QCPAxisTicker::setTickOrigin) in seconds since Epoch (1. Jan 1970,
6590 00:00 UTC). For the date time ticker it might be more intuitive to use the overload which
6591 directly takes a QDateTime, see \ref setTickOrigin(const QDateTime &origin).
6592
6593 This is useful to define the month/day/time recurring at greater tick interval steps. For
6594 example, If you pass 15. July, 9:45 to this method and the tick interval happens to be one tick
6595 per year, the ticks will end up on 15. July at 9:45 of every year.
6596*/
6598{
6600}
6601
6602/*!
6603 Sets the tick origin (see \ref QCPAxisTicker::setTickOrigin) as a QDateTime \a origin.
6604
6605 This is useful to define the month/day/time recurring at greater tick interval steps. For
6606 example, If you pass 15. July, 9:45 to this method and the tick interval happens to be one tick
6607 per year, the ticks will end up on 15. July at 9:45 of every year.
6608*/
6610{
6612}
6613
6614/*! \internal
6615
6616 Returns a sensible tick step with intervals appropriate for a date-time-display, such as weekly,
6617 monthly, bi-monthly, etc.
6618
6619 Note that this tick step isn't used exactly when generating the tick vector in \ref
6620 createTickVector, but only as a guiding value requiring some correction for each individual tick
6621 interval. Otherwise this would lead to unintuitive date displays, e.g. jumping between first day
6622 in the month to the last day in the previous month from tick to tick, due to the non-uniform
6623 length of months. The same problem arises with leap years.
6624
6625 \seebaseclassmethod
6626*/
6628{
6629 double result = range.size()/double(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
6630
6631 mDateStrategy = dsNone; // leaving it at dsNone means tick coordinates will not be tuned in any special way in createTickVector
6632 if (result < 1) // ideal tick step is below 1 second -> use normal clean mantissa algorithm in units of seconds
6633 {
6634 result = cleanMantissa(result);
6635 } else if (result < 86400*30.4375*12) // below a year
6636 {
6637 result = pickClosest(result, QVector<double>()
6638 << 1 << 2.5 << 5 << 10 << 15 << 30 << 60 << 2.5*60 << 5*60 << 10*60 << 15*60 << 30*60 << 60*60 // second, minute, hour range
6639 << 3600*2 << 3600*3 << 3600*6 << 3600*12 << 3600*24 // hour to day range
6640 << 86400*2 << 86400*5 << 86400*7 << 86400*14 << 86400*30.4375 << 86400*30.4375*2 << 86400*30.4375*3 << 86400*30.4375*6 << 86400*30.4375*12); // day, week, month range (avg. days per month includes leap years)
6641 if (result > 86400*30.4375-1) // month tick intervals or larger
6642 mDateStrategy = dsUniformDayInMonth;
6643 else if (result > 3600*24-1) // day tick intervals or larger
6644 mDateStrategy = dsUniformTimeInDay;
6645 } else // more than a year, go back to normal clean mantissa algorithm but in units of years
6646 {
6647 const double secondsPerYear = 86400*30.4375*12; // average including leap years
6649 mDateStrategy = dsUniformDayInMonth;
6650 }
6651 return result;
6652}
6653
6654/*! \internal
6655
6656 Returns a sensible sub tick count with intervals appropriate for a date-time-display, such as weekly,
6657 monthly, bi-monthly, etc.
6658
6659 \seebaseclassmethod
6660*/
6662{
6663 int result = QCPAxisTicker::getSubTickCount(tickStep);
6664 switch (qRound(tickStep)) // hand chosen subticks for specific minute/hour/day/week/month range (as specified in getTickStep)
6665 {
6666 case 5*60: result = 4; break;
6667 case 10*60: result = 1; break;
6668 case 15*60: result = 2; break;
6669 case 30*60: result = 1; break;
6670 case 60*60: result = 3; break;
6671 case 3600*2: result = 3; break;
6672 case 3600*3: result = 2; break;
6673 case 3600*6: result = 1; break;
6674 case 3600*12: result = 3; break;
6675 case 3600*24: result = 3; break;
6676 case 86400*2: result = 1; break;
6677 case 86400*5: result = 4; break;
6678 case 86400*7: result = 6; break;
6679 case 86400*14: result = 1; break;
6680 case int(86400*30.4375+0.5): result = 3; break;
6681 case int(86400*30.4375*2+0.5): result = 1; break;
6682 case int(86400*30.4375*3+0.5): result = 2; break;
6683 case int(86400*30.4375*6+0.5): result = 5; break;
6684 case int(86400*30.4375*12+0.5): result = 3; break;
6685 }
6686 return result;
6687}
6688
6689/*! \internal
6690
6691 Generates a date/time tick label for tick coordinate \a tick, based on the currently set format
6692 (\ref setDateTimeFormat), time spec (\ref setDateTimeSpec), and possibly time zone (\ref
6693 setTimeZone).
6694
6695 \seebaseclassmethod
6696*/
6697QString QCPAxisTickerDateTime::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
6698{
6699 Q_UNUSED(precision)
6701# if QT_VERSION >= QT_VERSION_CHECK(5, 2, 0)
6702 if (mDateTimeSpec == Qt::TimeZone)
6703 return locale.toString(keyToDateTime(tick).toTimeZone(mTimeZone), mDateTimeFormat);
6704 else
6705 return locale.toString(keyToDateTime(tick).toTimeSpec(mDateTimeSpec), mDateTimeFormat);
6706# else
6707 return locale.toString(keyToDateTime(tick).toTimeSpec(mDateTimeSpec), mDateTimeFormat);
6708# endif
6709}
6710
6711/*! \internal
6712
6713 Uses the passed \a tickStep as a guiding value and applies corrections in order to obtain
6714 non-uniform tick intervals but intuitive tick labels, e.g. falling on the same day of each month.
6715
6716 \seebaseclassmethod
6717*/
6719{
6720 QVector<double> result = QCPAxisTicker::createTickVector(tickStep, range);
6721 if (!result.isEmpty())
6722 {
6723 if (mDateStrategy == dsUniformTimeInDay)
6724 {
6725 QDateTime uniformDateTime = keyToDateTime(mTickOrigin); // the time of this datetime will be set for all other ticks, if possible
6727 for (int i=0; i<result.size(); ++i)
6728 {
6729 tickDateTime = keyToDateTime(result.at(i));
6730 tickDateTime.setTime(uniformDateTime.time());
6731 result[i] = dateTimeToKey(tickDateTime);
6732 }
6733 } else if (mDateStrategy == dsUniformDayInMonth)
6734 {
6735 QDateTime uniformDateTime = keyToDateTime(mTickOrigin); // this day (in month) and time will be set for all other ticks, if possible
6737 for (int i=0; i<result.size(); ++i)
6738 {
6739 tickDateTime = keyToDateTime(result.at(i));
6740 tickDateTime.setTime(uniformDateTime.time());
6741 int thisUniformDay = uniformDateTime.date().day() <= tickDateTime.date().daysInMonth() ? uniformDateTime.date().day() : tickDateTime.date().daysInMonth(); // don't exceed month (e.g. try to set day 31 in February)
6742 if (thisUniformDay-tickDateTime.date().day() < -15) // with leap years involved, date month may jump backwards or forwards, and needs to be corrected before setting day
6743 tickDateTime = tickDateTime.addMonths(1);
6744 else if (thisUniformDay-tickDateTime.date().day() > 15) // with leap years involved, date month may jump backwards or forwards, and needs to be corrected before setting day
6745 tickDateTime = tickDateTime.addMonths(-1);
6746 tickDateTime.setDate(QDate(tickDateTime.date().year(), tickDateTime.date().month(), thisUniformDay));
6747 result[i] = dateTimeToKey(tickDateTime);
6748 }
6749 }
6750 }
6751 return result;
6752}
6753
6754/*!
6755 A convenience method which turns \a key (in seconds since Epoch 1. Jan 1970, 00:00 UTC) into a
6756 QDateTime object. This can be used to turn axis coordinates to actual QDateTimes.
6757
6758 The accuracy achieved by this method is one millisecond, irrespective of the used Qt version (it
6759 works around the lack of a QDateTime::fromMSecsSinceEpoch in Qt 4.6)
6760
6761 \see dateTimeToKey
6762*/
6764{
6765# if QT_VERSION < QT_VERSION_CHECK(4, 7, 0)
6766 return QDateTime::fromTime_t(key).addMSecs((key-(qint64)key)*1000);
6767# else
6768 return QDateTime::fromMSecsSinceEpoch(qint64(key*1000.0));
6769# endif
6770}
6771
6772/*! \overload
6773
6774 A convenience method which turns a QDateTime object into a double value that corresponds to
6775 seconds since Epoch (1. Jan 1970, 00:00 UTC). This is the format used as axis coordinates by
6776 QCPAxisTickerDateTime.
6777
6778 The accuracy achieved by this method is one millisecond, irrespective of the used Qt version (it
6779 works around the lack of a QDateTime::toMSecsSinceEpoch in Qt 4.6)
6780
6781 \see keyToDateTime
6782*/
6784{
6785# if QT_VERSION < QT_VERSION_CHECK(4, 7, 0)
6786 return dateTime.toTime_t()+dateTime.time().msec()/1000.0;
6787# else
6788 return dateTime.toMSecsSinceEpoch()/1000.0;
6789# endif
6790}
6791
6792/*! \overload
6793
6794 A convenience method which turns a QDate object into a double value that corresponds to seconds
6795 since Epoch (1. Jan 1970, 00:00 UTC). This is the format used
6796 as axis coordinates by QCPAxisTickerDateTime.
6797
6798 The returned value will be the start of the passed day of \a date, interpreted in the given \a
6799 timeSpec.
6800
6801 \see keyToDateTime
6802*/
6804{
6805# if QT_VERSION < QT_VERSION_CHECK(4, 7, 0)
6806 return QDateTime(date, QTime(0, 0), timeSpec).toTime_t();
6807# elif QT_VERSION < QT_VERSION_CHECK(5, 14, 0)
6808 return QDateTime(date, QTime(0, 0), timeSpec).toMSecsSinceEpoch()/1000.0;
6809# else
6810 return date.startOfDay(timeSpec).toMSecsSinceEpoch()/1000.0;
6811# endif
6812}
6813/* end of 'src/axis/axistickerdatetime.cpp' */
6814
6815
6816/* including file 'src/axis/axistickertime.cpp' */
6817/* modified 2021-03-29T02:30:44, size 11745 */
6818
6819////////////////////////////////////////////////////////////////////////////////////////////////////
6820//////////////////// QCPAxisTickerTime
6821////////////////////////////////////////////////////////////////////////////////////////////////////
6822/*! \class QCPAxisTickerTime
6823 \brief Specialized axis ticker for time spans in units of milliseconds to days
6824
6825 \image html axisticker-time.png
6826
6827 This QCPAxisTicker subclass generates ticks that corresponds to time intervals.
6828
6829 The format of the time display in the tick labels is controlled with \ref setTimeFormat and \ref
6830 setFieldWidth. The time coordinate is in the unit of seconds with respect to the time coordinate
6831 zero. Unlike with QCPAxisTickerDateTime, the ticks don't correspond to a specific calendar date
6832 and time.
6833
6834 The time can be displayed in milliseconds, seconds, minutes, hours and days. Depending on the
6835 largest available unit in the format specified with \ref setTimeFormat, any time spans above will
6836 be carried in that largest unit. So for example if the format string is "%m:%s" and a tick at
6837 coordinate value 7815 (being 2 hours, 10 minutes and 15 seconds) is created, the resulting tick
6838 label will show "130:15" (130 minutes, 15 seconds). If the format string is "%h:%m:%s", the hour
6839 unit will be used and the label will thus be "02:10:15". Negative times with respect to the axis
6840 zero will carry a leading minus sign.
6841
6842 The ticker can be created and assigned to an axis like this:
6843 \snippet documentation/doc-image-generator/mainwindow.cpp axistickertime-creation
6844
6845 Here is an example of a time axis providing time information in days, hours and minutes. Due to
6846 the axis range spanning a few days and the wanted tick count (\ref setTickCount), the ticker
6847 decided to use tick steps of 12 hours:
6848
6849 \image html axisticker-time2.png
6850
6851 The format string for this example is
6852 \snippet documentation/doc-image-generator/mainwindow.cpp axistickertime-creation-2
6853
6854 \note If you rather wish to display calendar dates and times, have a look at QCPAxisTickerDateTime
6855 instead.
6856*/
6857
6858/*!
6859 Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
6860 managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
6861*/
6863 mTimeFormat(QLatin1String("%h:%m:%s")),
6864 mSmallestUnit(tuSeconds),
6865 mBiggestUnit(tuHours)
6866{
6867 setTickCount(4);
6868 mFieldWidth[tuMilliseconds] = 3;
6869 mFieldWidth[tuSeconds] = 2;
6870 mFieldWidth[tuMinutes] = 2;
6871 mFieldWidth[tuHours] = 2;
6872 mFieldWidth[tuDays] = 1;
6873
6874 mFormatPattern[tuMilliseconds] = QLatin1String("%z");
6875 mFormatPattern[tuSeconds] = QLatin1String("%s");
6876 mFormatPattern[tuMinutes] = QLatin1String("%m");
6877 mFormatPattern[tuHours] = QLatin1String("%h");
6878 mFormatPattern[tuDays] = QLatin1String("%d");
6879}
6880
6881/*!
6882 Sets the format that will be used to display time in the tick labels.
6883
6884 The available patterns are:
6885 - %%z for milliseconds
6886 - %%s for seconds
6887 - %%m for minutes
6888 - %%h for hours
6889 - %%d for days
6890
6891 The field width (zero padding) can be controlled for each unit with \ref setFieldWidth.
6892
6893 The largest unit that appears in \a format will carry all the remaining time of a certain tick
6894 coordinate, even if it overflows the natural limit of the unit. For example, if %%m is the
6895 largest unit it might become larger than 59 in order to consume larger time values. If on the
6896 other hand %%h is available, the minutes will wrap around to zero after 59 and the time will
6897 carry to the hour digit.
6898*/
6900{
6901 mTimeFormat = format;
6902
6903 // determine smallest and biggest unit in format, to optimize unit replacement and allow biggest
6904 // unit to consume remaining time of a tick value and grow beyond its modulo (e.g. min > 59)
6905 mSmallestUnit = tuMilliseconds;
6906 mBiggestUnit = tuMilliseconds;
6907 bool hasSmallest = false;
6908 for (int i = tuMilliseconds; i <= tuDays; ++i)
6909 {
6910 TimeUnit unit = static_cast<TimeUnit>(i);
6911 if (mTimeFormat.contains(mFormatPattern.value(unit)))
6912 {
6913 if (!hasSmallest)
6914 {
6915 mSmallestUnit = unit;
6916 hasSmallest = true;
6917 }
6918 mBiggestUnit = unit;
6919 }
6920 }
6921}
6922
6923/*!
6924 Sets the field widh of the specified \a unit to be \a width digits, when displayed in the tick
6925 label. If the number for the specific unit is shorter than \a width, it will be padded with an
6926 according number of zeros to the left in order to reach the field width.
6927
6928 \see setTimeFormat
6929*/
6931{
6932 mFieldWidth[unit] = qMax(width, 1);
6933}
6934
6935/*! \internal
6936
6937 Returns the tick step appropriate for time displays, depending on the provided \a range and the
6938 smallest available time unit in the current format (\ref setTimeFormat). For example if the unit
6939 of seconds isn't available in the format, this method will not generate steps (like 2.5 minutes)
6940 that require sub-minute precision to be displayed correctly.
6941
6942 \seebaseclassmethod
6943*/
6945{
6946 double result = range.size()/double(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
6947
6948 if (result < 1) // ideal tick step is below 1 second -> use normal clean mantissa algorithm in units of seconds
6949 {
6950 if (mSmallestUnit == tuMilliseconds)
6951 result = qMax(cleanMantissa(result), 0.001); // smallest tick step is 1 millisecond
6952 else // have no milliseconds available in format, so stick with 1 second tickstep
6953 result = 1.0;
6954 } else if (result < 3600*24) // below a day
6955 {
6956 // the filling of availableSteps seems a bit contorted but it fills in a sorted fashion and thus saves a post-fill sorting run
6958 // seconds range:
6959 if (mSmallestUnit <= tuSeconds)
6960 availableSteps << 1;
6961 if (mSmallestUnit == tuMilliseconds)
6962 availableSteps << 2.5; // only allow half second steps if milliseconds are there to display it
6963 else if (mSmallestUnit == tuSeconds)
6964 availableSteps << 2;
6965 if (mSmallestUnit <= tuSeconds)
6966 availableSteps << 5 << 10 << 15 << 30;
6967 // minutes range:
6968 if (mSmallestUnit <= tuMinutes)
6969 availableSteps << 1*60;
6970 if (mSmallestUnit <= tuSeconds)
6971 availableSteps << 2.5*60; // only allow half minute steps if seconds are there to display it
6972 else if (mSmallestUnit == tuMinutes)
6973 availableSteps << 2*60;
6974 if (mSmallestUnit <= tuMinutes)
6975 availableSteps << 5*60 << 10*60 << 15*60 << 30*60;
6976 // hours range:
6977 if (mSmallestUnit <= tuHours)
6978 availableSteps << 1*3600 << 2*3600 << 3*3600 << 6*3600 << 12*3600 << 24*3600;
6979 // pick available step that is most appropriate to approximate ideal step:
6980 result = pickClosest(result, availableSteps);
6981 } else // more than a day, go back to normal clean mantissa algorithm but in units of days
6982 {
6983 const double secondsPerDay = 3600*24;
6984 result = cleanMantissa(result/secondsPerDay)*secondsPerDay;
6985 }
6986 return result;
6987}
6988
6989/*! \internal
6990
6991 Returns the sub tick count appropriate for the provided \a tickStep and time displays.
6992
6993 \seebaseclassmethod
6994*/
6996{
6997 int result = QCPAxisTicker::getSubTickCount(tickStep);
6998 switch (qRound(tickStep)) // hand chosen subticks for specific minute/hour/day range (as specified in getTickStep)
6999 {
7000 case 5*60: result = 4; break;
7001 case 10*60: result = 1; break;
7002 case 15*60: result = 2; break;
7003 case 30*60: result = 1; break;
7004 case 60*60: result = 3; break;
7005 case 3600*2: result = 3; break;
7006 case 3600*3: result = 2; break;
7007 case 3600*6: result = 1; break;
7008 case 3600*12: result = 3; break;
7009 case 3600*24: result = 3; break;
7010 }
7011 return result;
7012}
7013
7014/*! \internal
7015
7016 Returns the tick label corresponding to the provided \a tick and the configured format and field
7017 widths (\ref setTimeFormat, \ref setFieldWidth).
7018
7019 \seebaseclassmethod
7020*/
7021QString QCPAxisTickerTime::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
7022{
7023 Q_UNUSED(precision)
7025 Q_UNUSED(locale)
7026 bool negative = tick < 0;
7027 if (negative) tick *= -1;
7028 double values[tuDays+1]; // contains the msec/sec/min/... value with its respective modulo (e.g. minute 0..59)
7029 double restValues[tuDays+1]; // contains the msec/sec/min/... value as if it's the largest available unit and thus consumes the remaining time
7030
7031 restValues[tuMilliseconds] = tick*1000;
7034 values[tuMinutes] = modf(restValues[tuMinutes]/60, &restValues[tuHours])*60;
7035 values[tuHours] = modf(restValues[tuHours]/24, &restValues[tuDays])*24;
7036 // no need to set values[tuDays] because days are always a rest value (there is no higher unit so it consumes all remaining time)
7037
7038 // 2017-07-03: JM force wrap of hours value
7039 if (restValues[tuHours] > 24)
7040 restValues[tuHours] -= 24;
7041
7042 QString result = mTimeFormat;
7043 for (int i = mSmallestUnit; i <= mBiggestUnit; ++i)
7044 {
7045 TimeUnit iUnit = static_cast<TimeUnit>(i);
7046 replaceUnit(result, iUnit, qRound(iUnit == mBiggestUnit ? restValues[iUnit] : values[iUnit]));
7047 }
7048 if (negative)
7049 result.prepend(QLatin1Char('-'));
7050 return result;
7051}
7052
7053/*! \internal
7054
7055 Replaces all occurrences of the format pattern belonging to \a unit in \a text with the specified
7056 \a value, using the field width as specified with \ref setFieldWidth for the \a unit.
7057*/
7059{
7061 while (valueStr.size() < mFieldWidth.value(unit))
7062 valueStr.prepend(QLatin1Char('0'));
7063
7064 text.replace(mFormatPattern.value(unit), valueStr);
7065}
7066/* end of 'src/axis/axistickertime.cpp' */
7067
7068
7069/* including file 'src/axis/axistickerfixed.cpp' */
7070/* modified 2021-03-29T02:30:44, size 5575 */
7071
7072////////////////////////////////////////////////////////////////////////////////////////////////////
7073//////////////////// QCPAxisTickerFixed
7074////////////////////////////////////////////////////////////////////////////////////////////////////
7075/*! \class QCPAxisTickerFixed
7076 \brief Specialized axis ticker with a fixed tick step
7077
7078 \image html axisticker-fixed.png
7079
7080 This QCPAxisTicker subclass generates ticks with a fixed tick step set with \ref setTickStep. It
7081 is also possible to allow integer multiples and integer powers of the specified tick step with
7082 \ref setScaleStrategy.
7083
7084 A typical application of this ticker is to make an axis only display integers, by setting the
7085 tick step of the ticker to 1.0 and the scale strategy to \ref ssMultiples.
7086
7087 Another case is when a certain number has a special meaning and axis ticks should only appear at
7088 multiples of that value. In this case you might also want to consider \ref QCPAxisTickerPi
7089 because despite the name it is not limited to only pi symbols/values.
7090
7091 The ticker can be created and assigned to an axis like this:
7092 \snippet documentation/doc-image-generator/mainwindow.cpp axistickerfixed-creation
7093*/
7094
7095/*!
7096 Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
7097 managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
7098*/
7100 mTickStep(1.0),
7101 mScaleStrategy(ssNone)
7102{
7103}
7104
7105/*!
7106 Sets the fixed tick interval to \a step.
7107
7108 The axis ticker will only use this tick step when generating axis ticks. This might cause a very
7109 high tick density and overlapping labels if the axis range is zoomed out. Using \ref
7110 setScaleStrategy it is possible to relax the fixed step and also allow multiples or powers of \a
7111 step. This will enable the ticker to reduce the number of ticks to a reasonable amount (see \ref
7112 setTickCount).
7113*/
7115{
7116 if (step > 0)
7117 mTickStep = step;
7118 else
7119 qDebug() << Q_FUNC_INFO << "tick step must be greater than zero:" << step;
7120}
7121
7122/*!
7123 Sets whether the specified tick step (\ref setTickStep) is absolutely fixed or whether
7124 modifications may be applied to it before calculating the finally used tick step, such as
7125 permitting multiples or powers. See \ref ScaleStrategy for details.
7126
7127 The default strategy is \ref ssNone, which means the tick step is absolutely fixed.
7128*/
7133
7134/*! \internal
7135
7136 Determines the actually used tick step from the specified tick step and scale strategy (\ref
7137 setTickStep, \ref setScaleStrategy).
7138
7139 This method either returns the specified tick step exactly, or, if the scale strategy is not \ref
7140 ssNone, a modification of it to allow varying the number of ticks in the current axis range.
7141
7142 \seebaseclassmethod
7143*/
7145{
7146 switch (mScaleStrategy)
7147 {
7148 case ssNone:
7149 {
7150 return mTickStep;
7151 }
7152 case ssMultiples:
7153 {
7154 double exactStep = range.size()/double(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
7155 if (exactStep < mTickStep)
7156 return mTickStep;
7157 else
7158 return qint64(cleanMantissa(exactStep/mTickStep)+0.5)*mTickStep;
7159 }
7160 case ssPowers:
7161 {
7162 double exactStep = range.size()/double(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
7163 return qPow(mTickStep, int(qLn(exactStep)/qLn(mTickStep)+0.5));
7164 }
7165 }
7166 return mTickStep;
7167}
7168/* end of 'src/axis/axistickerfixed.cpp' */
7169
7170
7171/* including file 'src/axis/axistickertext.cpp' */
7172/* modified 2021-03-29T02:30:44, size 8742 */
7173
7174////////////////////////////////////////////////////////////////////////////////////////////////////
7175//////////////////// QCPAxisTickerText
7176////////////////////////////////////////////////////////////////////////////////////////////////////
7177/*! \class QCPAxisTickerText
7178 \brief Specialized axis ticker which allows arbitrary labels at specified coordinates
7179
7180 \image html axisticker-text.png
7181
7182 This QCPAxisTicker subclass generates ticks which can be directly specified by the user as
7183 coordinates and associated strings. They can be passed as a whole with \ref setTicks or one at a
7184 time with \ref addTick. Alternatively you can directly access the internal storage via \ref ticks
7185 and modify the tick/label data there.
7186
7187 This is useful for cases where the axis represents categories rather than numerical values.
7188
7189 If you are updating the ticks of this ticker regularly and in a dynamic fasion (e.g. dependent on
7190 the axis range), it is a sign that you should probably create an own ticker by subclassing
7191 QCPAxisTicker, instead of using this one.
7192
7193 The ticker can be created and assigned to an axis like this:
7194 \snippet documentation/doc-image-generator/mainwindow.cpp axistickertext-creation
7195*/
7196
7197/* start of documentation of inline functions */
7198
7199/*! \fn QMap<double, QString> &QCPAxisTickerText::ticks()
7200
7201 Returns a non-const reference to the internal map which stores the tick coordinates and their
7202 labels.
7203
7204 You can access the map directly in order to add, remove or manipulate ticks, as an alternative to
7205 using the methods provided by QCPAxisTickerText, such as \ref setTicks and \ref addTick.
7206*/
7207
7208/* end of documentation of inline functions */
7209
7210/*!
7211 Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
7212 managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
7213*/
7215 mSubTickCount(0)
7216{
7217}
7218
7219/*! \overload
7220
7221 Sets the ticks that shall appear on the axis. The map key of \a ticks corresponds to the axis
7222 coordinate, and the map value is the string that will appear as tick label.
7223
7224 An alternative to manipulate ticks is to directly access the internal storage with the \ref ticks
7225 getter.
7226
7227 \see addTicks, addTick, clear
7228*/
7230{
7231 mTicks = ticks;
7232}
7233
7234/*! \overload
7235
7236 Sets the ticks that shall appear on the axis. The entries of \a positions correspond to the axis
7237 coordinates, and the entries of \a labels are the respective strings that will appear as tick
7238 labels.
7239
7240 \see addTicks, addTick, clear
7241*/
7243{
7244 clear();
7245 addTicks(positions, labels);
7246}
7247
7248/*!
7249 Sets the number of sub ticks that shall appear between ticks. For QCPAxisTickerText, there is no
7250 automatic sub tick count calculation. So if sub ticks are needed, they must be configured with this
7251 method.
7252*/
7254{
7255 if (subTicks >= 0)
7256 mSubTickCount = subTicks;
7257 else
7258 qDebug() << Q_FUNC_INFO << "sub tick count can't be negative:" << subTicks;
7259}
7260
7261/*!
7262 Clears all ticks.
7263
7264 An alternative to manipulate ticks is to directly access the internal storage with the \ref ticks
7265 getter.
7266
7267 \see setTicks, addTicks, addTick
7268*/
7270{
7271 mTicks.clear();
7272}
7273
7274/*!
7275 Adds a single tick to the axis at the given axis coordinate \a position, with the provided tick \a
7276 label.
7277
7278 \see addTicks, setTicks, clear
7279*/
7280void QCPAxisTickerText::addTick(double position, const QString &label)
7281{
7282 mTicks.insert(position, label);
7283}
7284
7285/*! \overload
7286
7287 Adds the provided \a ticks to the ones already existing. The map key of \a ticks corresponds to
7288 the axis coordinate, and the map value is the string that will appear as tick label.
7289
7290 An alternative to manipulate ticks is to directly access the internal storage with the \ref ticks
7291 getter.
7292
7293 \see addTick, setTicks, clear
7294*/
7296{
7297#if QT_VERSION < QT_VERSION_CHECK(5, 15, 0)
7298 mTicks.unite(ticks);
7299#else
7300 mTicks.insert(ticks);
7301#endif
7302}
7303
7304/*! \overload
7305
7306 Adds the provided ticks to the ones already existing. The entries of \a positions correspond to
7307 the axis coordinates, and the entries of \a labels are the respective strings that will appear as
7308 tick labels.
7309
7310 An alternative to manipulate ticks is to directly access the internal storage with the \ref ticks
7311 getter.
7312
7313 \see addTick, setTicks, clear
7314*/
7316{
7317 if (positions.size() != labels.size())
7318 qDebug() << Q_FUNC_INFO << "passed unequal length vectors for positions and labels:" << positions.size() << labels.size();
7319 int n = qMin(positions.size(), labels.size());
7320 for (int i=0; i<n; ++i)
7321 mTicks.insert(positions.at(i), labels.at(i));
7322}
7323
7324/*!
7325 Since the tick coordinates are provided externally, this method implementation does nothing.
7326
7327 \seebaseclassmethod
7328*/
7330{
7331 // text axis ticker has manual tick positions, so doesn't need this method
7332 Q_UNUSED(range)
7333 return 1.0;
7334}
7335
7336/*!
7337 Returns the sub tick count that was configured with \ref setSubTickCount.
7338
7339 \seebaseclassmethod
7340*/
7342{
7343 Q_UNUSED(tickStep)
7344 return mSubTickCount;
7345}
7346
7347/*!
7348 Returns the tick label which corresponds to the key \a tick in the internal tick storage. Since
7349 the labels are provided externally, \a locale, \a formatChar, and \a precision are ignored.
7350
7351 \seebaseclassmethod
7352*/
7353QString QCPAxisTickerText::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
7354{
7355 Q_UNUSED(locale)
7357 Q_UNUSED(precision)
7358 return mTicks.value(tick);
7359}
7360
7361/*!
7362 Returns the externally provided tick coordinates which are in the specified \a range. If
7363 available, one tick above and below the range is provided in addition, to allow possible sub tick
7364 calculation. The parameter \a tickStep is ignored.
7365
7366 \seebaseclassmethod
7367*/
7369{
7370 Q_UNUSED(tickStep)
7371 QVector<double> result;
7372 if (mTicks.isEmpty())
7373 return result;
7374
7375 const QMap<double, QString> constTicks(mTicks);
7376 QMap<double, QString>::const_iterator start = constTicks.lowerBound(range.lower);
7377 QMap<double, QString>::const_iterator end = constTicks.upperBound(range.upper);
7378 // this method should try to give one tick outside of range so proper subticks can be generated:
7379 if (start != mTicks.constBegin()) --start;
7380 if (end != mTicks.constEnd()) ++end;
7381 for (QMap<double, QString>::const_iterator it = start; it != end; ++it)
7382 result.append(it.key());
7383
7384 return result;
7385}
7386/* end of 'src/axis/axistickertext.cpp' */
7387
7388
7389/* including file 'src/axis/axistickerpi.cpp' */
7390/* modified 2021-03-29T02:30:44, size 11177 */
7391
7392////////////////////////////////////////////////////////////////////////////////////////////////////
7393//////////////////// QCPAxisTickerPi
7394////////////////////////////////////////////////////////////////////////////////////////////////////
7395/*! \class QCPAxisTickerPi
7396 \brief Specialized axis ticker to display ticks in units of an arbitrary constant, for example pi
7397
7398 \image html axisticker-pi.png
7399
7400 This QCPAxisTicker subclass generates ticks that are expressed with respect to a given symbolic
7401 constant with a numerical value specified with \ref setPiValue and an appearance in the tick
7402 labels specified with \ref setPiSymbol.
7403
7404 Ticks may be generated at fractions of the symbolic constant. How these fractions appear in the
7405 tick label can be configured with \ref setFractionStyle.
7406
7407 The ticker can be created and assigned to an axis like this:
7408 \snippet documentation/doc-image-generator/mainwindow.cpp axistickerpi-creation
7409*/
7410
7411/*!
7412 Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
7413 managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
7414*/
7416 mPiSymbol(QLatin1String(" ")+QChar(0x03C0)),
7417 mPiValue(M_PI),
7418 mPeriodicity(0),
7419 mFractionStyle(fsUnicodeFractions),
7420 mPiTickStep(0)
7421{
7422 setTickCount(4);
7423}
7424
7425/*!
7426 Sets how the symbol part (which is always a suffix to the number) shall appear in the axis tick
7427 label.
7428
7429 If a space shall appear between the number and the symbol, make sure the space is contained in \a
7430 symbol.
7431*/
7433{
7434 mPiSymbol = symbol;
7435}
7436
7437/*!
7438 Sets the numerical value that the symbolic constant has.
7439
7440 This will be used to place the appropriate fractions of the symbol at the respective axis
7441 coordinates.
7442*/
7444{
7445 mPiValue = pi;
7446}
7447
7448/*!
7449 Sets whether the axis labels shall appear periodicly and if so, at which multiplicity of the
7450 symbolic constant.
7451
7452 To disable periodicity, set \a multiplesOfPi to zero.
7453
7454 For example, an axis that identifies 0 with 2pi would set \a multiplesOfPi to two.
7455*/
7457{
7458 mPeriodicity = qAbs(multiplesOfPi);
7459}
7460
7461/*!
7462 Sets how the numerical/fractional part preceding the symbolic constant is displayed in tick
7463 labels. See \ref FractionStyle for the various options.
7464*/
7466{
7467 mFractionStyle = style;
7468}
7469
7470/*! \internal
7471
7472 Returns the tick step, using the constant's value (\ref setPiValue) as base unit. In consequence
7473 the numerical/fractional part preceding the symbolic constant is made to have a readable
7474 mantissa.
7475
7476 \seebaseclassmethod
7477*/
7479{
7480 mPiTickStep = range.size()/mPiValue/double(mTickCount+1e-10); // mTickCount ticks on average, the small addition is to prevent jitter on exact integers
7481 mPiTickStep = cleanMantissa(mPiTickStep);
7482 return mPiTickStep*mPiValue;
7483}
7484
7485/*! \internal
7486
7487 Returns the sub tick count, using the constant's value (\ref setPiValue) as base unit. In
7488 consequence the sub ticks divide the numerical/fractional part preceding the symbolic constant
7489 reasonably, and not the total tick coordinate.
7490
7491 \seebaseclassmethod
7492*/
7494{
7495 return QCPAxisTicker::getSubTickCount(tickStep/mPiValue);
7496}
7497
7498/*! \internal
7499
7500 Returns the tick label as a fractional/numerical part and a symbolic string as suffix. The
7501 formatting of the fraction is done according to the specified \ref setFractionStyle. The appended
7502 symbol is specified with \ref setPiSymbol.
7503
7504 \seebaseclassmethod
7505*/
7506QString QCPAxisTickerPi::getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
7507{
7508 double tickInPis = tick/mPiValue;
7509 if (mPeriodicity > 0)
7510 tickInPis = fmod(tickInPis, mPeriodicity);
7511
7512 if (mFractionStyle != fsFloatingPoint && mPiTickStep > 0.09 && mPiTickStep < 50)
7513 {
7514 // simply construct fraction from decimal like 1.234 -> 1234/1000 and then simplify fraction, smaller digits are irrelevant due to mPiTickStep conditional above
7515 int denominator = 1000;
7516 int numerator = qRound(tickInPis*denominator);
7518 if (qAbs(numerator) == 1 && denominator == 1)
7519 return (numerator < 0 ? QLatin1String("-") : QLatin1String("")) + mPiSymbol.trimmed();
7520 else if (numerator == 0)
7521 return QLatin1String("0");
7522 else
7523 return fractionToString(numerator, denominator) + mPiSymbol;
7524 } else
7525 {
7527 return QLatin1String("0");
7528 else if (qFuzzyCompare(qAbs(tickInPis), 1.0))
7529 return (tickInPis < 0 ? QLatin1String("-") : QLatin1String("")) + mPiSymbol.trimmed();
7530 else
7531 return QCPAxisTicker::getTickLabel(tickInPis, locale, formatChar, precision) + mPiSymbol;
7532 }
7533}
7534
7535/*! \internal
7536
7537 Takes the fraction given by \a numerator and \a denominator and modifies the values to make sure
7538 the fraction is in irreducible form, i.e. numerator and denominator don't share any common
7539 factors which could be cancelled.
7540*/
7542{
7543 if (numerator == 0 || denominator == 0)
7544 return;
7545
7546 int num = numerator;
7547 int denom = denominator;
7548 while (denom != 0) // euclidean gcd algorithm
7549 {
7550 int oldDenom = denom;
7551 denom = num % denom;
7552 num = oldDenom;
7553 }
7554 // num is now gcd of numerator and denominator
7555 numerator /= num;
7556 denominator /= num;
7557}
7558
7559/*! \internal
7560
7561 Takes the fraction given by \a numerator and \a denominator and returns a string representation.
7562 The result depends on the configured fraction style (\ref setFractionStyle).
7563
7564 This method is used to format the numerical/fractional part when generating tick labels. It
7565 simplifies the passed fraction to an irreducible form using \ref simplifyFraction and factors out
7566 any integer parts of the fraction (e.g. "10/4" becomes "2 1/2").
7567*/
7569{
7570 if (denominator == 0)
7571 {
7572 qDebug() << Q_FUNC_INFO << "called with zero denominator";
7573 return QString();
7574 }
7575 if (mFractionStyle == fsFloatingPoint) // should never be the case when calling this function
7576 {
7577 qDebug() << Q_FUNC_INFO << "shouldn't be called with fraction style fsDecimal";
7578 return QString::number(numerator/double(denominator)); // failsafe
7579 }
7580 int sign = numerator*denominator < 0 ? -1 : 1;
7583
7584 if (denominator == 1)
7585 {
7586 return QString::number(sign*numerator);
7587 } else
7588 {
7591 if (remainder == 0)
7592 {
7593 return QString::number(sign*integerPart);
7594 } else
7595 {
7596 if (mFractionStyle == fsAsciiFractions)
7597 {
7598 return QString(QLatin1String("%1%2%3/%4"))
7599 .arg(sign == -1 ? QLatin1String("-") : QLatin1String(""))
7601 .arg(remainder)
7602 .arg(denominator);
7603 } else if (mFractionStyle == fsUnicodeFractions)
7604 {
7605 return QString(QLatin1String("%1%2%3"))
7606 .arg(sign == -1 ? QLatin1String("-") : QLatin1String(""))
7609 }
7610 }
7611 }
7612 return QString();
7613}
7614
7615/*! \internal
7616
7617 Returns the unicode string representation of the fraction given by \a numerator and \a
7618 denominator. This is the representation used in \ref fractionToString when the fraction style
7619 (\ref setFractionStyle) is \ref fsUnicodeFractions.
7620
7621 This method doesn't use the single-character common fractions but builds each fraction from a
7622 superscript unicode number, the unicode fraction character, and a subscript unicode number.
7623*/
7628
7629/*! \internal
7630
7631 Returns the unicode string representing \a number as superscript. This is used to build
7632 unicode fractions in \ref unicodeFraction.
7633*/
7635{
7636 if (number == 0)
7637 return QString(QChar(0x2070));
7638
7639 QString result;
7640 while (number > 0)
7641 {
7642 const int digit = number%10;
7643 switch (digit)
7644 {
7645 case 1: { result.prepend(QChar(0x00B9)); break; }
7646 case 2: { result.prepend(QChar(0x00B2)); break; }
7647 case 3: { result.prepend(QChar(0x00B3)); break; }
7648 default: { result.prepend(QChar(0x2070+digit)); break; }
7649 }
7650 number /= 10;
7651 }
7652 return result;
7653}
7654
7655/*! \internal
7656
7657 Returns the unicode string representing \a number as subscript. This is used to build unicode
7658 fractions in \ref unicodeFraction.
7659*/
7661{
7662 if (number == 0)
7663 return QString(QChar(0x2080));
7664
7665 QString result;
7666 while (number > 0)
7667 {
7668 result.prepend(QChar(0x2080+number%10));
7669 number /= 10;
7670 }
7671 return result;
7672}
7673/* end of 'src/axis/axistickerpi.cpp' */
7674
7675
7676/* including file 'src/axis/axistickerlog.cpp' */
7677/* modified 2021-03-29T02:30:44, size 7890 */
7678
7679////////////////////////////////////////////////////////////////////////////////////////////////////
7680//////////////////// QCPAxisTickerLog
7681////////////////////////////////////////////////////////////////////////////////////////////////////
7682/*! \class QCPAxisTickerLog
7683 \brief Specialized axis ticker suited for logarithmic axes
7684
7685 \image html axisticker-log.png
7686
7687 This QCPAxisTicker subclass generates ticks with unequal tick intervals suited for logarithmic
7688 axis scales. The ticks are placed at powers of the specified log base (\ref setLogBase).
7689
7690 Especially in the case of a log base equal to 10 (the default), it might be desirable to have
7691 tick labels in the form of powers of ten without mantissa display. To achieve this, set the
7692 number precision (\ref QCPAxis::setNumberPrecision) to zero and the number format (\ref
7693 QCPAxis::setNumberFormat) to scientific (exponential) display with beautifully typeset decimal
7694 powers, so a format string of <tt>"eb"</tt>. This will result in the following axis tick labels:
7695
7696 \image html axisticker-log-powers.png
7697
7698 The ticker can be created and assigned to an axis like this:
7699 \snippet documentation/doc-image-generator/mainwindow.cpp axistickerlog-creation
7700
7701 Note that the nature of logarithmic ticks imply that there exists a smallest possible tick step,
7702 corresponding to one multiplication by the log base. If the user zooms in further than that, no
7703 new ticks would appear, leading to very sparse or even no axis ticks on the axis. To prevent this
7704 situation, this ticker falls back to regular tick generation if the axis range would be covered
7705 by too few logarithmically placed ticks.
7706*/
7707
7708/*!
7709 Constructs the ticker and sets reasonable default values. Axis tickers are commonly created
7710 managed by a QSharedPointer, which then can be passed to QCPAxis::setTicker.
7711*/
7713 mLogBase(10.0),
7714 mSubTickCount(8), // generates 10 intervals
7715 mLogBaseLnInv(1.0/qLn(mLogBase))
7716{
7717}
7718
7719/*!
7720 Sets the logarithm base used for tick coordinate generation. The ticks will be placed at integer
7721 powers of \a base.
7722*/
7724{
7725 if (base > 0)
7726 {
7727 mLogBase = base;
7728 mLogBaseLnInv = 1.0/qLn(mLogBase);
7729 } else
7730 qDebug() << Q_FUNC_INFO << "log base has to be greater than zero:" << base;
7731}
7732
7733/*!
7734 Sets the number of sub ticks in a tick interval. Within each interval, the sub ticks are spaced
7735 linearly to provide a better visual guide, so the sub tick density increases toward the higher
7736 tick.
7737
7738 Note that \a subTicks is the number of sub ticks (not sub intervals) in one tick interval. So in
7739 the case of logarithm base 10 an intuitive sub tick spacing would be achieved with eight sub
7740 ticks (the default). This means e.g. between the ticks 10 and 100 there will be eight ticks,
7741 namely at 20, 30, 40, 50, 60, 70, 80 and 90.
7742*/
7744{
7745 if (subTicks >= 0)
7746 mSubTickCount = subTicks;
7747 else
7748 qDebug() << Q_FUNC_INFO << "sub tick count can't be negative:" << subTicks;
7749}
7750
7751/*! \internal
7752
7753 Returns the sub tick count specified in \ref setSubTickCount. For QCPAxisTickerLog, there is no
7754 automatic sub tick count calculation necessary.
7755
7756 \seebaseclassmethod
7757*/
7759{
7760 Q_UNUSED(tickStep)
7761 return mSubTickCount;
7762}
7763
7764/*! \internal
7765
7766 Creates ticks with a spacing given by the logarithm base and an increasing integer power in the
7767 provided \a range. The step in which the power increases tick by tick is chosen in order to keep
7768 the total number of ticks as close as possible to the tick count (\ref setTickCount).
7769
7770 The parameter \a tickStep is ignored for the normal logarithmic ticker generation. Only when
7771 zoomed in very far such that not enough logarithmically placed ticks would be visible, this
7772 function falls back to the regular QCPAxisTicker::createTickVector, which then uses \a tickStep.
7773
7774 \seebaseclassmethod
7775*/
7777{
7778 QVector<double> result;
7779 if (range.lower > 0 && range.upper > 0) // positive range
7780 {
7781 const double baseTickCount = qLn(range.upper/range.lower)*mLogBaseLnInv;
7782 if (baseTickCount < 1.6) // if too few log ticks would be visible in axis range, fall back to regular tick vector generation
7783 return QCPAxisTicker::createTickVector(tickStep, range);
7784 const double exactPowerStep = baseTickCount/double(mTickCount+1e-10);
7785 const double newLogBase = qPow(mLogBase, qMax(int(cleanMantissa(exactPowerStep)), 1));
7786 double currentTick = qPow(newLogBase, qFloor(qLn(range.lower)/qLn(newLogBase)));
7787 result.append(currentTick);
7788 while (currentTick < range.upper && currentTick > 0) // currentMag might be zero for ranges ~1e-300, just cancel in that case
7789 {
7791 result.append(currentTick);
7792 }
7793 } else if (range.lower < 0 && range.upper < 0) // negative range
7794 {
7795 const double baseTickCount = qLn(range.lower/range.upper)*mLogBaseLnInv;
7796 if (baseTickCount < 1.6) // if too few log ticks would be visible in axis range, fall back to regular tick vector generation
7797 return QCPAxisTicker::createTickVector(tickStep, range);
7798 const double exactPowerStep = baseTickCount/double(mTickCount+1e-10);
7799 const double newLogBase = qPow(mLogBase, qMax(int(cleanMantissa(exactPowerStep)), 1));
7800 double currentTick = -qPow(newLogBase, qCeil(qLn(-range.lower)/qLn(newLogBase)));
7801 result.append(currentTick);
7802 while (currentTick < range.upper && currentTick < 0) // currentMag might be zero for ranges ~1e-300, just cancel in that case
7803 {
7805 result.append(currentTick);
7806 }
7807 } else // invalid range for logarithmic scale, because lower and upper have different sign
7808 {
7809 qDebug() << Q_FUNC_INFO << "Invalid range for logarithmic plot: " << range.lower << ".." << range.upper;
7810 }
7811
7812 return result;
7813}
7814/* end of 'src/axis/axistickerlog.cpp' */
7815
7816
7817/* including file 'src/axis/axis.cpp' */
7818/* modified 2021-03-29T02:30:44, size 99883 */
7819
7820
7821////////////////////////////////////////////////////////////////////////////////////////////////////
7822//////////////////// QCPGrid
7823////////////////////////////////////////////////////////////////////////////////////////////////////
7824
7825/*! \class QCPGrid
7826 \brief Responsible for drawing the grid of a QCPAxis.
7827
7828 This class is tightly bound to QCPAxis. Every axis owns a grid instance and uses it to draw the
7829 grid lines, sub grid lines and zero-line. You can interact with the grid of an axis via \ref
7830 QCPAxis::grid. Normally, you don't need to create an instance of QCPGrid yourself.
7831
7832 The axis and grid drawing was split into two classes to allow them to be placed on different
7833 layers (both QCPAxis and QCPGrid inherit from QCPLayerable). Thus it is possible to have the grid
7834 in the background and the axes in the foreground, and any plottables/items in between. This
7835 described situation is the default setup, see the QCPLayer documentation.
7836*/
7837
7838/*!
7839 Creates a QCPGrid instance and sets default values.
7840
7841 You shouldn't instantiate grids on their own, since every QCPAxis brings its own QCPGrid.
7842*/
7844 QCPLayerable(parentAxis->parentPlot(), QString(), parentAxis),
7845 mSubGridVisible{},
7846 mAntialiasedSubGrid{},
7847 mAntialiasedZeroLine{},
7848 mParentAxis(parentAxis)
7849{
7850 // warning: this is called in QCPAxis constructor, so parentAxis members should not be accessed/called
7852 setPen(QPen(QColor(200,200,200), 0, Qt::DotLine));
7853 setSubGridPen(QPen(QColor(220,220,220), 0, Qt::DotLine));
7854 setZeroLinePen(QPen(QColor(200,200,200), 0, Qt::SolidLine));
7855 setSubGridVisible(false);
7856 setAntialiased(false);
7857 setAntialiasedSubGrid(false);
7859}
7860
7861/*!
7862 Sets whether grid lines at sub tick marks are drawn.
7863
7864 \see setSubGridPen
7865*/
7867{
7868 mSubGridVisible = visible;
7869}
7870
7871/*!
7872 Sets whether sub grid lines are drawn antialiased.
7873*/
7875{
7876 mAntialiasedSubGrid = enabled;
7877}
7878
7879/*!
7880 Sets whether zero lines are drawn antialiased.
7881*/
7883{
7884 mAntialiasedZeroLine = enabled;
7885}
7886
7887/*!
7888 Sets the pen with which (major) grid lines are drawn.
7889*/
7890void QCPGrid::setPen(const QPen &pen)
7891{
7892 mPen = pen;
7893}
7894
7895/*!
7896 Sets the pen with which sub grid lines are drawn.
7897*/
7899{
7900 mSubGridPen = pen;
7901}
7902
7903/*!
7904 Sets the pen with which zero lines are drawn.
7905
7906 Zero lines are lines at value coordinate 0 which may be drawn with a different pen than other grid
7907 lines. To disable zero lines and just draw normal grid lines at zero, set \a pen to Qt::NoPen.
7908*/
7910{
7911 mZeroLinePen = pen;
7912}
7913
7914/*! \internal
7915
7916 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
7917 before drawing the major grid lines.
7918
7919 This is the antialiasing state the painter passed to the \ref draw method is in by default.
7920
7921 This function takes into account the local setting of the antialiasing flag as well as the
7922 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
7923 QCustomPlot::setNotAntialiasedElements.
7924
7925 \see setAntialiased
7926*/
7928{
7929 applyAntialiasingHint(painter, mAntialiased, QCP::aeGrid);
7930}
7931
7932/*! \internal
7933
7934 Draws grid lines and sub grid lines at the positions of (sub) ticks of the parent axis, spanning
7935 over the complete axis rect. Also draws the zero line, if appropriate (\ref setZeroLinePen).
7936*/
7938{
7939 if (!mParentAxis) { qDebug() << Q_FUNC_INFO << "invalid parent axis"; return; }
7940
7941 if (mParentAxis->subTicks() && mSubGridVisible)
7942 drawSubGridLines(painter);
7943 drawGridLines(painter);
7944}
7945
7946/*! \internal
7947
7948 Draws the main grid lines and possibly a zero line with the specified painter.
7949
7950 This is a helper function called by \ref draw.
7951*/
7953{
7954 if (!mParentAxis) { qDebug() << Q_FUNC_INFO << "invalid parent axis"; return; }
7955
7956 const int tickCount = mParentAxis->mTickVector.size();
7957 double t; // helper variable, result of coordinate-to-pixel transforms
7958 if (mParentAxis->orientation() == Qt::Horizontal)
7959 {
7960 // draw zeroline:
7961 int zeroLineIndex = -1;
7962 if (mZeroLinePen.style() != Qt::NoPen && mParentAxis->mRange.lower < 0 && mParentAxis->mRange.upper > 0)
7963 {
7964 applyAntialiasingHint(painter, mAntialiasedZeroLine, QCP::aeZeroLine);
7965 painter->setPen(mZeroLinePen);
7966 double epsilon = mParentAxis->range().size()*1E-6; // for comparing double to zero
7967 for (int i=0; i<tickCount; ++i)
7968 {
7969 if (qAbs(mParentAxis->mTickVector.at(i)) < epsilon)
7970 {
7971 zeroLineIndex = i;
7972 t = mParentAxis->coordToPixel(mParentAxis->mTickVector.at(i)); // x
7973 painter->drawLine(QLineF(t, mParentAxis->mAxisRect->bottom(), t, mParentAxis->mAxisRect->top()));
7974 break;
7975 }
7976 }
7977 }
7978 // draw grid lines:
7980 painter->setPen(mPen);
7981 for (int i=0; i<tickCount; ++i)
7982 {
7983 if (i == zeroLineIndex) continue; // don't draw a gridline on top of the zeroline
7984 t = mParentAxis->coordToPixel(mParentAxis->mTickVector.at(i)); // x
7985 painter->drawLine(QLineF(t, mParentAxis->mAxisRect->bottom(), t, mParentAxis->mAxisRect->top()));
7986 }
7987 } else
7988 {
7989 // draw zeroline:
7990 int zeroLineIndex = -1;
7991 if (mZeroLinePen.style() != Qt::NoPen && mParentAxis->mRange.lower < 0 && mParentAxis->mRange.upper > 0)
7992 {
7993 applyAntialiasingHint(painter, mAntialiasedZeroLine, QCP::aeZeroLine);
7994 painter->setPen(mZeroLinePen);
7995 double epsilon = mParentAxis->mRange.size()*1E-6; // for comparing double to zero
7996 for (int i=0; i<tickCount; ++i)
7997 {
7998 if (qAbs(mParentAxis->mTickVector.at(i)) < epsilon)
7999 {
8000 zeroLineIndex = i;
8001 t = mParentAxis->coordToPixel(mParentAxis->mTickVector.at(i)); // y
8002 painter->drawLine(QLineF(mParentAxis->mAxisRect->left(), t, mParentAxis->mAxisRect->right(), t));
8003 break;
8004 }
8005 }
8006 }
8007 // draw grid lines:
8009 painter->setPen(mPen);
8010 for (int i=0; i<tickCount; ++i)
8011 {
8012 if (i == zeroLineIndex) continue; // don't draw a gridline on top of the zeroline
8013 t = mParentAxis->coordToPixel(mParentAxis->mTickVector.at(i)); // y
8014 painter->drawLine(QLineF(mParentAxis->mAxisRect->left(), t, mParentAxis->mAxisRect->right(), t));
8015 }
8016 }
8017}
8018
8019/*! \internal
8020
8021 Draws the sub grid lines with the specified painter.
8022
8023 This is a helper function called by \ref draw.
8024*/
8026{
8027 if (!mParentAxis) { qDebug() << Q_FUNC_INFO << "invalid parent axis"; return; }
8028
8029 applyAntialiasingHint(painter, mAntialiasedSubGrid, QCP::aeSubGrid);
8030 double t; // helper variable, result of coordinate-to-pixel transforms
8031 painter->setPen(mSubGridPen);
8032 if (mParentAxis->orientation() == Qt::Horizontal)
8033 {
8034 foreach (double tickCoord, mParentAxis->mSubTickVector)
8035 {
8036 t = mParentAxis->coordToPixel(tickCoord); // x
8037 painter->drawLine(QLineF(t, mParentAxis->mAxisRect->bottom(), t, mParentAxis->mAxisRect->top()));
8038 }
8039 } else
8040 {
8041 foreach (double tickCoord, mParentAxis->mSubTickVector)
8042 {
8043 t = mParentAxis->coordToPixel(tickCoord); // y
8044 painter->drawLine(QLineF(mParentAxis->mAxisRect->left(), t, mParentAxis->mAxisRect->right(), t));
8045 }
8046 }
8047}
8048
8049
8050////////////////////////////////////////////////////////////////////////////////////////////////////
8051//////////////////// QCPAxis
8052////////////////////////////////////////////////////////////////////////////////////////////////////
8053
8054/*! \class QCPAxis
8055 \brief Manages a single axis inside a QCustomPlot.
8056
8057 Usually doesn't need to be instantiated externally. Access %QCustomPlot's default four axes via
8058 QCustomPlot::xAxis (bottom), QCustomPlot::yAxis (left), QCustomPlot::xAxis2 (top) and
8059 QCustomPlot::yAxis2 (right).
8060
8061 Axes are always part of an axis rect, see QCPAxisRect.
8062 \image html AxisNamesOverview.png
8063 <center>Naming convention of axis parts</center>
8064 \n
8065
8066 \image html AxisRectSpacingOverview.png
8067 <center>Overview of the spacings and paddings that define the geometry of an axis. The dashed gray line
8068 on the left represents the QCustomPlot widget border.</center>
8069
8070 Each axis holds an instance of QCPAxisTicker which is used to generate the tick coordinates and
8071 tick labels. You can access the currently installed \ref ticker or set a new one (possibly one of
8072 the specialized subclasses, or your own subclass) via \ref setTicker. For details, see the
8073 documentation of QCPAxisTicker.
8074*/
8075
8076/* start of documentation of inline functions */
8077
8078/*! \fn Qt::Orientation QCPAxis::orientation() const
8079
8080 Returns the orientation of this axis. The axis orientation (horizontal or vertical) is deduced
8081 from the axis type (left, top, right or bottom).
8082
8083 \see orientation(AxisType type), pixelOrientation
8084*/
8085
8086/*! \fn QCPGrid *QCPAxis::grid() const
8087
8088 Returns the \ref QCPGrid instance belonging to this axis. Access it to set details about the way the
8089 grid is displayed.
8090*/
8091
8092/*! \fn static Qt::Orientation QCPAxis::orientation(AxisType type)
8093
8094 Returns the orientation of the specified axis type
8095
8096 \see orientation(), pixelOrientation
8097*/
8098
8099/*! \fn int QCPAxis::pixelOrientation() const
8100
8101 Returns which direction points towards higher coordinate values/keys, in pixel space.
8102
8103 This method returns either 1 or -1. If it returns 1, then going in the positive direction along
8104 the orientation of the axis in pixels corresponds to going from lower to higher axis coordinates.
8105 On the other hand, if this method returns -1, going to smaller pixel values corresponds to going
8106 from lower to higher axis coordinates.
8107
8108 For example, this is useful to easily shift axis coordinates by a certain amount given in pixels,
8109 without having to care about reversed or vertically aligned axes:
8110
8111 \code
8112 double newKey = keyAxis->pixelToCoord(keyAxis->coordToPixel(oldKey)+10*keyAxis->pixelOrientation());
8113 \endcode
8114
8115 \a newKey will then contain a key that is ten pixels towards higher keys, starting from \a oldKey.
8116*/
8117
8118/*! \fn QSharedPointer<QCPAxisTicker> QCPAxis::ticker() const
8119
8120 Returns a modifiable shared pointer to the currently installed axis ticker. The axis ticker is
8121 responsible for generating the tick positions and tick labels of this axis. You can access the
8122 \ref QCPAxisTicker with this method and modify basic properties such as the approximate tick count
8123 (\ref QCPAxisTicker::setTickCount).
8124
8125 You can gain more control over the axis ticks by setting a different \ref QCPAxisTicker subclass, see
8126 the documentation there. A new axis ticker can be set with \ref setTicker.
8127
8128 Since the ticker is stored in the axis as a shared pointer, multiple axes may share the same axis
8129 ticker simply by passing the same shared pointer to multiple axes.
8130
8131 \see setTicker
8132*/
8133
8134/* end of documentation of inline functions */
8135/* start of documentation of signals */
8136
8137/*! \fn void QCPAxis::rangeChanged(const QCPRange &newRange)
8138
8139 This signal is emitted when the range of this axis has changed. You can connect it to the \ref
8140 setRange slot of another axis to communicate the new range to the other axis, in order for it to
8141 be synchronized.
8142
8143 You may also manipulate/correct the range with \ref setRange in a slot connected to this signal.
8144 This is useful if for example a maximum range span shall not be exceeded, or if the lower/upper
8145 range shouldn't go beyond certain values (see \ref QCPRange::bounded). For example, the following
8146 slot would limit the x axis to ranges between 0 and 10:
8147 \code
8148 customPlot->xAxis->setRange(newRange.bounded(0, 10))
8149 \endcode
8150*/
8151
8152/*! \fn void QCPAxis::rangeChanged(const QCPRange &newRange, const QCPRange &oldRange)
8153 \overload
8154
8155 Additionally to the new range, this signal also provides the previous range held by the axis as
8156 \a oldRange.
8157*/
8158
8159/*! \fn void QCPAxis::scaleTypeChanged(QCPAxis::ScaleType scaleType);
8160
8161 This signal is emitted when the scale type changes, by calls to \ref setScaleType
8162*/
8163
8164/*! \fn void QCPAxis::selectionChanged(QCPAxis::SelectableParts selection)
8165
8166 This signal is emitted when the selection state of this axis has changed, either by user interaction
8167 or by a direct call to \ref setSelectedParts.
8168*/
8169
8170/*! \fn void QCPAxis::selectableChanged(const QCPAxis::SelectableParts &parts);
8171
8172 This signal is emitted when the selectability changes, by calls to \ref setSelectableParts
8173*/
8174
8175/* end of documentation of signals */
8176
8177/*!
8178 Constructs an Axis instance of Type \a type for the axis rect \a parent.
8179
8180 Usually it isn't necessary to instantiate axes directly, because you can let QCustomPlot create
8181 them for you with \ref QCPAxisRect::addAxis. If you want to use own QCPAxis-subclasses however,
8182 create them manually and then inject them also via \ref QCPAxisRect::addAxis.
8183*/
8185 QCPLayerable(parent->parentPlot(), QString(), parent),
8186 // axis base:
8187 mAxisType(type),
8188 mAxisRect(parent),
8189 mPadding(5),
8190 mOrientation(orientation(type)),
8191 mSelectableParts(spAxis | spTickLabels | spAxisLabel),
8192 mSelectedParts(spNone),
8193 mBasePen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
8194 mSelectedBasePen(QPen(Qt::blue, 2)),
8195 // axis label:
8196 mLabel(),
8197 mLabelFont(mParentPlot->font()),
8198 mSelectedLabelFont(QFont(mLabelFont.family(), mLabelFont.pointSize(), QFont::Bold)),
8199 mLabelColor(Qt::black),
8200 mSelectedLabelColor(Qt::blue),
8201 // tick labels:
8202 mTickLabels(true),
8203 mTickLabelFont(mParentPlot->font()),
8204 mSelectedTickLabelFont(QFont(mTickLabelFont.family(), mTickLabelFont.pointSize(), QFont::Bold)),
8205 mTickLabelColor(Qt::black),
8206 mSelectedTickLabelColor(Qt::blue),
8207 mNumberPrecision(6),
8208 mNumberFormatChar('g'),
8209 mNumberBeautifulPowers(true),
8210 // ticks and subticks:
8211 mTicks(true),
8212 mSubTicks(true),
8213 mTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
8214 mSelectedTickPen(QPen(Qt::blue, 2)),
8215 mSubTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
8216 mSelectedSubTickPen(QPen(Qt::blue, 2)),
8217 // scale and range:
8218 mRange(0, 5),
8219 mRangeReversed(false),
8220 mScaleType(stLinear),
8221 // internal members:
8222 mGrid(new QCPGrid(this)),
8223 mAxisPainter(new QCPAxisPainterPrivate(parent->parentPlot())),
8224 mTicker(new QCPAxisTicker),
8225 mCachedMarginValid(false),
8226 mCachedMargin(0),
8227 mDragging(false)
8228{
8230 mGrid->setVisible(false);
8231 setAntialiased(false);
8232 setLayer(mParentPlot->currentLayer()); // it's actually on that layer already, but we want it in front of the grid, so we place it on there again
8233
8234 if (type == atTop)
8235 {
8237 setLabelPadding(6);
8238 } else if (type == atRight)
8239 {
8241 setLabelPadding(12);
8242 } else if (type == atBottom)
8243 {
8245 setLabelPadding(3);
8246 } else if (type == atLeft)
8247 {
8249 setLabelPadding(10);
8250 }
8251}
8252
8253QCPAxis::~QCPAxis()
8254{
8255 delete mAxisPainter;
8256 delete mGrid; // delete grid here instead of via parent ~QObject for better defined deletion order
8257}
8258
8259/* No documentation as it is a property getter */
8260int QCPAxis::tickLabelPadding() const
8261{
8262 return mAxisPainter->tickLabelPadding;
8263}
8264
8265/* No documentation as it is a property getter */
8266double QCPAxis::tickLabelRotation() const
8267{
8268 return mAxisPainter->tickLabelRotation;
8269}
8270
8271/* No documentation as it is a property getter */
8272QCPAxis::LabelSide QCPAxis::tickLabelSide() const
8273{
8274 return mAxisPainter->tickLabelSide;
8275}
8276
8277/* No documentation as it is a property getter */
8278QString QCPAxis::numberFormat() const
8279{
8280 QString result;
8281 result.append(mNumberFormatChar);
8282 if (mNumberBeautifulPowers)
8283 {
8284 result.append(QLatin1Char('b'));
8285 if (mAxisPainter->numberMultiplyCross)
8286 result.append(QLatin1Char('c'));
8287 }
8288 return result;
8289}
8290
8291/* No documentation as it is a property getter */
8292int QCPAxis::tickLengthIn() const
8293{
8294 return mAxisPainter->tickLengthIn;
8295}
8296
8297/* No documentation as it is a property getter */
8298int QCPAxis::tickLengthOut() const
8299{
8300 return mAxisPainter->tickLengthOut;
8301}
8302
8303/* No documentation as it is a property getter */
8304int QCPAxis::subTickLengthIn() const
8305{
8306 return mAxisPainter->subTickLengthIn;
8307}
8308
8309/* No documentation as it is a property getter */
8310int QCPAxis::subTickLengthOut() const
8311{
8312 return mAxisPainter->subTickLengthOut;
8313}
8314
8315/* No documentation as it is a property getter */
8316int QCPAxis::labelPadding() const
8317{
8318 return mAxisPainter->labelPadding;
8319}
8320
8321/* No documentation as it is a property getter */
8322int QCPAxis::offset() const
8323{
8324 return mAxisPainter->offset;
8325}
8326
8327/* No documentation as it is a property getter */
8328QCPLineEnding QCPAxis::lowerEnding() const
8329{
8330 return mAxisPainter->lowerEnding;
8331}
8332
8333/* No documentation as it is a property getter */
8334QCPLineEnding QCPAxis::upperEnding() const
8335{
8336 return mAxisPainter->upperEnding;
8337}
8338
8339/*!
8340 Sets whether the axis uses a linear scale or a logarithmic scale.
8341
8342 Note that this method controls the coordinate transformation. For logarithmic scales, you will
8343 likely also want to use a logarithmic tick spacing and labeling, which can be achieved by setting
8344 the axis ticker to an instance of \ref QCPAxisTickerLog :
8345
8346 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpaxisticker-log-creation
8347
8348 See the documentation of \ref QCPAxisTickerLog about the details of logarithmic axis tick
8349 creation.
8350
8351 \ref setNumberPrecision
8352*/
8354{
8355 if (mScaleType != type)
8356 {
8357 mScaleType = type;
8358 if (mScaleType == stLogarithmic)
8360 mCachedMarginValid = false;
8361 emit scaleTypeChanged(mScaleType);
8362 }
8363}
8364
8365/*!
8366 Sets the range of the axis.
8367
8368 This slot may be connected with the \ref rangeChanged signal of another axis so this axis
8369 is always synchronized with the other axis range, when it changes.
8370
8371 To invert the direction of an axis, use \ref setRangeReversed.
8372*/
8373void QCPAxis::setRange(const QCPRange &range)
8374{
8375 if (range.lower == mRange.lower && range.upper == mRange.upper)
8376 return;
8377
8378 if (!QCPRange::validRange(range)) return;
8379 QCPRange oldRange = mRange;
8380 if (mScaleType == stLogarithmic)
8381 {
8382 mRange = range.sanitizedForLogScale();
8383 } else
8384 {
8385 mRange = range.sanitizedForLinScale();
8386 }
8387 emit rangeChanged(mRange);
8388 emit rangeChanged(mRange, oldRange);
8389}
8390
8391/*!
8392 Sets whether the user can (de-)select the parts in \a selectable by clicking on the QCustomPlot surface.
8393 (When \ref QCustomPlot::setInteractions contains iSelectAxes.)
8394
8395 However, even when \a selectable is set to a value not allowing the selection of a specific part,
8396 it is still possible to set the selection of this part manually, by calling \ref setSelectedParts
8397 directly.
8398
8399 \see SelectablePart, setSelectedParts
8400*/
8402{
8403 if (mSelectableParts != selectable)
8404 {
8405 mSelectableParts = selectable;
8406 emit selectableChanged(mSelectableParts);
8407 }
8408}
8409
8410/*!
8411 Sets the selected state of the respective axis parts described by \ref SelectablePart. When a part
8412 is selected, it uses a different pen/font.
8413
8414 The entire selection mechanism for axes is handled automatically when \ref
8415 QCustomPlot::setInteractions contains iSelectAxes. You only need to call this function when you
8416 wish to change the selection state manually.
8417
8418 This function can change the selection state of a part, independent of the \ref setSelectableParts setting.
8419
8420 emits the \ref selectionChanged signal when \a selected is different from the previous selection state.
8421
8422 \see SelectablePart, setSelectableParts, selectTest, setSelectedBasePen, setSelectedTickPen, setSelectedSubTickPen,
8423 setSelectedTickLabelFont, setSelectedLabelFont, setSelectedTickLabelColor, setSelectedLabelColor
8424*/
8426{
8427 if (mSelectedParts != selected)
8428 {
8429 mSelectedParts = selected;
8430 emit selectionChanged(mSelectedParts);
8431 }
8432}
8433
8434/*!
8435 \overload
8436
8437 Sets the lower and upper bound of the axis range.
8438
8439 To invert the direction of an axis, use \ref setRangeReversed.
8440
8441 There is also a slot to set a range, see \ref setRange(const QCPRange &range).
8442*/
8443void QCPAxis::setRange(double lower, double upper)
8444{
8445 if (lower == mRange.lower && upper == mRange.upper)
8446 return;
8447
8448 if (!QCPRange::validRange(lower, upper)) return;
8449 QCPRange oldRange = mRange;
8450 mRange.lower = lower;
8451 mRange.upper = upper;
8452 if (mScaleType == stLogarithmic)
8453 {
8454 mRange = mRange.sanitizedForLogScale();
8455 } else
8456 {
8457 mRange = mRange.sanitizedForLinScale();
8458 }
8459 emit rangeChanged(mRange);
8460 emit rangeChanged(mRange, oldRange);
8461}
8462
8463/*!
8464 \overload
8465
8466 Sets the range of the axis.
8467
8468 The \a position coordinate indicates together with the \a alignment parameter, where the new
8469 range will be positioned. \a size defines the size of the new axis range. \a alignment may be
8470 Qt::AlignLeft, Qt::AlignRight or Qt::AlignCenter. This will cause the left border, right border,
8471 or center of the range to be aligned with \a position. Any other values of \a alignment will
8472 default to Qt::AlignCenter.
8473*/
8474void QCPAxis::setRange(double position, double size, Qt::AlignmentFlag alignment)
8475{
8476 if (alignment == Qt::AlignLeft)
8477 setRange(position, position+size);
8478 else if (alignment == Qt::AlignRight)
8479 setRange(position-size, position);
8480 else // alignment == Qt::AlignCenter
8481 setRange(position-size/2.0, position+size/2.0);
8482}
8483
8484/*!
8485 Sets the lower bound of the axis range. The upper bound is not changed.
8486 \see setRange
8487*/
8488void QCPAxis::setRangeLower(double lower)
8489{
8490 if (mRange.lower == lower)
8491 return;
8492
8493 QCPRange oldRange = mRange;
8494 mRange.lower = lower;
8495 if (mScaleType == stLogarithmic)
8496 {
8497 mRange = mRange.sanitizedForLogScale();
8498 } else
8499 {
8500 mRange = mRange.sanitizedForLinScale();
8501 }
8502 emit rangeChanged(mRange);
8503 emit rangeChanged(mRange, oldRange);
8504}
8505
8506/*!
8507 Sets the upper bound of the axis range. The lower bound is not changed.
8508 \see setRange
8509*/
8510void QCPAxis::setRangeUpper(double upper)
8511{
8512 if (mRange.upper == upper)
8513 return;
8514
8515 QCPRange oldRange = mRange;
8516 mRange.upper = upper;
8517 if (mScaleType == stLogarithmic)
8518 {
8519 mRange = mRange.sanitizedForLogScale();
8520 } else
8521 {
8522 mRange = mRange.sanitizedForLinScale();
8523 }
8524 emit rangeChanged(mRange);
8525 emit rangeChanged(mRange, oldRange);
8526}
8527
8528/*!
8529 Sets whether the axis range (direction) is displayed reversed. Normally, the values on horizontal
8530 axes increase left to right, on vertical axes bottom to top. When \a reversed is set to true, the
8531 direction of increasing values is inverted.
8532
8533 Note that the range and data interface stays the same for reversed axes, e.g. the \a lower part
8534 of the \ref setRange interface will still reference the mathematically smaller number than the \a
8535 upper part.
8536*/
8538{
8539 mRangeReversed = reversed;
8540}
8541
8542/*!
8543 The axis ticker is responsible for generating the tick positions and tick labels. See the
8544 documentation of QCPAxisTicker for details on how to work with axis tickers.
8545
8546 You can change the tick positioning/labeling behaviour of this axis by setting a different
8547 QCPAxisTicker subclass using this method. If you only wish to modify the currently installed axis
8548 ticker, access it via \ref ticker.
8549
8550 Since the ticker is stored in the axis as a shared pointer, multiple axes may share the same axis
8551 ticker simply by passing the same shared pointer to multiple axes.
8552
8553 \see ticker
8554*/
8556{
8557 if (ticker)
8558 mTicker = ticker;
8559 else
8560 qDebug() << Q_FUNC_INFO << "can not set nullptr as axis ticker";
8561 // no need to invalidate margin cache here because produced tick labels are checked for changes in setupTickVector
8562}
8563
8564/*!
8565 Sets whether tick marks are displayed.
8566
8567 Note that setting \a show to false does not imply that tick labels are invisible, too. To achieve
8568 that, see \ref setTickLabels.
8569
8570 \see setSubTicks
8571*/
8572void QCPAxis::setTicks(bool show)
8573{
8574 if (mTicks != show)
8575 {
8576 mTicks = show;
8577 mCachedMarginValid = false;
8578 }
8579}
8580
8581/*!
8582 Sets whether tick labels are displayed. Tick labels are the numbers drawn next to tick marks.
8583*/
8585{
8586 if (mTickLabels != show)
8587 {
8588 mTickLabels = show;
8589 mCachedMarginValid = false;
8590 if (!mTickLabels)
8591 mTickVectorLabels.clear();
8592 }
8593}
8594
8595/*!
8596 Sets the distance between the axis base line (including any outward ticks) and the tick labels.
8597 \see setLabelPadding, setPadding
8598*/
8600{
8601 if (mAxisPainter->tickLabelPadding != padding)
8602 {
8603 mAxisPainter->tickLabelPadding = padding;
8604 mCachedMarginValid = false;
8605 }
8606}
8607
8608/*!
8609 Sets the font of the tick labels.
8610
8611 \see setTickLabels, setTickLabelColor
8612*/
8614{
8615 if (font != mTickLabelFont)
8616 {
8617 mTickLabelFont = font;
8618 mCachedMarginValid = false;
8619 }
8620}
8621
8622/*!
8623 Sets the color of the tick labels.
8624
8625 \see setTickLabels, setTickLabelFont
8626*/
8628{
8629 mTickLabelColor = color;
8630}
8631
8632/*!
8633 Sets the rotation of the tick labels. If \a degrees is zero, the labels are drawn normally. Else,
8634 the tick labels are drawn rotated by \a degrees clockwise. The specified angle is bound to values
8635 from -90 to 90 degrees.
8636
8637 If \a degrees is exactly -90, 0 or 90, the tick labels are centered on the tick coordinate. For
8638 other angles, the label is drawn with an offset such that it seems to point toward or away from
8639 the tick mark.
8640*/
8642{
8643 if (!qFuzzyIsNull(degrees-mAxisPainter->tickLabelRotation))
8644 {
8645 mAxisPainter->tickLabelRotation = qBound(-90.0, degrees, 90.0);
8646 mCachedMarginValid = false;
8647 }
8648}
8649
8650/*!
8651 Sets whether the tick labels (numbers) shall appear inside or outside the axis rect.
8652
8653 The usual and default setting is \ref lsOutside. Very compact plots sometimes require tick labels
8654 to be inside the axis rect, to save space. If \a side is set to \ref lsInside, the tick labels
8655 appear on the inside are additionally clipped to the axis rect.
8656*/
8658{
8659 mAxisPainter->tickLabelSide = side;
8660 mCachedMarginValid = false;
8661}
8662
8663/*!
8664 Sets the number format for the numbers in tick labels. This \a formatCode is an extended version
8665 of the format code used e.g. by QString::number() and QLocale::toString(). For reference about
8666 that, see the "Argument Formats" section in the detailed description of the QString class.
8667
8668 \a formatCode is a string of one, two or three characters.
8669
8670 <b>The first character</b> is identical to
8671 the normal format code used by Qt. In short, this means: 'e'/'E' scientific format, 'f' fixed
8672 format, 'g'/'G' scientific or fixed, whichever is shorter. For the 'e', 'E', and 'f' formats,
8673 the precision set by \ref setNumberPrecision represents the number of digits after the decimal
8674 point. For the 'g' and 'G' formats, the precision represents the maximum number of significant
8675 digits, trailing zeroes are omitted.
8676
8677 <b>The second and third characters</b> are optional and specific to QCustomPlot:\n
8678 If the first char was 'e' or 'g', numbers are/might be displayed in the scientific format, e.g.
8679 "5.5e9", which is ugly in a plot. So when the second char of \a formatCode is set to 'b' (for
8680 "beautiful"), those exponential numbers are formatted in a more natural way, i.e. "5.5
8681 [multiplication sign] 10 [superscript] 9". By default, the multiplication sign is a centered dot.
8682 If instead a cross should be shown (as is usual in the USA), the third char of \a formatCode can
8683 be set to 'c'. The inserted multiplication signs are the UTF-8 characters 215 (0xD7) for the
8684 cross and 183 (0xB7) for the dot.
8685
8686 Examples for \a formatCode:
8687 \li \c g normal format code behaviour. If number is small, fixed format is used, if number is large,
8688 normal scientific format is used
8689 \li \c gb If number is small, fixed format is used, if number is large, scientific format is used with
8690 beautifully typeset decimal powers and a dot as multiplication sign
8691 \li \c ebc All numbers are in scientific format with beautifully typeset decimal power and a cross as
8692 multiplication sign
8693 \li \c fb illegal format code, since fixed format doesn't support (or need) beautifully typeset decimal
8694 powers. Format code will be reduced to 'f'.
8695 \li \c hello illegal format code, since first char is not 'e', 'E', 'f', 'g' or 'G'. Current format
8696 code will not be changed.
8697*/
8699{
8700 if (formatCode.isEmpty())
8701 {
8702 qDebug() << Q_FUNC_INFO << "Passed formatCode is empty";
8703 return;
8704 }
8705 mCachedMarginValid = false;
8706
8707 // interpret first char as number format char:
8709 if (allowedFormatChars.contains(formatCode.at(0)))
8710 {
8711 mNumberFormatChar = QLatin1Char(formatCode.at(0).toLatin1());
8712 } else
8713 {
8714 qDebug() << Q_FUNC_INFO << "Invalid number format code (first char not in 'eEfgG'):" << formatCode;
8715 return;
8716 }
8717 if (formatCode.length() < 2)
8718 {
8719 mNumberBeautifulPowers = false;
8720 mAxisPainter->numberMultiplyCross = false;
8721 return;
8722 }
8723
8724 // interpret second char as indicator for beautiful decimal powers:
8725 if (formatCode.at(1) == QLatin1Char('b') && (mNumberFormatChar == QLatin1Char('e') || mNumberFormatChar == QLatin1Char('g')))
8726 {
8727 mNumberBeautifulPowers = true;
8728 } else
8729 {
8730 qDebug() << Q_FUNC_INFO << "Invalid number format code (second char not 'b' or first char neither 'e' nor 'g'):" << formatCode;
8731 return;
8732 }
8733 if (formatCode.length() < 3)
8734 {
8735 mAxisPainter->numberMultiplyCross = false;
8736 return;
8737 }
8738
8739 // interpret third char as indicator for dot or cross multiplication symbol:
8740 if (formatCode.at(2) == QLatin1Char('c'))
8741 {
8742 mAxisPainter->numberMultiplyCross = true;
8743 } else if (formatCode.at(2) == QLatin1Char('d'))
8744 {
8745 mAxisPainter->numberMultiplyCross = false;
8746 } else
8747 {
8748 qDebug() << Q_FUNC_INFO << "Invalid number format code (third char neither 'c' nor 'd'):" << formatCode;
8749 return;
8750 }
8751}
8752
8753/*!
8754 Sets the precision of the tick label numbers. See QLocale::toString(double i, char f, int prec)
8755 for details. The effect of precisions are most notably for number Formats starting with 'e', see
8756 \ref setNumberFormat
8757*/
8759{
8760 if (mNumberPrecision != precision)
8761 {
8762 mNumberPrecision = precision;
8763 mCachedMarginValid = false;
8764 }
8765}
8766
8767/*!
8768 Sets the length of the ticks in pixels. \a inside is the length the ticks will reach inside the
8769 plot and \a outside is the length they will reach outside the plot. If \a outside is greater than
8770 zero, the tick labels and axis label will increase their distance to the axis accordingly, so
8771 they won't collide with the ticks.
8772
8773 \see setSubTickLength, setTickLengthIn, setTickLengthOut
8774*/
8775void QCPAxis::setTickLength(int inside, int outside)
8776{
8777 setTickLengthIn(inside);
8779}
8780
8781/*!
8782 Sets the length of the inward ticks in pixels. \a inside is the length the ticks will reach
8783 inside the plot.
8784
8785 \see setTickLengthOut, setTickLength, setSubTickLength
8786*/
8788{
8789 if (mAxisPainter->tickLengthIn != inside)
8790 {
8791 mAxisPainter->tickLengthIn = inside;
8792 }
8793}
8794
8795/*!
8796 Sets the length of the outward ticks in pixels. \a outside is the length the ticks will reach
8797 outside the plot. If \a outside is greater than zero, the tick labels and axis label will
8798 increase their distance to the axis accordingly, so they won't collide with the ticks.
8799
8800 \see setTickLengthIn, setTickLength, setSubTickLength
8801*/
8803{
8804 if (mAxisPainter->tickLengthOut != outside)
8805 {
8806 mAxisPainter->tickLengthOut = outside;
8807 mCachedMarginValid = false; // only outside tick length can change margin
8808 }
8809}
8810
8811/*!
8812 Sets whether sub tick marks are displayed.
8813
8814 Sub ticks are only potentially visible if (major) ticks are also visible (see \ref setTicks)
8815
8816 \see setTicks
8817*/
8819{
8820 if (mSubTicks != show)
8821 {
8822 mSubTicks = show;
8823 mCachedMarginValid = false;
8824 }
8825}
8826
8827/*!
8828 Sets the length of the subticks in pixels. \a inside is the length the subticks will reach inside
8829 the plot and \a outside is the length they will reach outside the plot. If \a outside is greater
8830 than zero, the tick labels and axis label will increase their distance to the axis accordingly,
8831 so they won't collide with the ticks.
8832
8833 \see setTickLength, setSubTickLengthIn, setSubTickLengthOut
8834*/
8836{
8837 setSubTickLengthIn(inside);
8839}
8840
8841/*!
8842 Sets the length of the inward subticks in pixels. \a inside is the length the subticks will reach inside
8843 the plot.
8844
8845 \see setSubTickLengthOut, setSubTickLength, setTickLength
8846*/
8848{
8849 if (mAxisPainter->subTickLengthIn != inside)
8850 {
8851 mAxisPainter->subTickLengthIn = inside;
8852 }
8853}
8854
8855/*!
8856 Sets the length of the outward subticks in pixels. \a outside is the length the subticks will reach
8857 outside the plot. If \a outside is greater than zero, the tick labels will increase their
8858 distance to the axis accordingly, so they won't collide with the ticks.
8859
8860 \see setSubTickLengthIn, setSubTickLength, setTickLength
8861*/
8863{
8864 if (mAxisPainter->subTickLengthOut != outside)
8865 {
8866 mAxisPainter->subTickLengthOut = outside;
8867 mCachedMarginValid = false; // only outside tick length can change margin
8868 }
8869}
8870
8871/*!
8872 Sets the pen, the axis base line is drawn with.
8873
8874 \see setTickPen, setSubTickPen
8875*/
8877{
8878 mBasePen = pen;
8879}
8880
8881/*!
8882 Sets the pen, tick marks will be drawn with.
8883
8884 \see setTickLength, setBasePen
8885*/
8887{
8888 mTickPen = pen;
8889}
8890
8891/*!
8892 Sets the pen, subtick marks will be drawn with.
8893
8894 \see setSubTickCount, setSubTickLength, setBasePen
8895*/
8897{
8898 mSubTickPen = pen;
8899}
8900
8901/*!
8902 Sets the font of the axis label.
8903
8904 \see setLabelColor
8905*/
8907{
8908 if (mLabelFont != font)
8909 {
8910 mLabelFont = font;
8911 mCachedMarginValid = false;
8912 }
8913}
8914
8915/*!
8916 Sets the color of the axis label.
8917
8918 \see setLabelFont
8919*/
8921{
8922 mLabelColor = color;
8923}
8924
8925/*!
8926 Sets the text of the axis label that will be shown below/above or next to the axis, depending on
8927 its orientation. To disable axis labels, pass an empty string as \a str.
8928*/
8930{
8931 if (mLabel != str)
8932 {
8933 mLabel = str;
8934 mCachedMarginValid = false;
8935 }
8936}
8937
8938/*!
8939 Sets the distance between the tick labels and the axis label.
8940
8941 \see setTickLabelPadding, setPadding
8942*/
8944{
8945 if (mAxisPainter->labelPadding != padding)
8946 {
8947 mAxisPainter->labelPadding = padding;
8948 mCachedMarginValid = false;
8949 }
8950}
8951
8952/*!
8953 Sets the padding of the axis.
8954
8955 When \ref QCPAxisRect::setAutoMargins is enabled, the padding is the additional outer most space,
8956 that is left blank.
8957
8958 The axis padding has no meaning if \ref QCPAxisRect::setAutoMargins is disabled.
8959
8960 \see setLabelPadding, setTickLabelPadding
8961*/
8962void QCPAxis::setPadding(int padding)
8963{
8964 if (mPadding != padding)
8965 {
8966 mPadding = padding;
8967 mCachedMarginValid = false;
8968 }
8969}
8970
8971/*!
8972 Sets the offset the axis has to its axis rect side.
8973
8974 If an axis rect side has multiple axes and automatic margin calculation is enabled for that side,
8975 only the offset of the inner most axis has meaning (even if it is set to be invisible). The
8976 offset of the other, outer axes is controlled automatically, to place them at appropriate
8977 positions.
8978*/
8979void QCPAxis::setOffset(int offset)
8980{
8981 mAxisPainter->offset = offset;
8982}
8983
8984/*!
8985 Sets the font that is used for tick labels when they are selected.
8986
8987 \see setTickLabelFont, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
8988*/
8990{
8991 if (font != mSelectedTickLabelFont)
8992 {
8993 mSelectedTickLabelFont = font;
8994 // don't set mCachedMarginValid to false here because margin calculation is always done with non-selected fonts
8995 }
8996}
8997
8998/*!
8999 Sets the font that is used for the axis label when it is selected.
9000
9001 \see setLabelFont, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
9002*/
9004{
9005 mSelectedLabelFont = font;
9006 // don't set mCachedMarginValid to false here because margin calculation is always done with non-selected fonts
9007}
9008
9009/*!
9010 Sets the color that is used for tick labels when they are selected.
9011
9012 \see setTickLabelColor, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
9013*/
9015{
9016 if (color != mSelectedTickLabelColor)
9017 {
9018 mSelectedTickLabelColor = color;
9019 }
9020}
9021
9022/*!
9023 Sets the color that is used for the axis label when it is selected.
9024
9025 \see setLabelColor, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
9026*/
9028{
9029 mSelectedLabelColor = color;
9030}
9031
9032/*!
9033 Sets the pen that is used to draw the axis base line when selected.
9034
9035 \see setBasePen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
9036*/
9038{
9039 mSelectedBasePen = pen;
9040}
9041
9042/*!
9043 Sets the pen that is used to draw the (major) ticks when selected.
9044
9045 \see setTickPen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
9046*/
9048{
9049 mSelectedTickPen = pen;
9050}
9051
9052/*!
9053 Sets the pen that is used to draw the subticks when selected.
9054
9055 \see setSubTickPen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
9056*/
9058{
9059 mSelectedSubTickPen = pen;
9060}
9061
9062/*!
9063 Sets the style for the lower axis ending. See the documentation of QCPLineEnding for available
9064 styles.
9065
9066 For horizontal axes, this method refers to the left ending, for vertical axes the bottom ending.
9067 Note that this meaning does not change when the axis range is reversed with \ref
9068 setRangeReversed.
9069
9070 \see setUpperEnding
9071*/
9073{
9074 mAxisPainter->lowerEnding = ending;
9075}
9076
9077/*!
9078 Sets the style for the upper axis ending. See the documentation of QCPLineEnding for available
9079 styles.
9080
9081 For horizontal axes, this method refers to the right ending, for vertical axes the top ending.
9082 Note that this meaning does not change when the axis range is reversed with \ref
9083 setRangeReversed.
9084
9085 \see setLowerEnding
9086*/
9088{
9089 mAxisPainter->upperEnding = ending;
9090}
9091
9092/*!
9093 If the scale type (\ref setScaleType) is \ref stLinear, \a diff is added to the lower and upper
9094 bounds of the range. The range is simply moved by \a diff.
9095
9096 If the scale type is \ref stLogarithmic, the range bounds are multiplied by \a diff. This
9097 corresponds to an apparent "linear" move in logarithmic scaling by a distance of log(diff).
9098*/
9100{
9101 QCPRange oldRange = mRange;
9102 if (mScaleType == stLinear)
9103 {
9104 mRange.lower += diff;
9105 mRange.upper += diff;
9106 } else // mScaleType == stLogarithmic
9107 {
9108 mRange.lower *= diff;
9109 mRange.upper *= diff;
9110 }
9111 emit rangeChanged(mRange);
9112 emit rangeChanged(mRange, oldRange);
9113}
9114
9115/*!
9116 Scales the range of this axis by \a factor around the center of the current axis range. For
9117 example, if \a factor is 2.0, then the axis range will double its size, and the point at the axis
9118 range center won't have changed its position in the QCustomPlot widget (i.e. coordinates around
9119 the center will have moved symmetrically closer).
9120
9121 If you wish to scale around a different coordinate than the current axis range center, use the
9122 overload \ref scaleRange(double factor, double center).
9123*/
9124void QCPAxis::scaleRange(double factor)
9125{
9126 scaleRange(factor, range().center());
9127}
9128
9129/*! \overload
9130
9131 Scales the range of this axis by \a factor around the coordinate \a center. For example, if \a
9132 factor is 2.0, \a center is 1.0, then the axis range will double its size, and the point at
9133 coordinate 1.0 won't have changed its position in the QCustomPlot widget (i.e. coordinates
9134 around 1.0 will have moved symmetrically closer to 1.0).
9135
9136 \see scaleRange(double factor)
9137*/
9138void QCPAxis::scaleRange(double factor, double center)
9139{
9140 QCPRange oldRange = mRange;
9141 if (mScaleType == stLinear)
9142 {
9144 newRange.lower = (mRange.lower-center)*factor + center;
9145 newRange.upper = (mRange.upper-center)*factor + center;
9147 mRange = newRange.sanitizedForLinScale();
9148 } else // mScaleType == stLogarithmic
9149 {
9150 if ((mRange.upper < 0 && center < 0) || (mRange.upper > 0 && center > 0)) // make sure center has same sign as range
9151 {
9153 newRange.lower = qPow(mRange.lower/center, factor)*center;
9154 newRange.upper = qPow(mRange.upper/center, factor)*center;
9156 mRange = newRange.sanitizedForLogScale();
9157 } else
9158 qDebug() << Q_FUNC_INFO << "Center of scaling operation doesn't lie in same logarithmic sign domain as range:" << center;
9159 }
9160 emit rangeChanged(mRange);
9161 emit rangeChanged(mRange, oldRange);
9162}
9163
9164/*!
9165 Scales the range of this axis to have a certain scale \a ratio to \a otherAxis. The scaling will
9166 be done around the center of the current axis range.
9167
9168 For example, if \a ratio is 1, this axis is the \a yAxis and \a otherAxis is \a xAxis, graphs
9169 plotted with those axes will appear in a 1:1 aspect ratio, independent of the aspect ratio the
9170 axis rect has.
9171
9172 This is an operation that changes the range of this axis once, it doesn't fix the scale ratio
9173 indefinitely. Note that calling this function in the constructor of the QCustomPlot's parent
9174 won't have the desired effect, since the widget dimensions aren't defined yet, and a resizeEvent
9175 will follow.
9176*/
9177void QCPAxis::setScaleRatio(const QCPAxis *otherAxis, double ratio)
9178{
9180
9181 if (otherAxis->orientation() == Qt::Horizontal)
9182 otherPixelSize = otherAxis->axisRect()->width();
9183 else
9184 otherPixelSize = otherAxis->axisRect()->height();
9185
9186 if (orientation() == Qt::Horizontal)
9187 ownPixelSize = axisRect()->width();
9188 else
9189 ownPixelSize = axisRect()->height();
9190
9191 double newRangeSize = ratio*otherAxis->range().size()*ownPixelSize/double(otherPixelSize);
9192 setRange(range().center(), newRangeSize, Qt::AlignCenter);
9193}
9194
9195/*!
9196 Changes the axis range such that all plottables associated with this axis are fully visible in
9197 that dimension.
9198
9199 \see QCPAbstractPlottable::rescaleAxes, QCustomPlot::rescaleAxes
9200*/
9202{
9204 bool haveRange = false;
9205 foreach (QCPAbstractPlottable *plottable, plottables())
9206 {
9207 if (!plottable->realVisibility() && onlyVisiblePlottables)
9208 continue;
9210 bool currentFoundRange;
9212 if (mScaleType == stLogarithmic)
9213 signDomain = (mRange.upper < 0 ? QCP::sdNegative : QCP::sdPositive);
9214 if (plottable->keyAxis() == this)
9216 else
9219 {
9220 if (!haveRange)
9222 else
9223 newRange.expand(plottableRange);
9224 haveRange = true;
9225 }
9226 }
9227 if (haveRange)
9228 {
9229 if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
9230 {
9231 double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
9232 if (mScaleType == stLinear)
9233 {
9234 newRange.lower = center-mRange.size()/2.0;
9235 newRange.upper = center+mRange.size()/2.0;
9236 } else // mScaleType == stLogarithmic
9237 {
9238 newRange.lower = center/qSqrt(mRange.upper/mRange.lower);
9239 newRange.upper = center*qSqrt(mRange.upper/mRange.lower);
9240 }
9241 }
9243 }
9244}
9245
9246/*!
9247 Transforms \a value, in pixel coordinates of the QCustomPlot widget, to axis coordinates.
9248*/
9249double QCPAxis::pixelToCoord(double value) const
9250{
9251 if (orientation() == Qt::Horizontal)
9252 {
9253 if (mScaleType == stLinear)
9254 {
9255 if (!mRangeReversed)
9256 return (value-mAxisRect->left())/double(mAxisRect->width())*mRange.size()+mRange.lower;
9257 else
9258 return -(value-mAxisRect->left())/double(mAxisRect->width())*mRange.size()+mRange.upper;
9259 } else // mScaleType == stLogarithmic
9260 {
9261 if (!mRangeReversed)
9262 return qPow(mRange.upper/mRange.lower, (value-mAxisRect->left())/double(mAxisRect->width()))*mRange.lower;
9263 else
9264 return qPow(mRange.upper/mRange.lower, (mAxisRect->left()-value)/double(mAxisRect->width()))*mRange.upper;
9265 }
9266 } else // orientation() == Qt::Vertical
9267 {
9268 if (mScaleType == stLinear)
9269 {
9270 if (!mRangeReversed)
9271 return (mAxisRect->bottom()-value)/double(mAxisRect->height())*mRange.size()+mRange.lower;
9272 else
9273 return -(mAxisRect->bottom()-value)/double(mAxisRect->height())*mRange.size()+mRange.upper;
9274 } else // mScaleType == stLogarithmic
9275 {
9276 if (!mRangeReversed)
9277 return qPow(mRange.upper/mRange.lower, (mAxisRect->bottom()-value)/double(mAxisRect->height()))*mRange.lower;
9278 else
9279 return qPow(mRange.upper/mRange.lower, (value-mAxisRect->bottom())/double(mAxisRect->height()))*mRange.upper;
9280 }
9281 }
9282}
9283
9284/*!
9285 Transforms \a value, in coordinates of the axis, to pixel coordinates of the QCustomPlot widget.
9286*/
9287double QCPAxis::coordToPixel(double value) const
9288{
9289 if (orientation() == Qt::Horizontal)
9290 {
9291 if (mScaleType == stLinear)
9292 {
9293 if (!mRangeReversed)
9294 return (value-mRange.lower)/mRange.size()*mAxisRect->width()+mAxisRect->left();
9295 else
9296 return (mRange.upper-value)/mRange.size()*mAxisRect->width()+mAxisRect->left();
9297 } else // mScaleType == stLogarithmic
9298 {
9299 if (value >= 0.0 && mRange.upper < 0.0) // invalid value for logarithmic scale, just draw it outside visible range
9300 return !mRangeReversed ? mAxisRect->right()+200 : mAxisRect->left()-200;
9301 else if (value <= 0.0 && mRange.upper >= 0.0) // invalid value for logarithmic scale, just draw it outside visible range
9302 return !mRangeReversed ? mAxisRect->left()-200 : mAxisRect->right()+200;
9303 else
9304 {
9305 if (!mRangeReversed)
9306 return qLn(value/mRange.lower)/qLn(mRange.upper/mRange.lower)*mAxisRect->width()+mAxisRect->left();
9307 else
9308 return qLn(mRange.upper/value)/qLn(mRange.upper/mRange.lower)*mAxisRect->width()+mAxisRect->left();
9309 }
9310 }
9311 } else // orientation() == Qt::Vertical
9312 {
9313 if (mScaleType == stLinear)
9314 {
9315 if (!mRangeReversed)
9316 return mAxisRect->bottom()-(value-mRange.lower)/mRange.size()*mAxisRect->height();
9317 else
9318 return mAxisRect->bottom()-(mRange.upper-value)/mRange.size()*mAxisRect->height();
9319 } else // mScaleType == stLogarithmic
9320 {
9321 if (value >= 0.0 && mRange.upper < 0.0) // invalid value for logarithmic scale, just draw it outside visible range
9322 return !mRangeReversed ? mAxisRect->top()-200 : mAxisRect->bottom()+200;
9323 else if (value <= 0.0 && mRange.upper >= 0.0) // invalid value for logarithmic scale, just draw it outside visible range
9324 return !mRangeReversed ? mAxisRect->bottom()+200 : mAxisRect->top()-200;
9325 else
9326 {
9327 if (!mRangeReversed)
9328 return mAxisRect->bottom()-qLn(value/mRange.lower)/qLn(mRange.upper/mRange.lower)*mAxisRect->height();
9329 else
9330 return mAxisRect->bottom()-qLn(mRange.upper/value)/qLn(mRange.upper/mRange.lower)*mAxisRect->height();
9331 }
9332 }
9333 }
9334}
9335
9336/*!
9337 Returns the part of the axis that is hit by \a pos (in pixels). The return value of this function
9338 is independent of the user-selectable parts defined with \ref setSelectableParts. Further, this
9339 function does not change the current selection state of the axis.
9340
9341 If the axis is not visible (\ref setVisible), this function always returns \ref spNone.
9342
9343 \see setSelectedParts, setSelectableParts, QCustomPlot::setInteractions
9344*/
9346{
9347 if (!mVisible)
9348 return spNone;
9349
9350 if (mAxisPainter->axisSelectionBox().contains(pos.toPoint()))
9351 return spAxis;
9352 else if (mAxisPainter->tickLabelsSelectionBox().contains(pos.toPoint()))
9353 return spTickLabels;
9354 else if (mAxisPainter->labelSelectionBox().contains(pos.toPoint()))
9355 return spAxisLabel;
9356 else
9357 return spNone;
9358}
9359
9360/* inherits documentation from base class */
9361double QCPAxis::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
9362{
9363 if (!mParentPlot) return -1;
9364 SelectablePart part = getPartAt(pos);
9365 if ((onlySelectable && !mSelectableParts.testFlag(part)) || part == spNone)
9366 return -1;
9367
9368 if (details)
9369 details->setValue(part);
9370 return mParentPlot->selectionTolerance()*0.99;
9371}
9372
9373/*!
9374 Returns a list of all the plottables that have this axis as key or value axis.
9375
9376 If you are only interested in plottables of type QCPGraph, see \ref graphs.
9377
9378 \see graphs, items
9379*/
9381{
9383 if (!mParentPlot) return result;
9384
9385 foreach (QCPAbstractPlottable *plottable, mParentPlot->mPlottables)
9386 {
9387 if (plottable->keyAxis() == this || plottable->valueAxis() == this)
9388 result.append(plottable);
9389 }
9390 return result;
9391}
9392
9393/*!
9394 Returns a list of all the graphs that have this axis as key or value axis.
9395
9396 \see plottables, items
9397*/
9399{
9400 QList<QCPGraph*> result;
9401 if (!mParentPlot) return result;
9402
9403 foreach (QCPGraph *graph, mParentPlot->mGraphs)
9404 {
9405 if (graph->keyAxis() == this || graph->valueAxis() == this)
9406 result.append(graph);
9407 }
9408 return result;
9409}
9410
9411/*!
9412 Returns a list of all the items that are associated with this axis. An item is considered
9413 associated with an axis if at least one of its positions uses the axis as key or value axis.
9414
9415 \see plottables, graphs
9416*/
9418{
9420 if (!mParentPlot) return result;
9421
9422 foreach (QCPAbstractItem *item, mParentPlot->mItems)
9423 {
9424 foreach (QCPItemPosition *position, item->positions())
9425 {
9426 if (position->keyAxis() == this || position->valueAxis() == this)
9427 {
9428 result.append(item);
9429 break;
9430 }
9431 }
9432 }
9433 return result;
9434}
9435
9436/*!
9437 Transforms a margin side to the logically corresponding axis type. (QCP::msLeft to
9438 QCPAxis::atLeft, QCP::msRight to QCPAxis::atRight, etc.)
9439*/
9441{
9442 switch (side)
9443 {
9444 case QCP::msLeft: return atLeft;
9445 case QCP::msRight: return atRight;
9446 case QCP::msTop: return atTop;
9447 case QCP::msBottom: return atBottom;
9448 default: break;
9449 }
9450 qDebug() << Q_FUNC_INFO << "Invalid margin side passed:" << static_cast<int>(side);
9451 return atLeft;
9452}
9453
9454/*!
9455 Returns the axis type that describes the opposite axis of an axis with the specified \a type.
9456*/
9458{
9459 switch (type)
9460 {
9461 case atLeft: return atRight;
9462 case atRight: return atLeft;
9463 case atBottom: return atTop;
9464 case atTop: return atBottom;
9465 }
9466 qDebug() << Q_FUNC_INFO << "invalid axis type";
9467 return atLeft;
9468}
9469
9470/* inherits documentation from base class */
9472{
9474 SelectablePart part = details.value<SelectablePart>();
9475 if (mSelectableParts.testFlag(part))
9476 {
9477 SelectableParts selBefore = mSelectedParts;
9478 setSelectedParts(additive ? mSelectedParts^part : part);
9480 *selectionStateChanged = mSelectedParts != selBefore;
9481 }
9482}
9483
9484/* inherits documentation from base class */
9486{
9487 SelectableParts selBefore = mSelectedParts;
9488 setSelectedParts(mSelectedParts & ~mSelectableParts);
9490 *selectionStateChanged = mSelectedParts != selBefore;
9491}
9492
9493/*! \internal
9494
9495 This mouse event reimplementation provides the functionality to let the user drag individual axes
9496 exclusively, by startig the drag on top of the axis.
9497
9498 For the axis to accept this event and perform the single axis drag, the parent \ref QCPAxisRect
9499 must be configured accordingly, i.e. it must allow range dragging in the orientation of this axis
9500 (\ref QCPAxisRect::setRangeDrag) and this axis must be a draggable axis (\ref
9501 QCPAxisRect::setRangeDragAxes)
9502
9503 \seebaseclassmethod
9504
9505 \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
9506 rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.
9507*/
9509{
9510 Q_UNUSED(details)
9511 if (!mParentPlot->interactions().testFlag(QCP::iRangeDrag) ||
9512 !mAxisRect->rangeDrag().testFlag(orientation()) ||
9513 !mAxisRect->rangeDragAxes(orientation()).contains(this))
9514 {
9515 event->ignore();
9516 return;
9517 }
9518
9519 if (event->buttons() & Qt::LeftButton)
9520 {
9521 mDragging = true;
9522 // initialize antialiasing backup in case we start dragging:
9523 if (mParentPlot->noAntialiasingOnDrag())
9524 {
9525 mAADragBackup = mParentPlot->antialiasedElements();
9526 mNotAADragBackup = mParentPlot->notAntialiasedElements();
9527 }
9528 // Mouse range dragging interaction:
9529 if (mParentPlot->interactions().testFlag(QCP::iRangeDrag))
9530 mDragStartRange = mRange;
9531 }
9532}
9533
9534/*! \internal
9535
9536 This mouse event reimplementation provides the functionality to let the user drag individual axes
9537 exclusively, by startig the drag on top of the axis.
9538
9539 \seebaseclassmethod
9540
9541 \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
9542 rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.
9543
9544 \see QCPAxis::mousePressEvent
9545*/
9546void QCPAxis::mouseMoveEvent(QMouseEvent *event, const QPointF &startPos)
9547{
9548 if (mDragging)
9549 {
9550 const double startPixel = orientation() == Qt::Horizontal ? startPos.x() : startPos.y();
9551 const double currentPixel = orientation() == Qt::Horizontal ? event->pos().x() : event->pos().y();
9552 if (mScaleType == QCPAxis::stLinear)
9553 {
9555 setRange(mDragStartRange.lower+diff, mDragStartRange.upper+diff);
9556 } else if (mScaleType == QCPAxis::stLogarithmic)
9557 {
9559 setRange(mDragStartRange.lower*diff, mDragStartRange.upper*diff);
9560 }
9561
9562 if (mParentPlot->noAntialiasingOnDrag())
9564 mParentPlot->replot(QCustomPlot::rpQueuedReplot);
9565 }
9566}
9567
9568/*! \internal
9569
9570 This mouse event reimplementation provides the functionality to let the user drag individual axes
9571 exclusively, by startig the drag on top of the axis.
9572
9573 \seebaseclassmethod
9574
9575 \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
9576 rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.
9577
9578 \see QCPAxis::mousePressEvent
9579*/
9581{
9583 Q_UNUSED(startPos)
9584 mDragging = false;
9585 if (mParentPlot->noAntialiasingOnDrag())
9586 {
9587 mParentPlot->setAntialiasedElements(mAADragBackup);
9588 mParentPlot->setNotAntialiasedElements(mNotAADragBackup);
9589 }
9590}
9591
9592/*! \internal
9593
9594 This mouse event reimplementation provides the functionality to let the user zoom individual axes
9595 exclusively, by performing the wheel event on top of the axis.
9596
9597 For the axis to accept this event and perform the single axis zoom, the parent \ref QCPAxisRect
9598 must be configured accordingly, i.e. it must allow range zooming in the orientation of this axis
9599 (\ref QCPAxisRect::setRangeZoom) and this axis must be a zoomable axis (\ref
9600 QCPAxisRect::setRangeZoomAxes)
9601
9602 \seebaseclassmethod
9603
9604 \note The zooming of possibly multiple axes at once by performing the wheel event anywhere in the
9605 axis rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::wheelEvent.
9606*/
9608{
9609 // Mouse range zooming interaction:
9610 if (!mParentPlot->interactions().testFlag(QCP::iRangeZoom) ||
9611 !mAxisRect->rangeZoom().testFlag(orientation()) ||
9612 !mAxisRect->rangeZoomAxes(orientation()).contains(this))
9613 {
9614 event->ignore();
9615 return;
9616 }
9617
9618#if QT_VERSION < QT_VERSION_CHECK(5, 0, 0)
9619 const double delta = event->delta();
9620#else
9621 const double delta = event->angleDelta().y();
9622#endif
9623
9624#if QT_VERSION < QT_VERSION_CHECK(5, 14, 0)
9625 const QPointF pos = event->pos();
9626#else
9627 const QPointF pos = event->position();
9628#endif
9629
9630 const double wheelSteps = delta/120.0; // a single step delta is +/-120 usually
9631 const double factor = qPow(mAxisRect->rangeZoomFactor(orientation()), wheelSteps);
9632 scaleRange(factor, pixelToCoord(orientation() == Qt::Horizontal ? pos.x() : pos.y()));
9633 mParentPlot->replot();
9634}
9635
9636/*! \internal
9637
9638 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
9639 before drawing axis lines.
9640
9641 This is the antialiasing state the painter passed to the \ref draw method is in by default.
9642
9643 This function takes into account the local setting of the antialiasing flag as well as the
9644 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
9645 QCustomPlot::setNotAntialiasedElements.
9646
9647 \seebaseclassmethod
9648
9649 \see setAntialiased
9650*/
9652{
9653 applyAntialiasingHint(painter, mAntialiased, QCP::aeAxes);
9654}
9655
9656/*! \internal
9657
9658 Draws the axis with the specified \a painter, using the internal QCPAxisPainterPrivate instance.
9659
9660 \seebaseclassmethod
9661*/
9663{
9664 QVector<double> subTickPositions; // the final coordToPixel transformed vector passed to QCPAxisPainter
9665 QVector<double> tickPositions; // the final coordToPixel transformed vector passed to QCPAxisPainter
9666 QVector<QString> tickLabels; // the final vector passed to QCPAxisPainter
9667 tickPositions.reserve(mTickVector.size());
9668 tickLabels.reserve(mTickVector.size());
9669 subTickPositions.reserve(mSubTickVector.size());
9670
9671 if (mTicks)
9672 {
9673 for (int i=0; i<mTickVector.size(); ++i)
9674 {
9675 tickPositions.append(coordToPixel(mTickVector.at(i)));
9676 if (mTickLabels)
9677 tickLabels.append(mTickVectorLabels.at(i));
9678 }
9679
9680 if (mSubTicks)
9681 {
9682 const int subTickCount = mSubTickVector.size();
9683 for (int i=0; i<subTickCount; ++i)
9684 subTickPositions.append(coordToPixel(mSubTickVector.at(i)));
9685 }
9686 }
9687
9688 // transfer all properties of this axis to QCPAxisPainterPrivate which it needs to draw the axis.
9689 // Note that some axis painter properties are already set by direct feed-through with QCPAxis setters
9690 mAxisPainter->type = mAxisType;
9691 mAxisPainter->basePen = getBasePen();
9692 mAxisPainter->labelFont = getLabelFont();
9693 mAxisPainter->labelColor = getLabelColor();
9694 mAxisPainter->label = mLabel;
9695 mAxisPainter->substituteExponent = mNumberBeautifulPowers;
9696 mAxisPainter->tickPen = getTickPen();
9697 mAxisPainter->subTickPen = getSubTickPen();
9698 mAxisPainter->tickLabelFont = getTickLabelFont();
9699 mAxisPainter->tickLabelColor = getTickLabelColor();
9700 mAxisPainter->axisRect = mAxisRect->rect();
9701 mAxisPainter->viewportRect = mParentPlot->viewport();
9702 mAxisPainter->abbreviateDecimalPowers = mScaleType == stLogarithmic;
9703 mAxisPainter->reversedEndings = mRangeReversed;
9704 mAxisPainter->tickPositions = tickPositions;
9705 mAxisPainter->tickLabels = tickLabels;
9706 mAxisPainter->subTickPositions = subTickPositions;
9707 mAxisPainter->draw(painter);
9708}
9709
9710/*! \internal
9711
9712 Prepares the internal tick vector, sub tick vector and tick label vector. This is done by calling
9713 QCPAxisTicker::generate on the currently installed ticker.
9714
9715 If a change in the label text/count is detected, the cached axis margin is invalidated to make
9716 sure the next margin calculation recalculates the label sizes and returns an up-to-date value.
9717*/
9719{
9720 if (!mParentPlot) return;
9721 if ((!mTicks && !mTickLabels && !mGrid->visible()) || mRange.size() <= 0) return;
9722
9723 QVector<QString> oldLabels = mTickVectorLabels;
9724 mTicker->generate(mRange, mParentPlot->locale(), mNumberFormatChar, mNumberPrecision, mTickVector, mSubTicks ? &mSubTickVector : nullptr, mTickLabels ? &mTickVectorLabels : nullptr);
9725 mCachedMarginValid &= mTickVectorLabels == oldLabels; // if labels have changed, margin might have changed, too
9726}
9727
9728/*! \internal
9729
9730 Returns the pen that is used to draw the axis base line. Depending on the selection state, this
9731 is either mSelectedBasePen or mBasePen.
9732*/
9734{
9735 return mSelectedParts.testFlag(spAxis) ? mSelectedBasePen : mBasePen;
9736}
9737
9738/*! \internal
9739
9740 Returns the pen that is used to draw the (major) ticks. Depending on the selection state, this
9741 is either mSelectedTickPen or mTickPen.
9742*/
9744{
9745 return mSelectedParts.testFlag(spAxis) ? mSelectedTickPen : mTickPen;
9746}
9747
9748/*! \internal
9749
9750 Returns the pen that is used to draw the subticks. Depending on the selection state, this
9751 is either mSelectedSubTickPen or mSubTickPen.
9752*/
9754{
9755 return mSelectedParts.testFlag(spAxis) ? mSelectedSubTickPen : mSubTickPen;
9756}
9757
9758/*! \internal
9759
9760 Returns the font that is used to draw the tick labels. Depending on the selection state, this
9761 is either mSelectedTickLabelFont or mTickLabelFont.
9762*/
9764{
9765 return mSelectedParts.testFlag(spTickLabels) ? mSelectedTickLabelFont : mTickLabelFont;
9766}
9767
9768/*! \internal
9769
9770 Returns the font that is used to draw the axis label. Depending on the selection state, this
9771 is either mSelectedLabelFont or mLabelFont.
9772*/
9774{
9775 return mSelectedParts.testFlag(spAxisLabel) ? mSelectedLabelFont : mLabelFont;
9776}
9777
9778/*! \internal
9779
9780 Returns the color that is used to draw the tick labels. Depending on the selection state, this
9781 is either mSelectedTickLabelColor or mTickLabelColor.
9782*/
9784{
9785 return mSelectedParts.testFlag(spTickLabels) ? mSelectedTickLabelColor : mTickLabelColor;
9786}
9787
9788/*! \internal
9789
9790 Returns the color that is used to draw the axis label. Depending on the selection state, this
9791 is either mSelectedLabelColor or mLabelColor.
9792*/
9794{
9795 return mSelectedParts.testFlag(spAxisLabel) ? mSelectedLabelColor : mLabelColor;
9796}
9797
9798/*! \internal
9799
9800 Returns the appropriate outward margin for this axis. It is needed if \ref
9801 QCPAxisRect::setAutoMargins is set to true on the parent axis rect. An axis with axis type \ref
9802 atLeft will return an appropriate left margin, \ref atBottom will return an appropriate bottom
9803 margin and so forth. For the calculation, this function goes through similar steps as \ref draw,
9804 so changing one function likely requires the modification of the other one as well.
9805
9806 The margin consists of the outward tick length, tick label padding, tick label size, label
9807 padding, label size, and padding.
9808
9809 The margin is cached internally, so repeated calls while leaving the axis range, fonts, etc.
9810 unchanged are very fast.
9811*/
9813{
9814 if (!mVisible) // if not visible, directly return 0, don't cache 0 because we can't react to setVisible in QCPAxis
9815 return 0;
9816
9817 if (mCachedMarginValid)
9818 return mCachedMargin;
9819
9820 // run through similar steps as QCPAxis::draw, and calculate margin needed to fit axis and its labels
9821 int margin = 0;
9822
9823 QVector<double> tickPositions; // the final coordToPixel transformed vector passed to QCPAxisPainter
9824 QVector<QString> tickLabels; // the final vector passed to QCPAxisPainter
9825 tickPositions.reserve(mTickVector.size());
9826 tickLabels.reserve(mTickVector.size());
9827
9828 if (mTicks)
9829 {
9830 for (int i=0; i<mTickVector.size(); ++i)
9831 {
9832 tickPositions.append(coordToPixel(mTickVector.at(i)));
9833 if (mTickLabels)
9834 tickLabels.append(mTickVectorLabels.at(i));
9835 }
9836 }
9837 // transfer all properties of this axis to QCPAxisPainterPrivate which it needs to calculate the size.
9838 // Note that some axis painter properties are already set by direct feed-through with QCPAxis setters
9839 mAxisPainter->type = mAxisType;
9840 mAxisPainter->labelFont = getLabelFont();
9841 mAxisPainter->label = mLabel;
9842 mAxisPainter->tickLabelFont = mTickLabelFont;
9843 mAxisPainter->axisRect = mAxisRect->rect();
9844 mAxisPainter->viewportRect = mParentPlot->viewport();
9845 mAxisPainter->tickPositions = tickPositions;
9846 mAxisPainter->tickLabels = tickLabels;
9847 margin += mAxisPainter->size();
9848 margin += mPadding;
9849
9850 mCachedMargin = margin;
9851 mCachedMarginValid = true;
9852 return margin;
9853}
9854
9855/* inherits documentation from base class */
9860
9861
9862////////////////////////////////////////////////////////////////////////////////////////////////////
9863//////////////////// QCPAxisPainterPrivate
9864////////////////////////////////////////////////////////////////////////////////////////////////////
9865
9866/*! \class QCPAxisPainterPrivate
9867
9868 \internal
9869 \brief (Private)
9870
9871 This is a private class and not part of the public QCustomPlot interface.
9872
9873 It is used by QCPAxis to do the low-level drawing of axis backbone, tick marks, tick labels and
9874 axis label. It also buffers the labels to reduce replot times. The parameters are configured by
9875 directly accessing the public member variables.
9876*/
9877
9878/*!
9879 Constructs a QCPAxisPainterPrivate instance. Make sure to not create a new instance on every
9880 redraw, to utilize the caching mechanisms.
9881*/
9883 type(QCPAxis::atLeft),
9884 basePen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
9885 lowerEnding(QCPLineEnding::esNone),
9886 upperEnding(QCPLineEnding::esNone),
9887 labelPadding(0),
9888 tickLabelPadding(0),
9889 tickLabelRotation(0),
9890 tickLabelSide(QCPAxis::lsOutside),
9891 substituteExponent(true),
9892 numberMultiplyCross(false),
9893 tickLengthIn(5),
9894 tickLengthOut(0),
9895 subTickLengthIn(2),
9896 subTickLengthOut(0),
9897 tickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
9898 subTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
9899 offset(0),
9900 abbreviateDecimalPowers(false),
9901 reversedEndings(false),
9902 mParentPlot(parentPlot),
9903 mLabelCache(16) // cache at most 16 (tick) labels
9904{
9905}
9906
9907QCPAxisPainterPrivate::~QCPAxisPainterPrivate()
9908{
9909}
9910
9911/*! \internal
9912
9913 Draws the axis with the specified \a painter.
9914
9915 The selection boxes (mAxisSelectionBox, mTickLabelsSelectionBox, mLabelSelectionBox) are set
9916 here, too.
9917*/
9919{
9921 if (newHash != mLabelParameterHash)
9922 {
9923 mLabelCache.clear();
9924 mLabelParameterHash = newHash;
9925 }
9926
9927 QPoint origin;
9928 switch (type)
9929 {
9930 case QCPAxis::atLeft: origin = axisRect.bottomLeft() +QPoint(-offset, 0); break;
9931 case QCPAxis::atRight: origin = axisRect.bottomRight()+QPoint(+offset, 0); break;
9932 case QCPAxis::atTop: origin = axisRect.topLeft() +QPoint(0, -offset); break;
9933 case QCPAxis::atBottom: origin = axisRect.bottomLeft() +QPoint(0, +offset); break;
9934 }
9935
9936 double xCor = 0, yCor = 0; // paint system correction, for pixel exact matches (affects baselines and ticks of top/right axes)
9937 switch (type)
9938 {
9939 case QCPAxis::atTop: yCor = -1; break;
9940 case QCPAxis::atRight: xCor = 1; break;
9941 default: break;
9942 }
9943 int margin = 0;
9944 // draw baseline:
9946 painter->setPen(basePen);
9948 baseLine.setPoints(origin+QPointF(xCor, yCor), origin+QPointF(axisRect.width()+xCor, yCor));
9949 else
9950 baseLine.setPoints(origin+QPointF(xCor, yCor), origin+QPointF(xCor, -axisRect.height()+yCor));
9951 if (reversedEndings)
9952 baseLine = QLineF(baseLine.p2(), baseLine.p1()); // won't make a difference for line itself, but for line endings later
9953 painter->drawLine(baseLine);
9954
9955 // draw ticks:
9956 if (!tickPositions.isEmpty())
9957 {
9958 painter->setPen(tickPen);
9959 int tickDir = (type == QCPAxis::atBottom || type == QCPAxis::atRight) ? -1 : 1; // direction of ticks ("inward" is right for left axis and left for right axis)
9961 {
9962 foreach (double tickPos, tickPositions)
9963 painter->drawLine(QLineF(tickPos+xCor, origin.y()-tickLengthOut*tickDir+yCor, tickPos+xCor, origin.y()+tickLengthIn*tickDir+yCor));
9964 } else
9965 {
9966 foreach (double tickPos, tickPositions)
9967 painter->drawLine(QLineF(origin.x()-tickLengthOut*tickDir+xCor, tickPos+yCor, origin.x()+tickLengthIn*tickDir+xCor, tickPos+yCor));
9968 }
9969 }
9970
9971 // draw subticks:
9972 if (!subTickPositions.isEmpty())
9973 {
9974 painter->setPen(subTickPen);
9975 // direction of ticks ("inward" is right for left axis and left for right axis)
9976 int tickDir = (type == QCPAxis::atBottom || type == QCPAxis::atRight) ? -1 : 1;
9978 {
9979 foreach (double subTickPos, subTickPositions)
9980 painter->drawLine(QLineF(subTickPos+xCor, origin.y()-subTickLengthOut*tickDir+yCor, subTickPos+xCor, origin.y()+subTickLengthIn*tickDir+yCor));
9981 } else
9982 {
9983 foreach (double subTickPos, subTickPositions)
9984 painter->drawLine(QLineF(origin.x()-subTickLengthOut*tickDir+xCor, subTickPos+yCor, origin.x()+subTickLengthIn*tickDir+xCor, subTickPos+yCor));
9985 }
9986 }
9987 margin += qMax(0, qMax(tickLengthOut, subTickLengthOut));
9988
9989 // draw axis base endings:
9990 bool antialiasingBackup = painter->antialiasing();
9991 painter->setAntialiasing(true); // always want endings to be antialiased, even if base and ticks themselves aren't
9992 painter->setBrush(QBrush(basePen.color()));
9994 if (lowerEnding.style() != QCPLineEnding::esNone)
9995 lowerEnding.draw(painter, QCPVector2D(baseLine.p1())-baseLineVector.normalized()*lowerEnding.realLength()*(lowerEnding.inverted()?-1:1), -baseLineVector);
9996 if (upperEnding.style() != QCPLineEnding::esNone)
9997 upperEnding.draw(painter, QCPVector2D(baseLine.p2())+baseLineVector.normalized()*upperEnding.realLength()*(upperEnding.inverted()?-1:1), baseLineVector);
9999
10000 // tick labels:
10002 if (tickLabelSide == QCPAxis::lsInside) // if using inside labels, clip them to the axis rect
10003 {
10004 oldClipRect = painter->clipRegion().boundingRect();
10005 painter->setClipRect(axisRect);
10006 }
10007 QSize tickLabelsSize(0, 0); // size of largest tick label, for offset calculation of axis label
10008 if (!tickLabels.isEmpty())
10009 {
10010 if (tickLabelSide == QCPAxis::lsOutside)
10011 margin += tickLabelPadding;
10012 painter->setFont(tickLabelFont);
10013 painter->setPen(QPen(tickLabelColor));
10014 const int maxLabelIndex = qMin(tickPositions.size(), tickLabels.size());
10015 int distanceToAxis = margin;
10016 if (tickLabelSide == QCPAxis::lsInside)
10017 distanceToAxis = -(qMax(tickLengthIn, subTickLengthIn)+tickLabelPadding);
10018 for (int i=0; i<maxLabelIndex; ++i)
10019 placeTickLabel(painter, tickPositions.at(i), distanceToAxis, tickLabels.at(i), &tickLabelsSize);
10020 if (tickLabelSide == QCPAxis::lsOutside)
10021 margin += (QCPAxis::orientation(type) == Qt::Horizontal) ? tickLabelsSize.height() : tickLabelsSize.width();
10022 }
10023 if (tickLabelSide == QCPAxis::lsInside)
10024 painter->setClipRect(oldClipRect);
10025
10026 // axis label:
10028 if (!label.isEmpty())
10029 {
10030 margin += labelPadding;
10031 painter->setFont(labelFont);
10032 painter->setPen(QPen(labelColor));
10033 labelBounds = painter->fontMetrics().boundingRect(0, 0, 0, 0, Qt::TextDontClip, label);
10034 if (type == QCPAxis::atLeft)
10035 {
10036 QTransform oldTransform = painter->transform();
10037 painter->translate((origin.x()-margin-labelBounds.height()), origin.y());
10038 painter->rotate(-90);
10039 painter->drawText(0, 0, axisRect.height(), labelBounds.height(), Qt::TextDontClip | Qt::AlignCenter, label);
10040 painter->setTransform(oldTransform);
10041 }
10042 else if (type == QCPAxis::atRight)
10043 {
10044 QTransform oldTransform = painter->transform();
10045 painter->translate((origin.x()+margin+labelBounds.height()), origin.y()-axisRect.height());
10046 painter->rotate(90);
10047 painter->drawText(0, 0, axisRect.height(), labelBounds.height(), Qt::TextDontClip | Qt::AlignCenter, label);
10048 painter->setTransform(oldTransform);
10049 }
10050 else if (type == QCPAxis::atTop)
10051 painter->drawText(origin.x(), origin.y()-margin-labelBounds.height(), axisRect.width(), labelBounds.height(), Qt::TextDontClip | Qt::AlignCenter, label);
10052 else if (type == QCPAxis::atBottom)
10053 painter->drawText(origin.x(), origin.y()+margin, axisRect.width(), labelBounds.height(), Qt::TextDontClip | Qt::AlignCenter, label);
10054 }
10055
10056 // set selection boxes:
10057 int selectionTolerance = 0;
10058 if (mParentPlot)
10059 selectionTolerance = mParentPlot->selectionTolerance();
10060 else
10061 qDebug() << Q_FUNC_INFO << "mParentPlot is null";
10062 int selAxisOutSize = qMax(qMax(tickLengthOut, subTickLengthOut), selectionTolerance);
10063 int selAxisInSize = selectionTolerance;
10064 int selTickLabelSize;
10066 if (tickLabelSide == QCPAxis::lsOutside)
10067 {
10069 selTickLabelOffset = qMax(tickLengthOut, subTickLengthOut)+tickLabelPadding;
10070 } else
10071 {
10073 selTickLabelOffset = -(qMax(tickLengthIn, subTickLengthIn)+tickLabelPadding);
10074 }
10075 int selLabelSize = labelBounds.height();
10076 int selLabelOffset = qMax(tickLengthOut, subTickLengthOut)+(!tickLabels.isEmpty() && tickLabelSide == QCPAxis::lsOutside ? tickLabelPadding+selTickLabelSize : 0)+labelPadding;
10077 if (type == QCPAxis::atLeft)
10078 {
10079 mAxisSelectionBox.setCoords(origin.x()-selAxisOutSize, axisRect.top(), origin.x()+selAxisInSize, axisRect.bottom());
10080 mTickLabelsSelectionBox.setCoords(origin.x()-selTickLabelOffset-selTickLabelSize, axisRect.top(), origin.x()-selTickLabelOffset, axisRect.bottom());
10081 mLabelSelectionBox.setCoords(origin.x()-selLabelOffset-selLabelSize, axisRect.top(), origin.x()-selLabelOffset, axisRect.bottom());
10082 } else if (type == QCPAxis::atRight)
10083 {
10084 mAxisSelectionBox.setCoords(origin.x()-selAxisInSize, axisRect.top(), origin.x()+selAxisOutSize, axisRect.bottom());
10085 mTickLabelsSelectionBox.setCoords(origin.x()+selTickLabelOffset+selTickLabelSize, axisRect.top(), origin.x()+selTickLabelOffset, axisRect.bottom());
10086 mLabelSelectionBox.setCoords(origin.x()+selLabelOffset+selLabelSize, axisRect.top(), origin.x()+selLabelOffset, axisRect.bottom());
10087 } else if (type == QCPAxis::atTop)
10088 {
10089 mAxisSelectionBox.setCoords(axisRect.left(), origin.y()-selAxisOutSize, axisRect.right(), origin.y()+selAxisInSize);
10090 mTickLabelsSelectionBox.setCoords(axisRect.left(), origin.y()-selTickLabelOffset-selTickLabelSize, axisRect.right(), origin.y()-selTickLabelOffset);
10091 mLabelSelectionBox.setCoords(axisRect.left(), origin.y()-selLabelOffset-selLabelSize, axisRect.right(), origin.y()-selLabelOffset);
10092 } else if (type == QCPAxis::atBottom)
10093 {
10094 mAxisSelectionBox.setCoords(axisRect.left(), origin.y()-selAxisInSize, axisRect.right(), origin.y()+selAxisOutSize);
10095 mTickLabelsSelectionBox.setCoords(axisRect.left(), origin.y()+selTickLabelOffset+selTickLabelSize, axisRect.right(), origin.y()+selTickLabelOffset);
10096 mLabelSelectionBox.setCoords(axisRect.left(), origin.y()+selLabelOffset+selLabelSize, axisRect.right(), origin.y()+selLabelOffset);
10097 }
10098 mAxisSelectionBox = mAxisSelectionBox.normalized();
10099 mTickLabelsSelectionBox = mTickLabelsSelectionBox.normalized();
10100 mLabelSelectionBox = mLabelSelectionBox.normalized();
10101 // draw hitboxes for debug purposes:
10102 //painter->setBrush(Qt::NoBrush);
10103 //painter->drawRects(QVector<QRect>() << mAxisSelectionBox << mTickLabelsSelectionBox << mLabelSelectionBox);
10104}
10105
10106/*! \internal
10107
10108 Returns the size ("margin" in QCPAxisRect context, so measured perpendicular to the axis backbone
10109 direction) needed to fit the axis.
10110*/
10112{
10113 int result = 0;
10114
10116 if (newHash != mLabelParameterHash)
10117 {
10118 mLabelCache.clear();
10119 mLabelParameterHash = newHash;
10120 }
10121
10122 // get length of tick marks pointing outwards:
10123 if (!tickPositions.isEmpty())
10124 result += qMax(0, qMax(tickLengthOut, subTickLengthOut));
10125
10126 // calculate size of tick labels:
10127 if (tickLabelSide == QCPAxis::lsOutside)
10128 {
10129 QSize tickLabelsSize(0, 0);
10130 if (!tickLabels.isEmpty())
10131 {
10132 foreach (const QString &tickLabel, tickLabels)
10133 getMaxTickLabelSize(tickLabelFont, tickLabel, &tickLabelsSize);
10134 result += QCPAxis::orientation(type) == Qt::Horizontal ? tickLabelsSize.height() : tickLabelsSize.width();
10135 result += tickLabelPadding;
10136 }
10137 }
10138
10139 // calculate size of axis label (only height needed, because left/right labels are rotated by 90 degrees):
10140 if (!label.isEmpty())
10141 {
10142 QFontMetrics fontMetrics(labelFont);
10143 QRect bounds;
10144 bounds = fontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip | Qt::AlignHCenter | Qt::AlignVCenter, label);
10145 result += bounds.height() + labelPadding;
10146 }
10147
10148 return result;
10149}
10150
10151/*! \internal
10152
10153 Clears the internal label cache. Upon the next \ref draw, all labels will be created new. This
10154 method is called automatically in \ref draw, if any parameters have changed that invalidate the
10155 cached labels, such as font, color, etc.
10156*/
10158{
10159 mLabelCache.clear();
10160}
10161
10162/*! \internal
10163
10164 Returns a hash that allows uniquely identifying whether the label parameters have changed such
10165 that the cached labels must be refreshed (\ref clearCache). It is used in \ref draw. If the
10166 return value of this method hasn't changed since the last redraw, the respective label parameters
10167 haven't changed and cached labels may be used.
10168*/
10170{
10171 QByteArray result;
10172 result.append(QByteArray::number(mParentPlot->bufferDevicePixelRatio()));
10173 result.append(QByteArray::number(tickLabelRotation));
10174 result.append(QByteArray::number(int(tickLabelSide)));
10175 result.append(QByteArray::number(int(substituteExponent)));
10176 result.append(QByteArray::number(int(numberMultiplyCross)));
10177 result.append(tickLabelColor.name().toLatin1()+QByteArray::number(tickLabelColor.alpha(), 16));
10178 result.append(tickLabelFont.toString().toLatin1());
10179 return result;
10180}
10181
10182/*! \internal
10183
10184 Draws a single tick label with the provided \a painter, utilizing the internal label cache to
10185 significantly speed up drawing of labels that were drawn in previous calls. The tick label is
10186 always bound to an axis, the distance to the axis is controllable via \a distanceToAxis in
10187 pixels. The pixel position in the axis direction is passed in the \a position parameter. Hence
10188 for the bottom axis, \a position would indicate the horizontal pixel position (not coordinate),
10189 at which the label should be drawn.
10190
10191 In order to later draw the axis label in a place that doesn't overlap with the tick labels, the
10192 largest tick label size is needed. This is acquired by passing a \a tickLabelsSize to the \ref
10193 drawTickLabel calls during the process of drawing all tick labels of one axis. In every call, \a
10194 tickLabelsSize is expanded, if the drawn label exceeds the value \a tickLabelsSize currently
10195 holds.
10196
10197 The label is drawn with the font and pen that are currently set on the \a painter. To draw
10198 superscripted powers, the font is temporarily made smaller by a fixed factor (see \ref
10199 getTickLabelData).
10200*/
10202{
10203 // warning: if you change anything here, also adapt getMaxTickLabelSize() accordingly!
10204 if (text.isEmpty()) return;
10207 switch (type)
10208 {
10209 case QCPAxis::atLeft: labelAnchor = QPointF(axisRect.left()-distanceToAxis-offset, position); break;
10210 case QCPAxis::atRight: labelAnchor = QPointF(axisRect.right()+distanceToAxis+offset, position); break;
10211 case QCPAxis::atTop: labelAnchor = QPointF(position, axisRect.top()-distanceToAxis-offset); break;
10212 case QCPAxis::atBottom: labelAnchor = QPointF(position, axisRect.bottom()+distanceToAxis+offset); break;
10213 }
10214 if (mParentPlot->plottingHints().testFlag(QCP::phCacheLabels) && !painter->modes().testFlag(QCPPainter::pmNoCaching)) // label caching enabled
10215 {
10216 CachedLabel *cachedLabel = mLabelCache.take(text); // attempt to get label from cache
10217 if (!cachedLabel) // no cached label existed, create it
10218 {
10219 cachedLabel = new CachedLabel;
10220 TickLabelData labelData = getTickLabelData(painter->font(), text);
10221 cachedLabel->offset = getTickLabelDrawOffset(labelData)+labelData.rotatedTotalBounds.topLeft();
10222 if (!qFuzzyCompare(1.0, mParentPlot->bufferDevicePixelRatio()))
10223 {
10224 cachedLabel->pixmap = QPixmap(labelData.rotatedTotalBounds.size()*mParentPlot->bufferDevicePixelRatio());
10225#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
10226# ifdef QCP_DEVICEPIXELRATIO_FLOAT
10227 cachedLabel->pixmap.setDevicePixelRatio(mParentPlot->devicePixelRatioF());
10228# else
10229 cachedLabel->pixmap.setDevicePixelRatio(mParentPlot->devicePixelRatio());
10230# endif
10231#endif
10232 } else
10233 cachedLabel->pixmap = QPixmap(labelData.rotatedTotalBounds.size());
10234 cachedLabel->pixmap.fill(Qt::transparent);
10236 cachePainter.setPen(painter->pen());
10237 drawTickLabel(&cachePainter, -labelData.rotatedTotalBounds.topLeft().x(), -labelData.rotatedTotalBounds.topLeft().y(), labelData);
10238 }
10239 // if label would be partly clipped by widget border on sides, don't draw it (only for outside tick labels):
10240 bool labelClippedByBorder = false;
10241 if (tickLabelSide == QCPAxis::lsOutside)
10242 {
10244 labelClippedByBorder = labelAnchor.x()+cachedLabel->offset.x()+cachedLabel->pixmap.width()/mParentPlot->bufferDevicePixelRatio() > viewportRect.right() || labelAnchor.x()+cachedLabel->offset.x() < viewportRect.left();
10245 else
10246 labelClippedByBorder = labelAnchor.y()+cachedLabel->offset.y()+cachedLabel->pixmap.height()/mParentPlot->bufferDevicePixelRatio() > viewportRect.bottom() || labelAnchor.y()+cachedLabel->offset.y() < viewportRect.top();
10247 }
10249 {
10250 painter->drawPixmap(labelAnchor+cachedLabel->offset, cachedLabel->pixmap);
10251 finalSize = cachedLabel->pixmap.size()/mParentPlot->bufferDevicePixelRatio();
10252 }
10253 mLabelCache.insert(text, cachedLabel); // return label to cache or insert for the first time if newly created
10254 } else // label caching disabled, draw text directly on surface:
10255 {
10256 TickLabelData labelData = getTickLabelData(painter->font(), text);
10258 // if label would be partly clipped by widget border on sides, don't draw it (only for outside tick labels):
10259 bool labelClippedByBorder = false;
10260 if (tickLabelSide == QCPAxis::lsOutside)
10261 {
10263 labelClippedByBorder = finalPosition.x()+(labelData.rotatedTotalBounds.width()+labelData.rotatedTotalBounds.left()) > viewportRect.right() || finalPosition.x()+labelData.rotatedTotalBounds.left() < viewportRect.left();
10264 else
10265 labelClippedByBorder = finalPosition.y()+(labelData.rotatedTotalBounds.height()+labelData.rotatedTotalBounds.top()) > viewportRect.bottom() || finalPosition.y()+labelData.rotatedTotalBounds.top() < viewportRect.top();
10266 }
10268 {
10269 drawTickLabel(painter, finalPosition.x(), finalPosition.y(), labelData);
10270 finalSize = labelData.rotatedTotalBounds.size();
10271 }
10272 }
10273
10274 // expand passed tickLabelsSize if current tick label is larger:
10275 if (finalSize.width() > tickLabelsSize->width())
10276 tickLabelsSize->setWidth(finalSize.width());
10277 if (finalSize.height() > tickLabelsSize->height())
10278 tickLabelsSize->setHeight(finalSize.height());
10279}
10280
10281/*! \internal
10282
10283 This is a \ref placeTickLabel helper function.
10284
10285 Draws the tick label specified in \a labelData with \a painter at the pixel positions \a x and \a
10286 y. This function is used by \ref placeTickLabel to create new tick labels for the cache, or to
10287 directly draw the labels on the QCustomPlot surface when label caching is disabled, i.e. when
10288 QCP::phCacheLabels plotting hint is not set.
10289*/
10290void QCPAxisPainterPrivate::drawTickLabel(QCPPainter *painter, double x, double y, const TickLabelData &labelData) const
10291{
10292 // backup painter settings that we're about to change:
10293 QTransform oldTransform = painter->transform();
10294 QFont oldFont = painter->font();
10295
10296 // transform painter to position/rotation:
10297 painter->translate(x, y);
10298 if (!qFuzzyIsNull(tickLabelRotation))
10299 painter->rotate(tickLabelRotation);
10300
10301 // draw text:
10302 if (!labelData.expPart.isEmpty()) // indicator that beautiful powers must be used
10303 {
10304 painter->setFont(labelData.baseFont);
10305 painter->drawText(0, 0, 0, 0, Qt::TextDontClip, labelData.basePart);
10306 if (!labelData.suffixPart.isEmpty())
10307 painter->drawText(labelData.baseBounds.width()+1+labelData.expBounds.width(), 0, 0, 0, Qt::TextDontClip, labelData.suffixPart);
10308 painter->setFont(labelData.expFont);
10309 painter->drawText(labelData.baseBounds.width()+1, 0, labelData.expBounds.width(), labelData.expBounds.height(), Qt::TextDontClip, labelData.expPart);
10310 } else
10311 {
10312 painter->setFont(labelData.baseFont);
10313 painter->drawText(0, 0, labelData.totalBounds.width(), labelData.totalBounds.height(), Qt::TextDontClip | Qt::AlignHCenter, labelData.basePart);
10314 }
10315
10316 // reset painter settings to what it was before:
10317 painter->setTransform(oldTransform);
10318 painter->setFont(oldFont);
10319}
10320
10321/*! \internal
10322
10323 This is a \ref placeTickLabel helper function.
10324
10325 Transforms the passed \a text and \a font to a tickLabelData structure that can then be further
10326 processed by \ref getTickLabelDrawOffset and \ref drawTickLabel. It splits the text into base and
10327 exponent if necessary (member substituteExponent) and calculates appropriate bounding boxes.
10328*/
10329QCPAxisPainterPrivate::TickLabelData QCPAxisPainterPrivate::getTickLabelData(const QFont &font, const QString &text) const
10330{
10331 TickLabelData result;
10332
10333 // determine whether beautiful decimal powers should be used
10334 bool useBeautifulPowers = false;
10335 int ePos = -1; // first index of exponent part, text before that will be basePart, text until eLast will be expPart
10336 int eLast = -1; // last index of exponent part, rest of text after this will be suffixPart
10337 if (substituteExponent)
10338 {
10339 ePos = text.indexOf(QLatin1Char('e'));
10340 if (ePos > 0 && text.at(ePos-1).isDigit())
10341 {
10342 eLast = ePos;
10343 while (eLast+1 < text.size() && (text.at(eLast+1) == QLatin1Char('+') || text.at(eLast+1) == QLatin1Char('-') || text.at(eLast+1).isDigit()))
10344 ++eLast;
10345 if (eLast > ePos) // only if also to right of 'e' is a digit/+/- interpret it as beautifiable power
10346 useBeautifulPowers = true;
10347 }
10348 }
10349
10350 // calculate text bounding rects and do string preparation for beautiful decimal powers:
10351 result.baseFont = font;
10352 if (result.baseFont.pointSizeF() > 0) // might return -1 if specified with setPixelSize, in that case we can't do correction in next line
10353 result.baseFont.setPointSizeF(result.baseFont.pointSizeF()+0.05); // QFontMetrics.boundingRect has a bug for exact point sizes that make the results oscillate due to internal rounding
10355 {
10356 // split text into parts of number/symbol that will be drawn normally and part that will be drawn as exponent:
10357 result.basePart = text.left(ePos);
10358 result.suffixPart = text.mid(eLast+1); // also drawn normally but after exponent
10359 // in log scaling, we want to turn "1*10^n" into "10^n", else add multiplication sign and decimal base:
10360 if (abbreviateDecimalPowers && result.basePart == QLatin1String("1"))
10361 result.basePart = QLatin1String("10");
10362 else
10363 result.basePart += (numberMultiplyCross ? QString(QChar(215)) : QString(QChar(183))) + QLatin1String("10");
10364 result.expPart = text.mid(ePos+1, eLast-ePos);
10365 // clip "+" and leading zeros off expPart:
10366 while (result.expPart.length() > 2 && result.expPart.at(1) == QLatin1Char('0')) // length > 2 so we leave one zero when numberFormatChar is 'e'
10367 result.expPart.remove(1, 1);
10368 if (!result.expPart.isEmpty() && result.expPart.at(0) == QLatin1Char('+'))
10369 result.expPart.remove(0, 1);
10370 // prepare smaller font for exponent:
10371 result.expFont = font;
10372 if (result.expFont.pointSize() > 0)
10373 result.expFont.setPointSize(int(result.expFont.pointSize()*0.75));
10374 else
10375 result.expFont.setPixelSize(int(result.expFont.pixelSize()*0.75));
10376 // calculate bounding rects of base part(s), exponent part and total one:
10377 result.baseBounds = QFontMetrics(result.baseFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.basePart);
10378 result.expBounds = QFontMetrics(result.expFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.expPart);
10379 if (!result.suffixPart.isEmpty())
10380 result.suffixBounds = QFontMetrics(result.baseFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip, result.suffixPart);
10381 result.totalBounds = result.baseBounds.adjusted(0, 0, result.expBounds.width()+result.suffixBounds.width()+2, 0); // +2 consists of the 1 pixel spacing between base and exponent (see drawTickLabel) and an extra pixel to include AA
10382 } else // useBeautifulPowers == false
10383 {
10384 result.basePart = text;
10385 result.totalBounds = QFontMetrics(result.baseFont).boundingRect(0, 0, 0, 0, Qt::TextDontClip | Qt::AlignHCenter, result.basePart);
10386 }
10387 result.totalBounds.moveTopLeft(QPoint(0, 0)); // want bounding box aligned top left at origin, independent of how it was created, to make further processing simpler
10388
10389 // calculate possibly different bounding rect after rotation:
10390 result.rotatedTotalBounds = result.totalBounds;
10391 if (!qFuzzyIsNull(tickLabelRotation))
10392 {
10393 QTransform transform;
10394 transform.rotate(tickLabelRotation);
10395 result.rotatedTotalBounds = transform.mapRect(result.rotatedTotalBounds);
10396 }
10397
10398 return result;
10399}
10400
10401/*! \internal
10402
10403 This is a \ref placeTickLabel helper function.
10404
10405 Calculates the offset at which the top left corner of the specified tick label shall be drawn.
10406 The offset is relative to a point right next to the tick the label belongs to.
10407
10408 This function is thus responsible for e.g. centering tick labels under ticks and positioning them
10409 appropriately when they are rotated.
10410*/
10412{
10413 /*
10414 calculate label offset from base point at tick (non-trivial, for best visual appearance): short
10415 explanation for bottom axis: The anchor, i.e. the point in the label that is placed
10416 horizontally under the corresponding tick is always on the label side that is closer to the
10417 axis (e.g. the left side of the text when we're rotating clockwise). On that side, the height
10418 is halved and the resulting point is defined the anchor. This way, a 90 degree rotated text
10419 will be centered under the tick (i.e. displaced horizontally by half its height). At the same
10420 time, a 45 degree rotated text will "point toward" its tick, as is typical for rotated tick
10421 labels.
10422 */
10423 bool doRotation = !qFuzzyIsNull(tickLabelRotation);
10424 bool flip = qFuzzyCompare(qAbs(tickLabelRotation), 90.0); // perfect +/-90 degree flip. Indicates vertical label centering on vertical axes.
10425 double radians = tickLabelRotation/180.0*M_PI;
10426 double x = 0;
10427 double y = 0;
10428 if ((type == QCPAxis::atLeft && tickLabelSide == QCPAxis::lsOutside) || (type == QCPAxis::atRight && tickLabelSide == QCPAxis::lsInside)) // Anchor at right side of tick label
10429 {
10430 if (doRotation)
10431 {
10432 if (tickLabelRotation > 0)
10433 {
10434 x = -qCos(radians)*labelData.totalBounds.width();
10435 y = flip ? -labelData.totalBounds.width()/2.0 : -qSin(radians)*labelData.totalBounds.width()-qCos(radians)*labelData.totalBounds.height()/2.0;
10436 } else
10437 {
10438 x = -qCos(-radians)*labelData.totalBounds.width()-qSin(-radians)*labelData.totalBounds.height();
10439 y = flip ? +labelData.totalBounds.width()/2.0 : +qSin(-radians)*labelData.totalBounds.width()-qCos(-radians)*labelData.totalBounds.height()/2.0;
10440 }
10441 } else
10442 {
10443 x = -labelData.totalBounds.width();
10444 y = -labelData.totalBounds.height()/2.0;
10445 }
10446 } else if ((type == QCPAxis::atRight && tickLabelSide == QCPAxis::lsOutside) || (type == QCPAxis::atLeft && tickLabelSide == QCPAxis::lsInside)) // Anchor at left side of tick label
10447 {
10448 if (doRotation)
10449 {
10450 if (tickLabelRotation > 0)
10451 {
10452 x = +qSin(radians)*labelData.totalBounds.height();
10453 y = flip ? -labelData.totalBounds.width()/2.0 : -qCos(radians)*labelData.totalBounds.height()/2.0;
10454 } else
10455 {
10456 x = 0;
10457 y = flip ? +labelData.totalBounds.width()/2.0 : -qCos(-radians)*labelData.totalBounds.height()/2.0;
10458 }
10459 } else
10460 {
10461 x = 0;
10462 y = -labelData.totalBounds.height()/2.0;
10463 }
10464 } else if ((type == QCPAxis::atTop && tickLabelSide == QCPAxis::lsOutside) || (type == QCPAxis::atBottom && tickLabelSide == QCPAxis::lsInside)) // Anchor at bottom side of tick label
10465 {
10466 if (doRotation)
10467 {
10468 if (tickLabelRotation > 0)
10469 {
10470 x = -qCos(radians)*labelData.totalBounds.width()+qSin(radians)*labelData.totalBounds.height()/2.0;
10471 y = -qSin(radians)*labelData.totalBounds.width()-qCos(radians)*labelData.totalBounds.height();
10472 } else
10473 {
10474 x = -qSin(-radians)*labelData.totalBounds.height()/2.0;
10475 y = -qCos(-radians)*labelData.totalBounds.height();
10476 }
10477 } else
10478 {
10479 x = -labelData.totalBounds.width()/2.0;
10480 y = -labelData.totalBounds.height();
10481 }
10482 } else if ((type == QCPAxis::atBottom && tickLabelSide == QCPAxis::lsOutside) || (type == QCPAxis::atTop && tickLabelSide == QCPAxis::lsInside)) // Anchor at top side of tick label
10483 {
10484 if (doRotation)
10485 {
10486 if (tickLabelRotation > 0)
10487 {
10488 x = +qSin(radians)*labelData.totalBounds.height()/2.0;
10489 y = 0;
10490 } else
10491 {
10492 x = -qCos(-radians)*labelData.totalBounds.width()-qSin(-radians)*labelData.totalBounds.height()/2.0;
10493 y = +qSin(-radians)*labelData.totalBounds.width();
10494 }
10495 } else
10496 {
10497 x = -labelData.totalBounds.width()/2.0;
10498 y = 0;
10499 }
10500 }
10501
10502 return {x, y};
10503}
10504
10505/*! \internal
10506
10507 Simulates the steps done by \ref placeTickLabel by calculating bounding boxes of the text label
10508 to be drawn, depending on number format etc. Since only the largest tick label is wanted for the
10509 margin calculation, the passed \a tickLabelsSize is only expanded, if it's currently set to a
10510 smaller width/height.
10511*/
10513{
10514 // note: this function must return the same tick label sizes as the placeTickLabel function.
10516 if (mParentPlot->plottingHints().testFlag(QCP::phCacheLabels) && mLabelCache.contains(text)) // label caching enabled and have cached label
10517 {
10518 const CachedLabel *cachedLabel = mLabelCache.object(text);
10519 finalSize = cachedLabel->pixmap.size()/mParentPlot->bufferDevicePixelRatio();
10520 } else // label caching disabled or no label with this text cached:
10521 {
10522 TickLabelData labelData = getTickLabelData(font, text);
10523 finalSize = labelData.rotatedTotalBounds.size();
10524 }
10525
10526 // expand passed tickLabelsSize if current tick label is larger:
10527 if (finalSize.width() > tickLabelsSize->width())
10528 tickLabelsSize->setWidth(finalSize.width());
10529 if (finalSize.height() > tickLabelsSize->height())
10530 tickLabelsSize->setHeight(finalSize.height());
10531}
10532/* end of 'src/axis/axis.cpp' */
10533
10534
10535/* including file 'src/scatterstyle.cpp' */
10536/* modified 2021-03-29T02:30:44, size 17466 */
10537
10538////////////////////////////////////////////////////////////////////////////////////////////////////
10539//////////////////// QCPScatterStyle
10540////////////////////////////////////////////////////////////////////////////////////////////////////
10541
10542/*! \class QCPScatterStyle
10543 \brief Represents the visual appearance of scatter points
10544
10545 This class holds information about shape, color and size of scatter points. In plottables like
10546 QCPGraph it is used to store how scatter points shall be drawn. For example, \ref
10547 QCPGraph::setScatterStyle takes a QCPScatterStyle instance.
10548
10549 A scatter style consists of a shape (\ref setShape), a line color (\ref setPen) and possibly a
10550 fill (\ref setBrush), if the shape provides a fillable area. Further, the size of the shape can
10551 be controlled with \ref setSize.
10552
10553 \section QCPScatterStyle-defining Specifying a scatter style
10554
10555 You can set all these configurations either by calling the respective functions on an instance:
10556 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpscatterstyle-creation-1
10557
10558 Or you can use one of the various constructors that take different parameter combinations, making
10559 it easy to specify a scatter style in a single call, like so:
10560 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpscatterstyle-creation-2
10561
10562 \section QCPScatterStyle-undefinedpen Leaving the color/pen up to the plottable
10563
10564 There are two constructors which leave the pen undefined: \ref QCPScatterStyle() and \ref
10565 QCPScatterStyle(ScatterShape shape, double size). If those constructors are used, a call to \ref
10566 isPenDefined will return false. It leads to scatter points that inherit the pen from the
10567 plottable that uses the scatter style. Thus, if such a scatter style is passed to QCPGraph, the line
10568 color of the graph (\ref QCPGraph::setPen) will be used by the scatter points. This makes
10569 it very convenient to set up typical scatter settings:
10570
10571 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpscatterstyle-shortcreation
10572
10573 Notice that it wasn't even necessary to explicitly call a QCPScatterStyle constructor. This works
10574 because QCPScatterStyle provides a constructor that can transform a \ref ScatterShape directly
10575 into a QCPScatterStyle instance (that's the \ref QCPScatterStyle(ScatterShape shape, double size)
10576 constructor with a default for \a size). In those cases, C++ allows directly supplying a \ref
10577 ScatterShape, where actually a QCPScatterStyle is expected.
10578
10579 \section QCPScatterStyle-custompath-and-pixmap Custom shapes and pixmaps
10580
10581 QCPScatterStyle supports drawing custom shapes and arbitrary pixmaps as scatter points.
10582
10583 For custom shapes, you can provide a QPainterPath with the desired shape to the \ref
10584 setCustomPath function or call the constructor that takes a painter path. The scatter shape will
10585 automatically be set to \ref ssCustom.
10586
10587 For pixmaps, you call \ref setPixmap with the desired QPixmap. Alternatively you can use the
10588 constructor that takes a QPixmap. The scatter shape will automatically be set to \ref ssPixmap.
10589 Note that \ref setSize does not influence the appearance of the pixmap.
10590*/
10591
10592/* start documentation of inline functions */
10593
10594/*! \fn bool QCPScatterStyle::isNone() const
10595
10596 Returns whether the scatter shape is \ref ssNone.
10597
10598 \see setShape
10599*/
10600
10601/*! \fn bool QCPScatterStyle::isPenDefined() const
10602
10603 Returns whether a pen has been defined for this scatter style.
10604
10605 The pen is undefined if a constructor is called that does not carry \a pen as parameter. Those
10606 are \ref QCPScatterStyle() and \ref QCPScatterStyle(ScatterShape shape, double size). If the pen
10607 is undefined, the pen of the respective plottable will be used for drawing scatters.
10608
10609 If a pen was defined for this scatter style instance, and you now wish to undefine the pen, call
10610 \ref undefinePen.
10611
10612 \see setPen
10613*/
10614
10615/* end documentation of inline functions */
10616
10617/*!
10618 Creates a new QCPScatterStyle instance with size set to 6. No shape, pen or brush is defined.
10619
10620 Since the pen is undefined (\ref isPenDefined returns false), the scatter color will be inherited
10621 from the plottable that uses this scatter style.
10622*/
10624 mSize(6),
10625 mShape(ssNone),
10626 mPen(Qt::NoPen),
10627 mBrush(Qt::NoBrush),
10628 mPenDefined(false)
10629{
10630}
10631
10632/*!
10633 Creates a new QCPScatterStyle instance with shape set to \a shape and size to \a size. No pen or
10634 brush is defined.
10635
10636 Since the pen is undefined (\ref isPenDefined returns false), the scatter color will be inherited
10637 from the plottable that uses this scatter style.
10638*/
10640 mSize(size),
10641 mShape(shape),
10642 mPen(Qt::NoPen),
10643 mBrush(Qt::NoBrush),
10644 mPenDefined(false)
10645{
10646}
10647
10648/*!
10649 Creates a new QCPScatterStyle instance with shape set to \a shape, the pen color set to \a color,
10650 and size to \a size. No brush is defined, i.e. the scatter point will not be filled.
10651*/
10652QCPScatterStyle::QCPScatterStyle(ScatterShape shape, const QColor &color, double size) :
10653 mSize(size),
10654 mShape(shape),
10655 mPen(QPen(color)),
10656 mBrush(Qt::NoBrush),
10657 mPenDefined(true)
10658{
10659}
10660
10661/*!
10662 Creates a new QCPScatterStyle instance with shape set to \a shape, the pen color set to \a color,
10663 the brush color to \a fill (with a solid pattern), and size to \a size.
10664*/
10665QCPScatterStyle::QCPScatterStyle(ScatterShape shape, const QColor &color, const QColor &fill, double size) :
10666 mSize(size),
10667 mShape(shape),
10668 mPen(QPen(color)),
10669 mBrush(QBrush(fill)),
10670 mPenDefined(true)
10671{
10672}
10673
10674/*!
10675 Creates a new QCPScatterStyle instance with shape set to \a shape, the pen set to \a pen, the
10676 brush to \a brush, and size to \a size.
10677
10678 \warning In some cases it might be tempting to directly use a pen style like <tt>Qt::NoPen</tt> as \a pen
10679 and a color like <tt>Qt::blue</tt> as \a brush. Notice however, that the corresponding call\n
10680 <tt>QCPScatterStyle(QCPScatterShape::ssCircle, Qt::NoPen, Qt::blue, 5)</tt>\n
10681 doesn't necessarily lead C++ to use this constructor in some cases, but might mistake
10682 <tt>Qt::NoPen</tt> for a QColor and use the
10683 \ref QCPScatterStyle(ScatterShape shape, const QColor &color, const QColor &fill, double size)
10684 constructor instead (which will lead to an unexpected look of the scatter points). To prevent
10685 this, be more explicit with the parameter types. For example, use <tt>QBrush(Qt::blue)</tt>
10686 instead of just <tt>Qt::blue</tt>, to clearly point out to the compiler that this constructor is
10687 wanted.
10688*/
10689QCPScatterStyle::QCPScatterStyle(ScatterShape shape, const QPen &pen, const QBrush &brush, double size) :
10690 mSize(size),
10691 mShape(shape),
10692 mPen(pen),
10693 mBrush(brush),
10694 mPenDefined(pen.style() != Qt::NoPen)
10695{
10696}
10697
10698/*!
10699 Creates a new QCPScatterStyle instance which will show the specified \a pixmap. The scatter shape
10700 is set to \ref ssPixmap.
10701*/
10703 mSize(5),
10704 mShape(ssPixmap),
10705 mPen(Qt::NoPen),
10706 mBrush(Qt::NoBrush),
10707 mPixmap(pixmap),
10708 mPenDefined(false)
10709{
10710}
10711
10712/*!
10713 Creates a new QCPScatterStyle instance with a custom shape that is defined via \a customPath. The
10714 scatter shape is set to \ref ssCustom.
10715
10716 The custom shape line will be drawn with \a pen and filled with \a brush. The size has a slightly
10717 different meaning than for built-in scatter points: The custom path will be drawn scaled by a
10718 factor of \a size/6.0. Since the default \a size is 6, the custom path will appear in its
10719 original size by default. To for example double the size of the path, set \a size to 12.
10720*/
10721QCPScatterStyle::QCPScatterStyle(const QPainterPath &customPath, const QPen &pen, const QBrush &brush, double size) :
10722 mSize(size),
10723 mShape(ssCustom),
10724 mPen(pen),
10725 mBrush(brush),
10726 mCustomPath(customPath),
10727 mPenDefined(pen.style() != Qt::NoPen)
10728{
10729}
10730
10731/*!
10732 Copies the specified \a properties from the \a other scatter style to this scatter style.
10733*/
10735{
10736 if (properties.testFlag(spPen))
10737 {
10738 setPen(other.pen());
10739 if (!other.isPenDefined())
10740 undefinePen();
10741 }
10742 if (properties.testFlag(spBrush))
10743 setBrush(other.brush());
10744 if (properties.testFlag(spSize))
10745 setSize(other.size());
10746 if (properties.testFlag(spShape))
10747 {
10748 setShape(other.shape());
10749 if (other.shape() == ssPixmap)
10750 setPixmap(other.pixmap());
10751 else if (other.shape() == ssCustom)
10752 setCustomPath(other.customPath());
10753 }
10754}
10755
10756/*!
10757 Sets the size (pixel diameter) of the drawn scatter points to \a size.
10758
10759 \see setShape
10760*/
10762{
10763 mSize = size;
10764}
10765
10766/*!
10767 Sets the shape to \a shape.
10768
10769 Note that the calls \ref setPixmap and \ref setCustomPath automatically set the shape to \ref
10770 ssPixmap and \ref ssCustom, respectively.
10771
10772 \see setSize
10773*/
10775{
10776 mShape = shape;
10777}
10778
10779/*!
10780 Sets the pen that will be used to draw scatter points to \a pen.
10781
10782 If the pen was previously undefined (see \ref isPenDefined), the pen is considered defined after
10783 a call to this function, even if \a pen is <tt>Qt::NoPen</tt>. If you have defined a pen
10784 previously by calling this function and now wish to undefine the pen, call \ref undefinePen.
10785
10786 \see setBrush
10787*/
10789{
10790 mPenDefined = true;
10791 mPen = pen;
10792}
10793
10794/*!
10795 Sets the brush that will be used to fill scatter points to \a brush. Note that not all scatter
10796 shapes have fillable areas. For example, \ref ssPlus does not while \ref ssCircle does.
10797
10798 \see setPen
10799*/
10801{
10802 mBrush = brush;
10803}
10804
10805/*!
10806 Sets the pixmap that will be drawn as scatter point to \a pixmap.
10807
10808 Note that \ref setSize does not influence the appearance of the pixmap.
10809
10810 The scatter shape is automatically set to \ref ssPixmap.
10811*/
10813{
10815 mPixmap = pixmap;
10816}
10817
10818/*!
10819 Sets the custom shape that will be drawn as scatter point to \a customPath.
10820
10821 The scatter shape is automatically set to \ref ssCustom.
10822*/
10824{
10826 mCustomPath = customPath;
10827}
10828
10829/*!
10830 Sets this scatter style to have an undefined pen (see \ref isPenDefined for what an undefined pen
10831 implies).
10832
10833 A call to \ref setPen will define a pen.
10834*/
10836{
10837 mPenDefined = false;
10838}
10839
10840/*!
10841 Applies the pen and the brush of this scatter style to \a painter. If this scatter style has an
10842 undefined pen (\ref isPenDefined), sets the pen of \a painter to \a defaultPen instead.
10843
10844 This function is used by plottables (or any class that wants to draw scatters) just before a
10845 number of scatters with this style shall be drawn with the \a painter.
10846
10847 \see drawShape
10848*/
10849void QCPScatterStyle::applyTo(QCPPainter *painter, const QPen &defaultPen) const
10850{
10851 painter->setPen(mPenDefined ? mPen : defaultPen);
10852 painter->setBrush(mBrush);
10853}
10854
10855/*!
10856 Draws the scatter shape with \a painter at position \a pos.
10857
10858 This function does not modify the pen or the brush on the painter, as \ref applyTo is meant to be
10859 called before scatter points are drawn with \ref drawShape.
10860
10861 \see applyTo
10862*/
10863void QCPScatterStyle::drawShape(QCPPainter *painter, const QPointF &pos) const
10864{
10865 drawShape(painter, pos.x(), pos.y());
10866}
10867
10868/*! \overload
10869 Draws the scatter shape with \a painter at position \a x and \a y.
10870*/
10871void QCPScatterStyle::drawShape(QCPPainter *painter, double x, double y) const
10872{
10873 double w = mSize/2.0;
10874 switch (mShape)
10875 {
10876 case ssNone: break;
10877 case ssDot:
10878 {
10879 painter->drawLine(QPointF(x, y), QPointF(x+0.0001, y));
10880 break;
10881 }
10882 case ssCross:
10883 {
10884 painter->drawLine(QLineF(x-w, y-w, x+w, y+w));
10885 painter->drawLine(QLineF(x-w, y+w, x+w, y-w));
10886 break;
10887 }
10888 case ssPlus:
10889 {
10890 painter->drawLine(QLineF(x-w, y, x+w, y));
10891 painter->drawLine(QLineF( x, y+w, x, y-w));
10892 break;
10893 }
10894 case ssCircle:
10895 {
10896 painter->drawEllipse(QPointF(x , y), w, w);
10897 break;
10898 }
10899 case ssDisc:
10900 {
10901 QBrush b = painter->brush();
10902 painter->setBrush(painter->pen().color());
10903 painter->drawEllipse(QPointF(x , y), w, w);
10904 painter->setBrush(b);
10905 break;
10906 }
10907 case ssSquare:
10908 {
10909 painter->drawRect(QRectF(x-w, y-w, mSize, mSize));
10910 break;
10911 }
10912 case ssDiamond:
10913 {
10914 QPointF lineArray[4] = {QPointF(x-w, y),
10915 QPointF( x, y-w),
10916 QPointF(x+w, y),
10917 QPointF( x, y+w)};
10918 painter->drawPolygon(lineArray, 4);
10919 break;
10920 }
10921 case ssStar:
10922 {
10923 painter->drawLine(QLineF(x-w, y, x+w, y));
10924 painter->drawLine(QLineF( x, y+w, x, y-w));
10925 painter->drawLine(QLineF(x-w*0.707, y-w*0.707, x+w*0.707, y+w*0.707));
10926 painter->drawLine(QLineF(x-w*0.707, y+w*0.707, x+w*0.707, y-w*0.707));
10927 break;
10928 }
10929 case ssTriangle:
10930 {
10931 QPointF lineArray[3] = {QPointF(x-w, y+0.755*w),
10932 QPointF(x+w, y+0.755*w),
10933 QPointF( x, y-0.977*w)};
10934 painter->drawPolygon(lineArray, 3);
10935 break;
10936 }
10937 case ssTriangleInverted:
10938 {
10939 QPointF lineArray[3] = {QPointF(x-w, y-0.755*w),
10940 QPointF(x+w, y-0.755*w),
10941 QPointF( x, y+0.977*w)};
10942 painter->drawPolygon(lineArray, 3);
10943 break;
10944 }
10945 case ssCrossSquare:
10946 {
10947 painter->drawRect(QRectF(x-w, y-w, mSize, mSize));
10948 painter->drawLine(QLineF(x-w, y-w, x+w*0.95, y+w*0.95));
10949 painter->drawLine(QLineF(x-w, y+w*0.95, x+w*0.95, y-w));
10950 break;
10951 }
10952 case ssPlusSquare:
10953 {
10954 painter->drawRect(QRectF(x-w, y-w, mSize, mSize));
10955 painter->drawLine(QLineF(x-w, y, x+w*0.95, y));
10956 painter->drawLine(QLineF( x, y+w, x, y-w));
10957 break;
10958 }
10959 case ssCrossCircle:
10960 {
10961 painter->drawEllipse(QPointF(x, y), w, w);
10962 painter->drawLine(QLineF(x-w*0.707, y-w*0.707, x+w*0.670, y+w*0.670));
10963 painter->drawLine(QLineF(x-w*0.707, y+w*0.670, x+w*0.670, y-w*0.707));
10964 break;
10965 }
10966 case ssPlusCircle:
10967 {
10968 painter->drawEllipse(QPointF(x, y), w, w);
10969 painter->drawLine(QLineF(x-w, y, x+w, y));
10970 painter->drawLine(QLineF( x, y+w, x, y-w));
10971 break;
10972 }
10973 case ssPeace:
10974 {
10975 painter->drawEllipse(QPointF(x, y), w, w);
10976 painter->drawLine(QLineF(x, y-w, x, y+w));
10977 painter->drawLine(QLineF(x, y, x-w*0.707, y+w*0.707));
10978 painter->drawLine(QLineF(x, y, x+w*0.707, y+w*0.707));
10979 break;
10980 }
10981 case ssPixmap:
10982 {
10983 const double widthHalf = mPixmap.width()*0.5;
10984 const double heightHalf = mPixmap.height()*0.5;
10985#if QT_VERSION < QT_VERSION_CHECK(4, 8, 0)
10986 const QRectF clipRect = painter->clipRegion().boundingRect().adjusted(-widthHalf, -heightHalf, widthHalf, heightHalf);
10987#else
10988 const QRectF clipRect = painter->clipBoundingRect().adjusted(-widthHalf, -heightHalf, widthHalf, heightHalf);
10989#endif
10990 if (clipRect.contains(x, y))
10991 painter->drawPixmap(qRound(x-widthHalf), qRound(y-heightHalf), mPixmap);
10992 break;
10993 }
10994 case ssCustom:
10995 {
10996 QTransform oldTransform = painter->transform();
10997 painter->translate(x, y);
10998 painter->scale(mSize/6.0, mSize/6.0);
10999 painter->drawPath(mCustomPath);
11000 painter->setTransform(oldTransform);
11001 break;
11002 }
11003 }
11004}
11005/* end of 'src/scatterstyle.cpp' */
11006
11007
11008/* including file 'src/plottable.cpp' */
11009/* modified 2021-03-29T02:30:44, size 38818 */
11010
11011////////////////////////////////////////////////////////////////////////////////////////////////////
11012//////////////////// QCPSelectionDecorator
11013////////////////////////////////////////////////////////////////////////////////////////////////////
11014
11015/*! \class QCPSelectionDecorator
11016 \brief Controls how a plottable's data selection is drawn
11017
11018 Each \ref QCPAbstractPlottable instance has one \ref QCPSelectionDecorator (accessible via \ref
11019 QCPAbstractPlottable::selectionDecorator) and uses it when drawing selected segments of its data.
11020
11021 The selection decorator controls both pen (\ref setPen) and brush (\ref setBrush), as well as the
11022 scatter style (\ref setScatterStyle) if the plottable draws scatters. Since a \ref
11023 QCPScatterStyle is itself composed of different properties such as color shape and size, the
11024 decorator allows specifying exactly which of those properties shall be used for the selected data
11025 point, via \ref setUsedScatterProperties.
11026
11027 A \ref QCPSelectionDecorator subclass instance can be passed to a plottable via \ref
11028 QCPAbstractPlottable::setSelectionDecorator, allowing greater customizability of the appearance
11029 of selected segments.
11030
11031 Use \ref copyFrom to easily transfer the settings of one decorator to another one. This is
11032 especially useful since plottables take ownership of the passed selection decorator, and thus the
11033 same decorator instance can not be passed to multiple plottables.
11034
11035 Selection decorators can also themselves perform drawing operations by reimplementing \ref
11036 drawDecoration, which is called by the plottable's draw method. The base class \ref
11037 QCPSelectionDecorator does not make use of this however. For example, \ref
11038 QCPSelectionDecoratorBracket draws brackets around selected data segments.
11039*/
11040
11041/*!
11042 Creates a new QCPSelectionDecorator instance with default values
11043*/
11045 mPen(QColor(80, 80, 255), 2.5),
11046 mBrush(Qt::NoBrush),
11047 mUsedScatterProperties(QCPScatterStyle::spNone),
11048 mPlottable(nullptr)
11049{
11050}
11051
11052QCPSelectionDecorator::~QCPSelectionDecorator()
11053{
11054}
11055
11056/*!
11057 Sets the pen that will be used by the parent plottable to draw selected data segments.
11058*/
11060{
11061 mPen = pen;
11062}
11063
11064/*!
11065 Sets the brush that will be used by the parent plottable to draw selected data segments.
11066*/
11068{
11069 mBrush = brush;
11070}
11071
11072/*!
11073 Sets the scatter style that will be used by the parent plottable to draw scatters in selected
11074 data segments.
11075
11076 \a usedProperties specifies which parts of the passed \a scatterStyle will be used by the
11077 plottable. The used properties can also be changed via \ref setUsedScatterProperties.
11078*/
11084
11085/*!
11086 Use this method to define which properties of the scatter style (set via \ref setScatterStyle)
11087 will be used for selected data segments. All properties of the scatter style that are not
11088 specified in \a properties will remain as specified in the plottable's original scatter style.
11089
11090 \see QCPScatterStyle::ScatterProperty
11091*/
11093{
11094 mUsedScatterProperties = properties;
11095}
11096
11097/*!
11098 Sets the pen of \a painter to the pen of this selection decorator.
11099
11100 \see applyBrush, getFinalScatterStyle
11101*/
11103{
11104 painter->setPen(mPen);
11105}
11106
11107/*!
11108 Sets the brush of \a painter to the brush of this selection decorator.
11109
11110 \see applyPen, getFinalScatterStyle
11111*/
11113{
11114 painter->setBrush(mBrush);
11115}
11116
11117/*!
11118 Returns the scatter style that the parent plottable shall use for selected scatter points. The
11119 plottable's original (unselected) scatter style must be passed as \a unselectedStyle. Depending
11120 on the setting of \ref setUsedScatterProperties, the returned scatter style is a mixture of this
11121 selecion decorator's scatter style (\ref setScatterStyle), and \a unselectedStyle.
11122
11123 \see applyPen, applyBrush, setScatterStyle
11124*/
11126{
11128 result.setFromOther(mScatterStyle, mUsedScatterProperties);
11129
11130 // if style shall inherit pen from plottable (has no own pen defined), give it the selected
11131 // plottable pen explicitly, so it doesn't use the unselected plottable pen when used in the
11132 // plottable:
11133 if (!result.isPenDefined())
11134 result.setPen(mPen);
11135
11136 return result;
11137}
11138
11139/*!
11140 Copies all properties (e.g. color, fill, scatter style) of the \a other selection decorator to
11141 this selection decorator.
11142*/
11144{
11145 setPen(other->pen());
11146 setBrush(other->brush());
11147 setScatterStyle(other->scatterStyle(), other->usedScatterProperties());
11148}
11149
11150/*!
11151 This method is called by all plottables' draw methods to allow custom selection decorations to be
11152 drawn. Use the passed \a painter to perform the drawing operations. \a selection carries the data
11153 selection for which the decoration shall be drawn.
11154
11155 The default base class implementation of \ref QCPSelectionDecorator has no special decoration, so
11156 this method does nothing.
11157*/
11159{
11160 Q_UNUSED(painter)
11161 Q_UNUSED(selection)
11162}
11163
11164/*! \internal
11165
11166 This method is called as soon as a selection decorator is associated with a plottable, by a call
11167 to \ref QCPAbstractPlottable::setSelectionDecorator. This way the selection decorator can obtain a pointer to the plottable that uses it (e.g. to access
11168 data points via the \ref QCPAbstractPlottable::interface1D interface).
11169
11170 If the selection decorator was already added to a different plottable before, this method aborts
11171 the registration and returns false.
11172*/
11174{
11175 if (!mPlottable)
11176 {
11177 mPlottable = plottable;
11178 return true;
11179 } else
11180 {
11181 qDebug() << Q_FUNC_INFO << "This selection decorator is already registered with plottable:" << reinterpret_cast<quintptr>(mPlottable);
11182 return false;
11183 }
11184}
11185
11186
11187////////////////////////////////////////////////////////////////////////////////////////////////////
11188//////////////////// QCPAbstractPlottable
11189////////////////////////////////////////////////////////////////////////////////////////////////////
11190
11191/*! \class QCPAbstractPlottable
11192 \brief The abstract base class for all data representing objects in a plot.
11193
11194 It defines a very basic interface like name, pen, brush, visibility etc. Since this class is
11195 abstract, it can't be instantiated. Use one of the subclasses or create a subclass yourself to
11196 create new ways of displaying data (see "Creating own plottables" below). Plottables that display
11197 one-dimensional data (i.e. data points have a single key dimension and one or multiple values at
11198 each key) are based off of the template subclass \ref QCPAbstractPlottable1D, see details
11199 there.
11200
11201 All further specifics are in the subclasses, for example:
11202 \li A normal graph with possibly a line and/or scatter points \ref QCPGraph
11203 (typically created with \ref QCustomPlot::addGraph)
11204 \li A parametric curve: \ref QCPCurve
11205 \li A bar chart: \ref QCPBars
11206 \li A statistical box plot: \ref QCPStatisticalBox
11207 \li A color encoded two-dimensional map: \ref QCPColorMap
11208 \li An OHLC/Candlestick chart: \ref QCPFinancial
11209
11210 \section plottables-subclassing Creating own plottables
11211
11212 Subclassing directly from QCPAbstractPlottable is only recommended if you wish to display
11213 two-dimensional data like \ref QCPColorMap, i.e. two logical key dimensions and one (or more)
11214 data dimensions. If you want to display data with only one logical key dimension, you should
11215 rather derive from \ref QCPAbstractPlottable1D.
11216
11217 If subclassing QCPAbstractPlottable directly, these are the pure virtual functions you must
11218 implement:
11219 \li \ref selectTest
11220 \li \ref draw
11221 \li \ref drawLegendIcon
11222 \li \ref getKeyRange
11223 \li \ref getValueRange
11224
11225 See the documentation of those functions for what they need to do.
11226
11227 For drawing your plot, you can use the \ref coordsToPixels functions to translate a point in plot
11228 coordinates to pixel coordinates. This function is quite convenient, because it takes the
11229 orientation of the key and value axes into account for you (x and y are swapped when the key axis
11230 is vertical and the value axis horizontal). If you are worried about performance (i.e. you need
11231 to translate many points in a loop like QCPGraph), you can directly use \ref
11232 QCPAxis::coordToPixel. However, you must then take care about the orientation of the axis
11233 yourself.
11234
11235 Here are some important members you inherit from QCPAbstractPlottable:
11236 <table>
11237 <tr>
11238 <td>QCustomPlot *\b mParentPlot</td>
11239 <td>A pointer to the parent QCustomPlot instance. The parent plot is inferred from the axes that are passed in the constructor.</td>
11240 </tr><tr>
11241 <td>QString \b mName</td>
11242 <td>The name of the plottable.</td>
11243 </tr><tr>
11244 <td>QPen \b mPen</td>
11245 <td>The generic pen of the plottable. You should use this pen for the most prominent data representing lines in the plottable
11246 (e.g QCPGraph uses this pen for its graph lines and scatters)</td>
11247 </tr><tr>
11248 <td>QBrush \b mBrush</td>
11249 <td>The generic brush of the plottable. You should use this brush for the most prominent fillable structures in the plottable
11250 (e.g. QCPGraph uses this brush to control filling under the graph)</td>
11251 </tr><tr>
11252 <td>QPointer<\ref QCPAxis> \b mKeyAxis, \b mValueAxis</td>
11253 <td>The key and value axes this plottable is attached to. Call their QCPAxis::coordToPixel functions to translate coordinates
11254 to pixels in either the key or value dimension. Make sure to check whether the pointer is \c nullptr before using it. If one of
11255 the axes is null, don't draw the plottable.</td>
11256 </tr><tr>
11257 <td>\ref QCPSelectionDecorator \b mSelectionDecorator</td>
11258 <td>The currently set selection decorator which specifies how selected data of the plottable shall be drawn and decorated.
11259 When drawing your data, you must consult this decorator for the appropriate pen/brush before drawing unselected/selected data segments.
11260 Finally, you should call its \ref QCPSelectionDecorator::drawDecoration method at the end of your \ref draw implementation.</td>
11261 </tr><tr>
11262 <td>\ref QCP::SelectionType \b mSelectable</td>
11263 <td>In which composition, if at all, this plottable's data may be selected. Enforcing this setting on the data selection is done
11264 by QCPAbstractPlottable automatically.</td>
11265 </tr><tr>
11266 <td>\ref QCPDataSelection \b mSelection</td>
11267 <td>Holds the current selection state of the plottable's data, i.e. the selected data ranges (\ref QCPDataRange).</td>
11268 </tr>
11269 </table>
11270*/
11271
11272/* start of documentation of inline functions */
11273
11274/*! \fn QCPSelectionDecorator *QCPAbstractPlottable::selectionDecorator() const
11275
11276 Provides access to the selection decorator of this plottable. The selection decorator controls
11277 how selected data ranges are drawn (e.g. their pen color and fill), see \ref
11278 QCPSelectionDecorator for details.
11279
11280 If you wish to use an own \ref QCPSelectionDecorator subclass, pass an instance of it to \ref
11281 setSelectionDecorator.
11282*/
11283
11284/*! \fn bool QCPAbstractPlottable::selected() const
11285
11286 Returns true if there are any data points of the plottable currently selected. Use \ref selection
11287 to retrieve the current \ref QCPDataSelection.
11288*/
11289
11290/*! \fn QCPDataSelection QCPAbstractPlottable::selection() const
11291
11292 Returns a \ref QCPDataSelection encompassing all the data points that are currently selected on
11293 this plottable.
11294
11295 \see selected, setSelection, setSelectable
11296*/
11297
11298/*! \fn virtual QCPPlottableInterface1D *QCPAbstractPlottable::interface1D()
11299
11300 If this plottable is a one-dimensional plottable, i.e. it implements the \ref
11301 QCPPlottableInterface1D, returns the \a this pointer with that type. Otherwise (e.g. in the case
11302 of a \ref QCPColorMap) returns zero.
11303
11304 You can use this method to gain read access to data coordinates while holding a pointer to the
11305 abstract base class only.
11306*/
11307
11308/* end of documentation of inline functions */
11309/* start of documentation of pure virtual functions */
11310
11311/*! \fn void QCPAbstractPlottable::drawLegendIcon(QCPPainter *painter, const QRect &rect) const = 0
11312 \internal
11313
11314 called by QCPLegend::draw (via QCPPlottableLegendItem::draw) to create a graphical representation
11315 of this plottable inside \a rect, next to the plottable name.
11316
11317 The passed \a painter has its cliprect set to \a rect, so painting outside of \a rect won't
11318 appear outside the legend icon border.
11319*/
11320
11321/*! \fn QCPRange QCPAbstractPlottable::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const = 0
11322
11323 Returns the coordinate range that all data in this plottable span in the key axis dimension. For
11324 logarithmic plots, one can set \a inSignDomain to either \ref QCP::sdNegative or \ref
11325 QCP::sdPositive in order to restrict the returned range to that sign domain. E.g. when only
11326 negative range is wanted, set \a inSignDomain to \ref QCP::sdNegative and all positive points
11327 will be ignored for range calculation. For no restriction, just set \a inSignDomain to \ref
11328 QCP::sdBoth (default). \a foundRange is an output parameter that indicates whether a range could
11329 be found or not. If this is false, you shouldn't use the returned range (e.g. no points in data).
11330
11331 Note that \a foundRange is not the same as \ref QCPRange::validRange, since the range returned by
11332 this function may have size zero (e.g. when there is only one data point). In this case \a
11333 foundRange would return true, but the returned range is not a valid range in terms of \ref
11334 QCPRange::validRange.
11335
11336 \see rescaleAxes, getValueRange
11337*/
11338
11339/*! \fn QCPRange QCPAbstractPlottable::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const = 0
11340
11341 Returns the coordinate range that the data points in the specified key range (\a inKeyRange) span
11342 in the value axis dimension. For logarithmic plots, one can set \a inSignDomain to either \ref
11343 QCP::sdNegative or \ref QCP::sdPositive in order to restrict the returned range to that sign
11344 domain. E.g. when only negative range is wanted, set \a inSignDomain to \ref QCP::sdNegative and
11345 all positive points will be ignored for range calculation. For no restriction, just set \a
11346 inSignDomain to \ref QCP::sdBoth (default). \a foundRange is an output parameter that indicates
11347 whether a range could be found or not. If this is false, you shouldn't use the returned range
11348 (e.g. no points in data).
11349
11350 If \a inKeyRange has both lower and upper bound set to zero (is equal to <tt>QCPRange()</tt>),
11351 all data points are considered, without any restriction on the keys.
11352
11353 Note that \a foundRange is not the same as \ref QCPRange::validRange, since the range returned by
11354 this function may have size zero (e.g. when there is only one data point). In this case \a
11355 foundRange would return true, but the returned range is not a valid range in terms of \ref
11356 QCPRange::validRange.
11357
11358 \see rescaleAxes, getKeyRange
11359*/
11360
11361/* end of documentation of pure virtual functions */
11362/* start of documentation of signals */
11363
11364/*! \fn void QCPAbstractPlottable::selectionChanged(bool selected)
11365
11366 This signal is emitted when the selection state of this plottable has changed, either by user
11367 interaction or by a direct call to \ref setSelection. The parameter \a selected indicates whether
11368 there are any points selected or not.
11369
11370 \see selectionChanged(const QCPDataSelection &selection)
11371*/
11372
11373/*! \fn void QCPAbstractPlottable::selectionChanged(const QCPDataSelection &selection)
11374
11375 This signal is emitted when the selection state of this plottable has changed, either by user
11376 interaction or by a direct call to \ref setSelection. The parameter \a selection holds the
11377 currently selected data ranges.
11378
11379 \see selectionChanged(bool selected)
11380*/
11381
11382/*! \fn void QCPAbstractPlottable::selectableChanged(QCP::SelectionType selectable);
11383
11384 This signal is emitted when the selectability of this plottable has changed.
11385
11386 \see setSelectable
11387*/
11388
11389/* end of documentation of signals */
11390
11391/*!
11392 Constructs an abstract plottable which uses \a keyAxis as its key axis ("x") and \a valueAxis as
11393 its value axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance
11394 and have perpendicular orientations. If either of these restrictions is violated, a corresponding
11395 message is printed to the debug output (qDebug), the construction is not aborted, though.
11396
11397 Since QCPAbstractPlottable is an abstract class that defines the basic interface to plottables,
11398 it can't be directly instantiated.
11399
11400 You probably want one of the subclasses like \ref QCPGraph or \ref QCPCurve instead.
11401*/
11403 QCPLayerable(keyAxis->parentPlot(), QString(), keyAxis->axisRect()),
11404 mName(),
11405 mAntialiasedFill(true),
11406 mAntialiasedScatters(true),
11407 mPen(Qt::black),
11408 mBrush(Qt::NoBrush),
11409 mKeyAxis(keyAxis),
11410 mValueAxis(valueAxis),
11411 mSelectable(QCP::stWhole),
11412 mSelectionDecorator(nullptr)
11413{
11414 if (keyAxis->parentPlot() != valueAxis->parentPlot())
11415 qDebug() << Q_FUNC_INFO << "Parent plot of keyAxis is not the same as that of valueAxis.";
11416 if (keyAxis->orientation() == valueAxis->orientation())
11417 qDebug() << Q_FUNC_INFO << "keyAxis and valueAxis must be orthogonal to each other.";
11418
11419 mParentPlot->registerPlottable(this);
11421}
11422
11423QCPAbstractPlottable::~QCPAbstractPlottable()
11424{
11425 if (mSelectionDecorator)
11426 {
11427 delete mSelectionDecorator;
11428 mSelectionDecorator = nullptr;
11429 }
11430}
11431
11432/*!
11433 The name is the textual representation of this plottable as it is displayed in the legend
11434 (\ref QCPLegend). It may contain any UTF-8 characters, including newlines.
11435*/
11437{
11438 mName = name;
11439}
11440
11441/*!
11442 Sets whether fills of this plottable are drawn antialiased or not.
11443
11444 Note that this setting may be overridden by \ref QCustomPlot::setAntialiasedElements and \ref
11445 QCustomPlot::setNotAntialiasedElements.
11446*/
11448{
11449 mAntialiasedFill = enabled;
11450}
11451
11452/*!
11453 Sets whether the scatter symbols of this plottable are drawn antialiased or not.
11454
11455 Note that this setting may be overridden by \ref QCustomPlot::setAntialiasedElements and \ref
11456 QCustomPlot::setNotAntialiasedElements.
11457*/
11459{
11460 mAntialiasedScatters = enabled;
11461}
11462
11463/*!
11464 The pen is used to draw basic lines that make up the plottable representation in the
11465 plot.
11466
11467 For example, the \ref QCPGraph subclass draws its graph lines with this pen.
11468
11469 \see setBrush
11470*/
11472{
11473 mPen = pen;
11474}
11475
11476/*!
11477 The brush is used to draw basic fills of the plottable representation in the
11478 plot. The Fill can be a color, gradient or texture, see the usage of QBrush.
11479
11480 For example, the \ref QCPGraph subclass draws the fill under the graph with this brush, when
11481 it's not set to Qt::NoBrush.
11482
11483 \see setPen
11484*/
11486{
11487 mBrush = brush;
11488}
11489
11490/*!
11491 The key axis of a plottable can be set to any axis of a QCustomPlot, as long as it is orthogonal
11492 to the plottable's value axis. This function performs no checks to make sure this is the case.
11493 The typical mathematical choice is to use the x-axis (QCustomPlot::xAxis) as key axis and the
11494 y-axis (QCustomPlot::yAxis) as value axis.
11495
11496 Normally, the key and value axes are set in the constructor of the plottable (or \ref
11497 QCustomPlot::addGraph when working with QCPGraphs through the dedicated graph interface).
11498
11499 \see setValueAxis
11500*/
11502{
11503 mKeyAxis = axis;
11504}
11505
11506/*!
11507 The value axis of a plottable can be set to any axis of a QCustomPlot, as long as it is
11508 orthogonal to the plottable's key axis. This function performs no checks to make sure this is the
11509 case. The typical mathematical choice is to use the x-axis (QCustomPlot::xAxis) as key axis and
11510 the y-axis (QCustomPlot::yAxis) as value axis.
11511
11512 Normally, the key and value axes are set in the constructor of the plottable (or \ref
11513 QCustomPlot::addGraph when working with QCPGraphs through the dedicated graph interface).
11514
11515 \see setKeyAxis
11516*/
11518{
11519 mValueAxis = axis;
11520}
11521
11522
11523/*!
11524 Sets which data ranges of this plottable are selected. Selected data ranges are drawn differently
11525 (e.g. color) in the plot. This can be controlled via the selection decorator (see \ref
11526 selectionDecorator).
11527
11528 The entire selection mechanism for plottables is handled automatically when \ref
11529 QCustomPlot::setInteractions contains iSelectPlottables. You only need to call this function when
11530 you wish to change the selection state programmatically.
11531
11532 Using \ref setSelectable you can further specify for each plottable whether and to which
11533 granularity it is selectable. If \a selection is not compatible with the current \ref
11534 QCP::SelectionType set via \ref setSelectable, the resulting selection will be adjusted
11535 accordingly (see \ref QCPDataSelection::enforceType).
11536
11537 emits the \ref selectionChanged signal when \a selected is different from the previous selection state.
11538
11539 \see setSelectable, selectTest
11540*/
11542{
11543 selection.enforceType(mSelectable);
11544 if (mSelection != selection)
11545 {
11546 mSelection = selection;
11548 emit selectionChanged(mSelection);
11549 }
11550}
11551
11552/*!
11553 Use this method to set an own QCPSelectionDecorator (subclass) instance. This allows you to
11554 customize the visual representation of selected data ranges further than by using the default
11555 QCPSelectionDecorator.
11556
11557 The plottable takes ownership of the \a decorator.
11558
11559 The currently set decorator can be accessed via \ref selectionDecorator.
11560*/
11562{
11563 if (decorator)
11564 {
11565 if (decorator->registerWithPlottable(this))
11566 {
11567 delete mSelectionDecorator; // delete old decorator if necessary
11568 mSelectionDecorator = decorator;
11569 }
11570 } else if (mSelectionDecorator) // just clear decorator
11571 {
11572 delete mSelectionDecorator;
11573 mSelectionDecorator = nullptr;
11574 }
11575}
11576
11577/*!
11578 Sets whether and to which granularity this plottable can be selected.
11579
11580 A selection can happen by clicking on the QCustomPlot surface (When \ref
11581 QCustomPlot::setInteractions contains \ref QCP::iSelectPlottables), by dragging a selection rect
11582 (When \ref QCustomPlot::setSelectionRectMode is \ref QCP::srmSelect), or programmatically by
11583 calling \ref setSelection.
11584
11585 \see setSelection, QCP::SelectionType
11586*/
11588{
11589 if (mSelectable != selectable)
11590 {
11591 mSelectable = selectable;
11592 QCPDataSelection oldSelection = mSelection;
11593 mSelection.enforceType(mSelectable);
11594 emit selectableChanged(mSelectable);
11595 if (mSelection != oldSelection)
11596 {
11598 emit selectionChanged(mSelection);
11599 }
11600 }
11601}
11602
11603
11604/*!
11605 Convenience function for transforming a key/value pair to pixels on the QCustomPlot surface,
11606 taking the orientations of the axes associated with this plottable into account (e.g. whether key
11607 represents x or y).
11608
11609 \a key and \a value are transformed to the coodinates in pixels and are written to \a x and \a y.
11610
11611 \see pixelsToCoords, QCPAxis::coordToPixel
11612*/
11613void QCPAbstractPlottable::coordsToPixels(double key, double value, double &x, double &y) const
11614{
11615 QCPAxis *keyAxis = mKeyAxis.data();
11616 QCPAxis *valueAxis = mValueAxis.data();
11617 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
11618
11619 if (keyAxis->orientation() == Qt::Horizontal)
11620 {
11621 x = keyAxis->coordToPixel(key);
11622 y = valueAxis->coordToPixel(value);
11623 } else
11624 {
11625 y = keyAxis->coordToPixel(key);
11626 x = valueAxis->coordToPixel(value);
11627 }
11628}
11629
11630/*! \overload
11631
11632 Transforms the given \a key and \a value to pixel coordinates and returns them in a QPointF.
11633*/
11634const QPointF QCPAbstractPlottable::coordsToPixels(double key, double value) const
11635{
11636 QCPAxis *keyAxis = mKeyAxis.data();
11637 QCPAxis *valueAxis = mValueAxis.data();
11638 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QPointF(); }
11639
11640 if (keyAxis->orientation() == Qt::Horizontal)
11641 return QPointF(keyAxis->coordToPixel(key), valueAxis->coordToPixel(value));
11642 else
11643 return QPointF(valueAxis->coordToPixel(value), keyAxis->coordToPixel(key));
11644}
11645
11646/*!
11647 Convenience function for transforming a x/y pixel pair on the QCustomPlot surface to plot coordinates,
11648 taking the orientations of the axes associated with this plottable into account (e.g. whether key
11649 represents x or y).
11650
11651 \a x and \a y are transformed to the plot coodinates and are written to \a key and \a value.
11652
11653 \see coordsToPixels, QCPAxis::coordToPixel
11654*/
11655void QCPAbstractPlottable::pixelsToCoords(double x, double y, double &key, double &value) const
11656{
11657 QCPAxis *keyAxis = mKeyAxis.data();
11658 QCPAxis *valueAxis = mValueAxis.data();
11659 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
11660
11661 if (keyAxis->orientation() == Qt::Horizontal)
11662 {
11663 key = keyAxis->pixelToCoord(x);
11664 value = valueAxis->pixelToCoord(y);
11665 } else
11666 {
11667 key = keyAxis->pixelToCoord(y);
11668 value = valueAxis->pixelToCoord(x);
11669 }
11670}
11671
11672/*! \overload
11673
11674 Returns the pixel input \a pixelPos as plot coordinates \a key and \a value.
11675*/
11676void QCPAbstractPlottable::pixelsToCoords(const QPointF &pixelPos, double &key, double &value) const
11677{
11678 pixelsToCoords(pixelPos.x(), pixelPos.y(), key, value);
11679}
11680
11681/*!
11682 Rescales the key and value axes associated with this plottable to contain all displayed data, so
11683 the whole plottable is visible. If the scaling of an axis is logarithmic, rescaleAxes will make
11684 sure not to rescale to an illegal range i.e. a range containing different signs and/or zero.
11685 Instead it will stay in the current sign domain and ignore all parts of the plottable that lie
11686 outside of that domain.
11687
11688 \a onlyEnlarge makes sure the ranges are only expanded, never reduced. So it's possible to show
11689 multiple plottables in their entirety by multiple calls to rescaleAxes where the first call has
11690 \a onlyEnlarge set to false (the default), and all subsequent set to true.
11691
11692 \see rescaleKeyAxis, rescaleValueAxis, QCustomPlot::rescaleAxes, QCPAxis::rescale
11693*/
11699
11700/*!
11701 Rescales the key axis of the plottable so the whole plottable is visible.
11702
11703 See \ref rescaleAxes for detailed behaviour.
11704*/
11706{
11707 QCPAxis *keyAxis = mKeyAxis.data();
11708 if (!keyAxis) { qDebug() << Q_FUNC_INFO << "invalid key axis"; return; }
11709
11711 if (keyAxis->scaleType() == QCPAxis::stLogarithmic)
11712 signDomain = (keyAxis->range().upper < 0 ? QCP::sdNegative : QCP::sdPositive);
11713
11714 bool foundRange;
11716 if (foundRange)
11717 {
11718 if (onlyEnlarge)
11719 newRange.expand(keyAxis->range());
11720 if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
11721 {
11722 double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
11723 if (keyAxis->scaleType() == QCPAxis::stLinear)
11724 {
11725 newRange.lower = center-keyAxis->range().size()/2.0;
11726 newRange.upper = center+keyAxis->range().size()/2.0;
11727 } else // scaleType() == stLogarithmic
11728 {
11729 newRange.lower = center/qSqrt(keyAxis->range().upper/keyAxis->range().lower);
11730 newRange.upper = center*qSqrt(keyAxis->range().upper/keyAxis->range().lower);
11731 }
11732 }
11733 keyAxis->setRange(newRange);
11734 }
11735}
11736
11737/*!
11738 Rescales the value axis of the plottable so the whole plottable is visible. If \a inKeyRange is
11739 set to true, only the data points which are in the currently visible key axis range are
11740 considered.
11741
11742 Returns true if the axis was actually scaled. This might not be the case if this plottable has an
11743 invalid range, e.g. because it has no data points.
11744
11745 See \ref rescaleAxes for detailed behaviour.
11746*/
11748{
11749 QCPAxis *keyAxis = mKeyAxis.data();
11750 QCPAxis *valueAxis = mValueAxis.data();
11751 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
11752
11754 if (valueAxis->scaleType() == QCPAxis::stLogarithmic)
11755 signDomain = (valueAxis->range().upper < 0 ? QCP::sdNegative : QCP::sdPositive);
11756
11757 bool foundRange;
11759 if (foundRange)
11760 {
11761 if (onlyEnlarge)
11762 newRange.expand(valueAxis->range());
11763 if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
11764 {
11765 double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
11766 if (valueAxis->scaleType() == QCPAxis::stLinear)
11767 {
11768 newRange.lower = center-valueAxis->range().size()/2.0;
11769 newRange.upper = center+valueAxis->range().size()/2.0;
11770 } else // scaleType() == stLogarithmic
11771 {
11772 newRange.lower = center/qSqrt(valueAxis->range().upper/valueAxis->range().lower);
11773 newRange.upper = center*qSqrt(valueAxis->range().upper/valueAxis->range().lower);
11774 }
11775 }
11776 valueAxis->setRange(newRange);
11777 }
11778}
11779
11780/*! \overload
11781
11782 Adds this plottable to the specified \a legend.
11783
11784 Creates a QCPPlottableLegendItem which is inserted into the legend. Returns true on success, i.e.
11785 when the legend exists and a legend item associated with this plottable isn't already in the
11786 legend.
11787
11788 If the plottable needs a more specialized representation in the legend, you can create a
11789 corresponding subclass of \ref QCPPlottableLegendItem and add it to the legend manually instead
11790 of calling this method.
11791
11792 \see removeFromLegend, QCPLegend::addItem
11793*/
11795{
11796 if (!legend)
11797 {
11798 qDebug() << Q_FUNC_INFO << "passed legend is null";
11799 return false;
11800 }
11801 if (legend->parentPlot() != mParentPlot)
11802 {
11803 qDebug() << Q_FUNC_INFO << "passed legend isn't in the same QCustomPlot as this plottable";
11804 return false;
11805 }
11806
11807 if (!legend->hasItemWithPlottable(this))
11808 {
11809 legend->addItem(new QCPPlottableLegendItem(legend, this));
11810 return true;
11811 } else
11812 return false;
11813}
11814
11815/*! \overload
11816
11817 Adds this plottable to the legend of the parent QCustomPlot (\ref QCustomPlot::legend).
11818
11819 \see removeFromLegend
11820*/
11822{
11823 if (!mParentPlot || !mParentPlot->legend)
11824 return false;
11825 else
11826 return addToLegend(mParentPlot->legend);
11827}
11828
11829/*! \overload
11830
11831 Removes the plottable from the specifed \a legend. This means the \ref QCPPlottableLegendItem
11832 that is associated with this plottable is removed.
11833
11834 Returns true on success, i.e. if the legend exists and a legend item associated with this
11835 plottable was found and removed.
11836
11837 \see addToLegend, QCPLegend::removeItem
11838*/
11840{
11841 if (!legend)
11842 {
11843 qDebug() << Q_FUNC_INFO << "passed legend is null";
11844 return false;
11845 }
11846
11847 if (QCPPlottableLegendItem *lip = legend->itemWithPlottable(this))
11848 return legend->removeItem(lip);
11849 else
11850 return false;
11851}
11852
11853/*! \overload
11854
11855 Removes the plottable from the legend of the parent QCustomPlot.
11856
11857 \see addToLegend
11858*/
11860{
11861 if (!mParentPlot || !mParentPlot->legend)
11862 return false;
11863 else
11864 return removeFromLegend(mParentPlot->legend);
11865}
11866
11867/* inherits documentation from base class */
11869{
11870 if (mKeyAxis && mValueAxis)
11871 return mKeyAxis.data()->axisRect()->rect() & mValueAxis.data()->axisRect()->rect();
11872 else
11873 return {};
11874}
11875
11876/* inherits documentation from base class */
11881
11882/*! \internal
11883
11884 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
11885 before drawing plottable lines.
11886
11887 This is the antialiasing state the painter passed to the \ref draw method is in by default.
11888
11889 This function takes into account the local setting of the antialiasing flag as well as the
11890 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
11891 QCustomPlot::setNotAntialiasedElements.
11892
11893 \seebaseclassmethod
11894
11895 \see setAntialiased, applyFillAntialiasingHint, applyScattersAntialiasingHint
11896*/
11898{
11899 applyAntialiasingHint(painter, mAntialiased, QCP::aePlottables);
11900}
11901
11902/*! \internal
11903
11904 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
11905 before drawing plottable fills.
11906
11907 This function takes into account the local setting of the antialiasing flag as well as the
11908 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
11909 QCustomPlot::setNotAntialiasedElements.
11910
11911 \see setAntialiased, applyDefaultAntialiasingHint, applyScattersAntialiasingHint
11912*/
11914{
11915 applyAntialiasingHint(painter, mAntialiasedFill, QCP::aeFills);
11916}
11917
11918/*! \internal
11919
11920 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
11921 before drawing plottable scatter points.
11922
11923 This function takes into account the local setting of the antialiasing flag as well as the
11924 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
11925 QCustomPlot::setNotAntialiasedElements.
11926
11927 \see setAntialiased, applyFillAntialiasingHint, applyDefaultAntialiasingHint
11928*/
11930{
11931 applyAntialiasingHint(painter, mAntialiasedScatters, QCP::aeScatters);
11932}
11933
11934/* inherits documentation from base class */
11936{
11938
11939 if (mSelectable != QCP::stNone)
11940 {
11941 QCPDataSelection newSelection = details.value<QCPDataSelection>();
11942 QCPDataSelection selectionBefore = mSelection;
11943 if (additive)
11944 {
11945 if (mSelectable == QCP::stWhole) // in whole selection mode, we toggle to no selection even if currently unselected point was hit
11946 {
11947 if (selected())
11949 else
11950 setSelection(newSelection);
11951 } else // in all other selection modes we toggle selections of homogeneously selected/unselected segments
11952 {
11953 if (mSelection.contains(newSelection)) // if entire newSelection is already selected, toggle selection
11954 setSelection(mSelection-newSelection);
11955 else
11956 setSelection(mSelection+newSelection);
11957 }
11958 } else
11959 setSelection(newSelection);
11961 *selectionStateChanged = mSelection != selectionBefore;
11962 }
11963}
11964
11965/* inherits documentation from base class */
11967{
11968 if (mSelectable != QCP::stNone)
11969 {
11970 QCPDataSelection selectionBefore = mSelection;
11973 *selectionStateChanged = mSelection != selectionBefore;
11974 }
11975}
11976/* end of 'src/plottable.cpp' */
11977
11978
11979/* including file 'src/item.cpp' */
11980/* modified 2021-03-29T02:30:44, size 49486 */
11981
11982////////////////////////////////////////////////////////////////////////////////////////////////////
11983//////////////////// QCPItemAnchor
11984////////////////////////////////////////////////////////////////////////////////////////////////////
11985
11986/*! \class QCPItemAnchor
11987 \brief An anchor of an item to which positions can be attached to.
11988
11989 An item (QCPAbstractItem) may have one or more anchors. Unlike QCPItemPosition, an anchor doesn't
11990 control anything on its item, but provides a way to tie other items via their positions to the
11991 anchor.
11992
11993 For example, a QCPItemRect is defined by its positions \a topLeft and \a bottomRight.
11994 Additionally it has various anchors like \a top, \a topRight or \a bottomLeft etc. So you can
11995 attach the \a start (which is a QCPItemPosition) of a QCPItemLine to one of the anchors by
11996 calling QCPItemPosition::setParentAnchor on \a start, passing the wanted anchor of the
11997 QCPItemRect. This way the start of the line will now always follow the respective anchor location
11998 on the rect item.
11999
12000 Note that QCPItemPosition derives from QCPItemAnchor, so every position can also serve as an
12001 anchor to other positions.
12002
12003 To learn how to provide anchors in your own item subclasses, see the subclassing section of the
12004 QCPAbstractItem documentation.
12005*/
12006
12007/* start documentation of inline functions */
12008
12009/*! \fn virtual QCPItemPosition *QCPItemAnchor::toQCPItemPosition()
12010
12011 Returns \c nullptr if this instance is merely a QCPItemAnchor, and a valid pointer of type
12012 QCPItemPosition* if it actually is a QCPItemPosition (which is a subclass of QCPItemAnchor).
12013
12014 This safe downcast functionality could also be achieved with a dynamic_cast. However, QCustomPlot avoids
12015 dynamic_cast to work with projects that don't have RTTI support enabled (e.g. -fno-rtti flag with
12016 gcc compiler).
12017*/
12018
12019/* end documentation of inline functions */
12020
12021/*!
12022 Creates a new QCPItemAnchor. You shouldn't create QCPItemAnchor instances directly, even if
12023 you want to make a new item subclass. Use \ref QCPAbstractItem::createAnchor instead, as
12024 explained in the subclassing section of the QCPAbstractItem documentation.
12025*/
12026QCPItemAnchor::QCPItemAnchor(QCustomPlot *parentPlot, QCPAbstractItem *parentItem, const QString &name, int anchorId) :
12027 mName(name),
12028 mParentPlot(parentPlot),
12029 mParentItem(parentItem),
12030 mAnchorId(anchorId)
12031{
12032}
12033
12034QCPItemAnchor::~QCPItemAnchor()
12035{
12036 // unregister as parent at children:
12037 foreach (QCPItemPosition *child, mChildrenX.values())
12038 {
12039 if (child->parentAnchorX() == this)
12040 child->setParentAnchorX(nullptr); // this acts back on this anchor and child removes itself from mChildrenX
12041 }
12042 foreach (QCPItemPosition *child, mChildrenY.values())
12043 {
12044 if (child->parentAnchorY() == this)
12045 child->setParentAnchorY(nullptr); // this acts back on this anchor and child removes itself from mChildrenY
12046 }
12047}
12048
12049/*!
12050 Returns the final absolute pixel position of the QCPItemAnchor on the QCustomPlot surface.
12051
12052 The pixel information is internally retrieved via QCPAbstractItem::anchorPixelPosition of the
12053 parent item, QCPItemAnchor is just an intermediary.
12054*/
12056{
12057 if (mParentItem)
12058 {
12059 if (mAnchorId > -1)
12060 {
12061 return mParentItem->anchorPixelPosition(mAnchorId);
12062 } else
12063 {
12064 qDebug() << Q_FUNC_INFO << "no valid anchor id set:" << mAnchorId;
12065 return {};
12066 }
12067 } else
12068 {
12069 qDebug() << Q_FUNC_INFO << "no parent item set";
12070 return {};
12071 }
12072}
12073
12074/*! \internal
12075
12076 Adds \a pos to the childX list of this anchor, which keeps track of which children use this
12077 anchor as parent anchor for the respective coordinate. This is necessary to notify the children
12078 prior to destruction of the anchor.
12079
12080 Note that this function does not change the parent setting in \a pos.
12081*/
12083{
12084 if (!mChildrenX.contains(pos))
12085 mChildrenX.insert(pos);
12086 else
12087 qDebug() << Q_FUNC_INFO << "provided pos is child already" << reinterpret_cast<quintptr>(pos);
12088}
12089
12090/*! \internal
12091
12092 Removes \a pos from the childX list of this anchor.
12093
12094 Note that this function does not change the parent setting in \a pos.
12095*/
12097{
12098 if (!mChildrenX.remove(pos))
12099 qDebug() << Q_FUNC_INFO << "provided pos isn't child" << reinterpret_cast<quintptr>(pos);
12100}
12101
12102/*! \internal
12103
12104 Adds \a pos to the childY list of this anchor, which keeps track of which children use this
12105 anchor as parent anchor for the respective coordinate. This is necessary to notify the children
12106 prior to destruction of the anchor.
12107
12108 Note that this function does not change the parent setting in \a pos.
12109*/
12111{
12112 if (!mChildrenY.contains(pos))
12113 mChildrenY.insert(pos);
12114 else
12115 qDebug() << Q_FUNC_INFO << "provided pos is child already" << reinterpret_cast<quintptr>(pos);
12116}
12117
12118/*! \internal
12119
12120 Removes \a pos from the childY list of this anchor.
12121
12122 Note that this function does not change the parent setting in \a pos.
12123*/
12125{
12126 if (!mChildrenY.remove(pos))
12127 qDebug() << Q_FUNC_INFO << "provided pos isn't child" << reinterpret_cast<quintptr>(pos);
12128}
12129
12130
12131////////////////////////////////////////////////////////////////////////////////////////////////////
12132//////////////////// QCPItemPosition
12133////////////////////////////////////////////////////////////////////////////////////////////////////
12134
12135/*! \class QCPItemPosition
12136 \brief Manages the position of an item.
12137
12138 Every item has at least one public QCPItemPosition member pointer which provides ways to position the
12139 item on the QCustomPlot surface. Some items have multiple positions, for example QCPItemRect has two:
12140 \a topLeft and \a bottomRight.
12141
12142 QCPItemPosition has a type (\ref PositionType) that can be set with \ref setType. This type
12143 defines how coordinates passed to \ref setCoords are to be interpreted, e.g. as absolute pixel
12144 coordinates, as plot coordinates of certain axes (\ref QCPItemPosition::setAxes), as fractions of
12145 the axis rect (\ref QCPItemPosition::setAxisRect), etc. For more advanced plots it is also
12146 possible to assign different types per X/Y coordinate of the position (see \ref setTypeX, \ref
12147 setTypeY). This way an item could be positioned for example at a fixed pixel distance from the
12148 top in the Y direction, while following a plot coordinate in the X direction.
12149
12150 A QCPItemPosition may have a parent QCPItemAnchor, see \ref setParentAnchor. This way you can tie
12151 multiple items together. If the QCPItemPosition has a parent, its coordinates (\ref setCoords)
12152 are considered to be absolute pixels in the reference frame of the parent anchor, where (0, 0)
12153 means directly ontop of the parent anchor. For example, You could attach the \a start position of
12154 a QCPItemLine to the \a bottom anchor of a QCPItemText to make the starting point of the line
12155 always be centered under the text label, no matter where the text is moved to. For more advanced
12156 plots, it is possible to assign different parent anchors per X/Y coordinate of the position, see
12157 \ref setParentAnchorX, \ref setParentAnchorY. This way an item could follow another item in the X
12158 direction but stay at a fixed position in the Y direction. Or even follow item A in X, and item B
12159 in Y.
12160
12161 Note that every QCPItemPosition inherits from QCPItemAnchor and thus can itself be used as parent
12162 anchor for other positions.
12163
12164 To set the apparent pixel position on the QCustomPlot surface directly, use \ref setPixelPosition. This
12165 works no matter what type this QCPItemPosition is or what parent-child situation it is in, as \ref
12166 setPixelPosition transforms the coordinates appropriately, to make the position appear at the specified
12167 pixel values.
12168*/
12169
12170/* start documentation of inline functions */
12171
12172/*! \fn QCPItemPosition::PositionType *QCPItemPosition::type() const
12173
12174 Returns the current position type.
12175
12176 If different types were set for X and Y (\ref setTypeX, \ref setTypeY), this method returns the
12177 type of the X coordinate. In that case rather use \a typeX() and \a typeY().
12178
12179 \see setType
12180*/
12181
12182/*! \fn QCPItemAnchor *QCPItemPosition::parentAnchor() const
12183
12184 Returns the current parent anchor.
12185
12186 If different parent anchors were set for X and Y (\ref setParentAnchorX, \ref setParentAnchorY),
12187 this method returns the parent anchor of the Y coordinate. In that case rather use \a
12188 parentAnchorX() and \a parentAnchorY().
12189
12190 \see setParentAnchor
12191*/
12192
12193/* end documentation of inline functions */
12194
12195/*!
12196 Creates a new QCPItemPosition. You shouldn't create QCPItemPosition instances directly, even if
12197 you want to make a new item subclass. Use \ref QCPAbstractItem::createPosition instead, as
12198 explained in the subclassing section of the QCPAbstractItem documentation.
12199*/
12201 QCPItemAnchor(parentPlot, parentItem, name),
12202 mPositionTypeX(ptAbsolute),
12203 mPositionTypeY(ptAbsolute),
12204 mKey(0),
12205 mValue(0),
12206 mParentAnchorX(nullptr),
12207 mParentAnchorY(nullptr)
12208{
12209}
12210
12211QCPItemPosition::~QCPItemPosition()
12212{
12213 // unregister as parent at children:
12214 // Note: this is done in ~QCPItemAnchor again, but it's important QCPItemPosition does it itself, because only then
12215 // the setParentAnchor(0) call the correct QCPItemPosition::pixelPosition function instead of QCPItemAnchor::pixelPosition
12216 foreach (QCPItemPosition *child, mChildrenX.values())
12217 {
12218 if (child->parentAnchorX() == this)
12219 child->setParentAnchorX(nullptr); // this acts back on this anchor and child removes itself from mChildrenX
12220 }
12221 foreach (QCPItemPosition *child, mChildrenY.values())
12222 {
12223 if (child->parentAnchorY() == this)
12224 child->setParentAnchorY(nullptr); // this acts back on this anchor and child removes itself from mChildrenY
12225 }
12226 // unregister as child in parent:
12227 if (mParentAnchorX)
12228 mParentAnchorX->removeChildX(this);
12229 if (mParentAnchorY)
12230 mParentAnchorY->removeChildY(this);
12231}
12232
12233/* can't make this a header inline function, because QPointer breaks with forward declared types, see QTBUG-29588 */
12234QCPAxisRect *QCPItemPosition::axisRect() const
12235{
12236 return mAxisRect.data();
12237}
12238
12239/*!
12240 Sets the type of the position. The type defines how the coordinates passed to \ref setCoords
12241 should be handled and how the QCPItemPosition should behave in the plot.
12242
12243 The possible values for \a type can be separated in two main categories:
12244
12245 \li The position is regarded as a point in plot coordinates. This corresponds to \ref ptPlotCoords
12246 and requires two axes that define the plot coordinate system. They can be specified with \ref setAxes.
12247 By default, the QCustomPlot's x- and yAxis are used.
12248
12249 \li The position is fixed on the QCustomPlot surface, i.e. independent of axis ranges. This
12250 corresponds to all other types, i.e. \ref ptAbsolute, \ref ptViewportRatio and \ref
12251 ptAxisRectRatio. They differ only in the way the absolute position is described, see the
12252 documentation of \ref PositionType for details. For \ref ptAxisRectRatio, note that you can specify
12253 the axis rect with \ref setAxisRect. By default this is set to the main axis rect.
12254
12255 Note that the position type \ref ptPlotCoords is only available (and sensible) when the position
12256 has no parent anchor (\ref setParentAnchor).
12257
12258 If the type is changed, the apparent pixel position on the plot is preserved. This means
12259 the coordinates as retrieved with coords() and set with \ref setCoords may change in the process.
12260
12261 This method sets the type for both X and Y directions. It is also possible to set different types
12262 for X and Y, see \ref setTypeX, \ref setTypeY.
12263*/
12269
12270/*!
12271 This method sets the position type of the X coordinate to \a type.
12272
12273 For a detailed description of what a position type is, see the documentation of \ref setType.
12274
12275 \see setType, setTypeY
12276*/
12278{
12279 if (mPositionTypeX != type)
12280 {
12281 // if switching from or to coordinate type that isn't valid (e.g. because axes or axis rect
12282 // were deleted), don't try to recover the pixelPosition() because it would output a qDebug warning.
12283 bool retainPixelPosition = true;
12284 if ((mPositionTypeX == ptPlotCoords || type == ptPlotCoords) && (!mKeyAxis || !mValueAxis))
12285 retainPixelPosition = false;
12286 if ((mPositionTypeX == ptAxisRectRatio || type == ptAxisRectRatio) && (!mAxisRect))
12287 retainPixelPosition = false;
12288
12289 QPointF pixel;
12291 pixel = pixelPosition();
12292
12293 mPositionTypeX = type;
12294
12296 setPixelPosition(pixel);
12297 }
12298}
12299
12300/*!
12301 This method sets the position type of the Y coordinate to \a type.
12302
12303 For a detailed description of what a position type is, see the documentation of \ref setType.
12304
12305 \see setType, setTypeX
12306*/
12308{
12309 if (mPositionTypeY != type)
12310 {
12311 // if switching from or to coordinate type that isn't valid (e.g. because axes or axis rect
12312 // were deleted), don't try to recover the pixelPosition() because it would output a qDebug warning.
12313 bool retainPixelPosition = true;
12314 if ((mPositionTypeY == ptPlotCoords || type == ptPlotCoords) && (!mKeyAxis || !mValueAxis))
12315 retainPixelPosition = false;
12316 if ((mPositionTypeY == ptAxisRectRatio || type == ptAxisRectRatio) && (!mAxisRect))
12317 retainPixelPosition = false;
12318
12319 QPointF pixel;
12321 pixel = pixelPosition();
12322
12323 mPositionTypeY = type;
12324
12326 setPixelPosition(pixel);
12327 }
12328}
12329
12330/*!
12331 Sets the parent of this QCPItemPosition to \a parentAnchor. This means the position will now
12332 follow any position changes of the anchor. The local coordinate system of positions with a parent
12333 anchor always is absolute pixels, with (0, 0) being exactly on top of the parent anchor. (Hence
12334 the type shouldn't be set to \ref ptPlotCoords for positions with parent anchors.)
12335
12336 if \a keepPixelPosition is true, the current pixel position of the QCPItemPosition is preserved
12337 during reparenting. If it's set to false, the coordinates are set to (0, 0), i.e. the position
12338 will be exactly on top of the parent anchor.
12339
12340 To remove this QCPItemPosition from any parent anchor, set \a parentAnchor to \c nullptr.
12341
12342 If the QCPItemPosition previously had no parent and the type is \ref ptPlotCoords, the type is
12343 set to \ref ptAbsolute, to keep the position in a valid state.
12344
12345 This method sets the parent anchor for both X and Y directions. It is also possible to set
12346 different parents for X and Y, see \ref setParentAnchorX, \ref setParentAnchorY.
12347*/
12354
12355/*!
12356 This method sets the parent anchor of the X coordinate to \a parentAnchor.
12357
12358 For a detailed description of what a parent anchor is, see the documentation of \ref setParentAnchor.
12359
12360 \see setParentAnchor, setParentAnchorY
12361*/
12363{
12364 // make sure self is not assigned as parent:
12365 if (parentAnchor == this)
12366 {
12367 qDebug() << Q_FUNC_INFO << "can't set self as parent anchor" << reinterpret_cast<quintptr>(parentAnchor);
12368 return false;
12369 }
12370 // make sure no recursive parent-child-relationships are created:
12372 while (currentParent)
12373 {
12374 if (QCPItemPosition *currentParentPos = currentParent->toQCPItemPosition())
12375 {
12376 // is a QCPItemPosition, might have further parent, so keep iterating
12377 if (currentParentPos == this)
12378 {
12379 qDebug() << Q_FUNC_INFO << "can't create recursive parent-child-relationship" << reinterpret_cast<quintptr>(parentAnchor);
12380 return false;
12381 }
12382 currentParent = currentParentPos->parentAnchorX();
12383 } else
12384 {
12385 // is a QCPItemAnchor, can't have further parent. Now make sure the parent items aren't the
12386 // same, to prevent a position being child of an anchor which itself depends on the position,
12387 // because they're both on the same item:
12388 if (currentParent->mParentItem == mParentItem)
12389 {
12390 qDebug() << Q_FUNC_INFO << "can't set parent to be an anchor which itself depends on this position" << reinterpret_cast<quintptr>(parentAnchor);
12391 return false;
12392 }
12393 break;
12394 }
12395 }
12396
12397 // if previously no parent set and PosType is still ptPlotCoords, set to ptAbsolute:
12398 if (!mParentAnchorX && mPositionTypeX == ptPlotCoords)
12400
12401 // save pixel position:
12405 // unregister at current parent anchor:
12406 if (mParentAnchorX)
12407 mParentAnchorX->removeChildX(this);
12408 // register at new parent anchor:
12409 if (parentAnchor)
12410 parentAnchor->addChildX(this);
12411 mParentAnchorX = parentAnchor;
12412 // restore pixel position under new parent:
12415 else
12416 setCoords(0, coords().y());
12417 return true;
12418}
12419
12420/*!
12421 This method sets the parent anchor of the Y coordinate to \a parentAnchor.
12422
12423 For a detailed description of what a parent anchor is, see the documentation of \ref setParentAnchor.
12424
12425 \see setParentAnchor, setParentAnchorX
12426*/
12428{
12429 // make sure self is not assigned as parent:
12430 if (parentAnchor == this)
12431 {
12432 qDebug() << Q_FUNC_INFO << "can't set self as parent anchor" << reinterpret_cast<quintptr>(parentAnchor);
12433 return false;
12434 }
12435 // make sure no recursive parent-child-relationships are created:
12437 while (currentParent)
12438 {
12439 if (QCPItemPosition *currentParentPos = currentParent->toQCPItemPosition())
12440 {
12441 // is a QCPItemPosition, might have further parent, so keep iterating
12442 if (currentParentPos == this)
12443 {
12444 qDebug() << Q_FUNC_INFO << "can't create recursive parent-child-relationship" << reinterpret_cast<quintptr>(parentAnchor);
12445 return false;
12446 }
12447 currentParent = currentParentPos->parentAnchorY();
12448 } else
12449 {
12450 // is a QCPItemAnchor, can't have further parent. Now make sure the parent items aren't the
12451 // same, to prevent a position being child of an anchor which itself depends on the position,
12452 // because they're both on the same item:
12453 if (currentParent->mParentItem == mParentItem)
12454 {
12455 qDebug() << Q_FUNC_INFO << "can't set parent to be an anchor which itself depends on this position" << reinterpret_cast<quintptr>(parentAnchor);
12456 return false;
12457 }
12458 break;
12459 }
12460 }
12461
12462 // if previously no parent set and PosType is still ptPlotCoords, set to ptAbsolute:
12463 if (!mParentAnchorY && mPositionTypeY == ptPlotCoords)
12465
12466 // save pixel position:
12470 // unregister at current parent anchor:
12471 if (mParentAnchorY)
12472 mParentAnchorY->removeChildY(this);
12473 // register at new parent anchor:
12474 if (parentAnchor)
12475 parentAnchor->addChildY(this);
12476 mParentAnchorY = parentAnchor;
12477 // restore pixel position under new parent:
12480 else
12481 setCoords(coords().x(), 0);
12482 return true;
12483}
12484
12485/*!
12486 Sets the coordinates of this QCPItemPosition. What the coordinates mean, is defined by the type
12487 (\ref setType, \ref setTypeX, \ref setTypeY).
12488
12489 For example, if the type is \ref ptAbsolute, \a key and \a value mean the x and y pixel position
12490 on the QCustomPlot surface. In that case the origin (0, 0) is in the top left corner of the
12491 QCustomPlot viewport. If the type is \ref ptPlotCoords, \a key and \a value mean a point in the
12492 plot coordinate system defined by the axes set by \ref setAxes. By default those are the
12493 QCustomPlot's xAxis and yAxis. See the documentation of \ref setType for other available
12494 coordinate types and their meaning.
12495
12496 If different types were configured for X and Y (\ref setTypeX, \ref setTypeY), \a key and \a
12497 value must also be provided in the different coordinate systems. Here, the X type refers to \a
12498 key, and the Y type refers to \a value.
12499
12500 \see setPixelPosition
12501*/
12502void QCPItemPosition::setCoords(double key, double value)
12503{
12504 mKey = key;
12505 mValue = value;
12506}
12507
12508/*! \overload
12509
12510 Sets the coordinates as a QPointF \a pos where pos.x has the meaning of \a key and pos.y the
12511 meaning of \a value of the \ref setCoords(double key, double value) method.
12512*/
12514{
12515 setCoords(pos.x(), pos.y());
12516}
12517
12518/*!
12519 Returns the final absolute pixel position of the QCPItemPosition on the QCustomPlot surface. It
12520 includes all effects of type (\ref setType) and possible parent anchors (\ref setParentAnchor).
12521
12522 \see setPixelPosition
12523*/
12525{
12526 QPointF result;
12527
12528 // determine X:
12529 switch (mPositionTypeX)
12530 {
12531 case ptAbsolute:
12532 {
12533 result.rx() = mKey;
12534 if (mParentAnchorX)
12535 result.rx() += mParentAnchorX->pixelPosition().x();
12536 break;
12537 }
12538 case ptViewportRatio:
12539 {
12540 result.rx() = mKey*mParentPlot->viewport().width();
12541 if (mParentAnchorX)
12542 result.rx() += mParentAnchorX->pixelPosition().x();
12543 else
12544 result.rx() += mParentPlot->viewport().left();
12545 break;
12546 }
12547 case ptAxisRectRatio:
12548 {
12549 if (mAxisRect)
12550 {
12551 result.rx() = mKey*mAxisRect.data()->width();
12552 if (mParentAnchorX)
12553 result.rx() += mParentAnchorX->pixelPosition().x();
12554 else
12555 result.rx() += mAxisRect.data()->left();
12556 } else
12557 qDebug() << Q_FUNC_INFO << "Item position type x is ptAxisRectRatio, but no axis rect was defined";
12558 break;
12559 }
12560 case ptPlotCoords:
12561 {
12562 if (mKeyAxis && mKeyAxis.data()->orientation() == Qt::Horizontal)
12563 result.rx() = mKeyAxis.data()->coordToPixel(mKey);
12564 else if (mValueAxis && mValueAxis.data()->orientation() == Qt::Horizontal)
12565 result.rx() = mValueAxis.data()->coordToPixel(mValue);
12566 else
12567 qDebug() << Q_FUNC_INFO << "Item position type x is ptPlotCoords, but no axes were defined";
12568 break;
12569 }
12570 }
12571
12572 // determine Y:
12573 switch (mPositionTypeY)
12574 {
12575 case ptAbsolute:
12576 {
12577 result.ry() = mValue;
12578 if (mParentAnchorY)
12579 result.ry() += mParentAnchorY->pixelPosition().y();
12580 break;
12581 }
12582 case ptViewportRatio:
12583 {
12584 result.ry() = mValue*mParentPlot->viewport().height();
12585 if (mParentAnchorY)
12586 result.ry() += mParentAnchorY->pixelPosition().y();
12587 else
12588 result.ry() += mParentPlot->viewport().top();
12589 break;
12590 }
12591 case ptAxisRectRatio:
12592 {
12593 if (mAxisRect)
12594 {
12595 result.ry() = mValue*mAxisRect.data()->height();
12596 if (mParentAnchorY)
12597 result.ry() += mParentAnchorY->pixelPosition().y();
12598 else
12599 result.ry() += mAxisRect.data()->top();
12600 } else
12601 qDebug() << Q_FUNC_INFO << "Item position type y is ptAxisRectRatio, but no axis rect was defined";
12602 break;
12603 }
12604 case ptPlotCoords:
12605 {
12606 if (mKeyAxis && mKeyAxis.data()->orientation() == Qt::Vertical)
12607 result.ry() = mKeyAxis.data()->coordToPixel(mKey);
12608 else if (mValueAxis && mValueAxis.data()->orientation() == Qt::Vertical)
12609 result.ry() = mValueAxis.data()->coordToPixel(mValue);
12610 else
12611 qDebug() << Q_FUNC_INFO << "Item position type y is ptPlotCoords, but no axes were defined";
12612 break;
12613 }
12614 }
12615
12616 return result;
12617}
12618
12619/*!
12620 When \ref setType is \ref ptPlotCoords, this function may be used to specify the axes the
12621 coordinates set with \ref setCoords relate to. By default they are set to the initial xAxis and
12622 yAxis of the QCustomPlot.
12623*/
12624void QCPItemPosition::setAxes(QCPAxis *keyAxis, QCPAxis *valueAxis)
12625{
12626 mKeyAxis = keyAxis;
12627 mValueAxis = valueAxis;
12628}
12629
12630/*!
12631 When \ref setType is \ref ptAxisRectRatio, this function may be used to specify the axis rect the
12632 coordinates set with \ref setCoords relate to. By default this is set to the main axis rect of
12633 the QCustomPlot.
12634*/
12636{
12637 mAxisRect = axisRect;
12638}
12639
12640/*!
12641 Sets the apparent pixel position. This works no matter what type (\ref setType) this
12642 QCPItemPosition is or what parent-child situation it is in, as coordinates are transformed
12643 appropriately, to make the position finally appear at the specified pixel values.
12644
12645 Only if the type is \ref ptAbsolute and no parent anchor is set, this function's effect is
12646 identical to that of \ref setCoords.
12647
12648 \see pixelPosition, setCoords
12649*/
12651{
12652 double x = pixelPosition.x();
12653 double y = pixelPosition.y();
12654
12655 switch (mPositionTypeX)
12656 {
12657 case ptAbsolute:
12658 {
12659 if (mParentAnchorX)
12660 x -= mParentAnchorX->pixelPosition().x();
12661 break;
12662 }
12663 case ptViewportRatio:
12664 {
12665 if (mParentAnchorX)
12666 x -= mParentAnchorX->pixelPosition().x();
12667 else
12668 x -= mParentPlot->viewport().left();
12669 x /= double(mParentPlot->viewport().width());
12670 break;
12671 }
12672 case ptAxisRectRatio:
12673 {
12674 if (mAxisRect)
12675 {
12676 if (mParentAnchorX)
12677 x -= mParentAnchorX->pixelPosition().x();
12678 else
12679 x -= mAxisRect.data()->left();
12680 x /= double(mAxisRect.data()->width());
12681 } else
12682 qDebug() << Q_FUNC_INFO << "Item position type x is ptAxisRectRatio, but no axis rect was defined";
12683 break;
12684 }
12685 case ptPlotCoords:
12686 {
12687 if (mKeyAxis && mKeyAxis.data()->orientation() == Qt::Horizontal)
12688 x = mKeyAxis.data()->pixelToCoord(x);
12689 else if (mValueAxis && mValueAxis.data()->orientation() == Qt::Horizontal)
12690 y = mValueAxis.data()->pixelToCoord(x);
12691 else
12692 qDebug() << Q_FUNC_INFO << "Item position type x is ptPlotCoords, but no axes were defined";
12693 break;
12694 }
12695 }
12696
12697 switch (mPositionTypeY)
12698 {
12699 case ptAbsolute:
12700 {
12701 if (mParentAnchorY)
12702 y -= mParentAnchorY->pixelPosition().y();
12703 break;
12704 }
12705 case ptViewportRatio:
12706 {
12707 if (mParentAnchorY)
12708 y -= mParentAnchorY->pixelPosition().y();
12709 else
12710 y -= mParentPlot->viewport().top();
12711 y /= double(mParentPlot->viewport().height());
12712 break;
12713 }
12714 case ptAxisRectRatio:
12715 {
12716 if (mAxisRect)
12717 {
12718 if (mParentAnchorY)
12719 y -= mParentAnchorY->pixelPosition().y();
12720 else
12721 y -= mAxisRect.data()->top();
12722 y /= double(mAxisRect.data()->height());
12723 } else
12724 qDebug() << Q_FUNC_INFO << "Item position type y is ptAxisRectRatio, but no axis rect was defined";
12725 break;
12726 }
12727 case ptPlotCoords:
12728 {
12729 if (mKeyAxis && mKeyAxis.data()->orientation() == Qt::Vertical)
12730 x = mKeyAxis.data()->pixelToCoord(y);
12731 else if (mValueAxis && mValueAxis.data()->orientation() == Qt::Vertical)
12732 y = mValueAxis.data()->pixelToCoord(y);
12733 else
12734 qDebug() << Q_FUNC_INFO << "Item position type y is ptPlotCoords, but no axes were defined";
12735 break;
12736 }
12737 }
12738
12739 setCoords(x, y);
12740}
12741
12742
12743////////////////////////////////////////////////////////////////////////////////////////////////////
12744//////////////////// QCPAbstractItem
12745////////////////////////////////////////////////////////////////////////////////////////////////////
12746
12747/*! \class QCPAbstractItem
12748 \brief The abstract base class for all items in a plot.
12749
12750 In QCustomPlot, items are supplemental graphical elements that are neither plottables
12751 (QCPAbstractPlottable) nor axes (QCPAxis). While plottables are always tied to two axes and thus
12752 plot coordinates, items can also be placed in absolute coordinates independent of any axes. Each
12753 specific item has at least one QCPItemPosition member which controls the positioning. Some items
12754 are defined by more than one coordinate and thus have two or more QCPItemPosition members (For
12755 example, QCPItemRect has \a topLeft and \a bottomRight).
12756
12757 This abstract base class defines a very basic interface like visibility and clipping. Since this
12758 class is abstract, it can't be instantiated. Use one of the subclasses or create a subclass
12759 yourself to create new items.
12760
12761 The built-in items are:
12762 <table>
12763 <tr><td>QCPItemLine</td><td>A line defined by a start and an end point. May have different ending styles on each side (e.g. arrows).</td></tr>
12764 <tr><td>QCPItemStraightLine</td><td>A straight line defined by a start and a direction point. Unlike QCPItemLine, the straight line is infinitely long and has no endings.</td></tr>
12765 <tr><td>QCPItemCurve</td><td>A curve defined by start, end and two intermediate control points. May have different ending styles on each side (e.g. arrows).</td></tr>
12766 <tr><td>QCPItemRect</td><td>A rectangle</td></tr>
12767 <tr><td>QCPItemEllipse</td><td>An ellipse</td></tr>
12768 <tr><td>QCPItemPixmap</td><td>An arbitrary pixmap</td></tr>
12769 <tr><td>QCPItemText</td><td>A text label</td></tr>
12770 <tr><td>QCPItemBracket</td><td>A bracket which may be used to reference/highlight certain parts in the plot.</td></tr>
12771 <tr><td>QCPItemTracer</td><td>An item that can be attached to a QCPGraph and sticks to its data points, given a key coordinate.</td></tr>
12772 </table>
12773
12774 \section items-clipping Clipping
12775
12776 Items are by default clipped to the main axis rect (they are only visible inside the axis rect).
12777 To make an item visible outside that axis rect, disable clipping via \ref setClipToAxisRect
12778 "setClipToAxisRect(false)".
12779
12780 On the other hand if you want the item to be clipped to a different axis rect, specify it via
12781 \ref setClipAxisRect. This clipAxisRect property of an item is only used for clipping behaviour, and
12782 in principle is independent of the coordinate axes the item might be tied to via its position
12783 members (\ref QCPItemPosition::setAxes). However, it is common that the axis rect for clipping
12784 also contains the axes used for the item positions.
12785
12786 \section items-using Using items
12787
12788 First you instantiate the item you want to use and add it to the plot:
12789 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-1
12790 by default, the positions of the item are bound to the x- and y-Axis of the plot. So we can just
12791 set the plot coordinates where the line should start/end:
12792 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-2
12793 If we don't want the line to be positioned in plot coordinates but a different coordinate system,
12794 e.g. absolute pixel positions on the QCustomPlot surface, we need to change the position type like this:
12795 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-3
12796 Then we can set the coordinates, this time in pixels:
12797 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-4
12798 and make the line visible on the entire QCustomPlot, by disabling clipping to the axis rect:
12799 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpitemline-creation-5
12800
12801 For more advanced plots, it is even possible to set different types and parent anchors per X/Y
12802 coordinate of an item position, using for example \ref QCPItemPosition::setTypeX or \ref
12803 QCPItemPosition::setParentAnchorX. For details, see the documentation of \ref QCPItemPosition.
12804
12805 \section items-subclassing Creating own items
12806
12807 To create an own item, you implement a subclass of QCPAbstractItem. These are the pure
12808 virtual functions, you must implement:
12809 \li \ref selectTest
12810 \li \ref draw
12811
12812 See the documentation of those functions for what they need to do.
12813
12814 \subsection items-positioning Allowing the item to be positioned
12815
12816 As mentioned, item positions are represented by QCPItemPosition members. Let's assume the new item shall
12817 have only one point as its position (as opposed to two like a rect or multiple like a polygon). You then add
12818 a public member of type QCPItemPosition like so:
12819
12820 \code QCPItemPosition * const myPosition;\endcode
12821
12822 the const makes sure the pointer itself can't be modified from the user of your new item (the QCPItemPosition
12823 instance it points to, can be modified, of course).
12824 The initialization of this pointer is made easy with the \ref createPosition function. Just assign
12825 the return value of this function to each QCPItemPosition in the constructor of your item. \ref createPosition
12826 takes a string which is the name of the position, typically this is identical to the variable name.
12827 For example, the constructor of QCPItemExample could look like this:
12828
12829 \code
12830 QCPItemExample::QCPItemExample(QCustomPlot *parentPlot) :
12831 QCPAbstractItem(parentPlot),
12832 myPosition(createPosition("myPosition"))
12833 {
12834 // other constructor code
12835 }
12836 \endcode
12837
12838 \subsection items-drawing The draw function
12839
12840 To give your item a visual representation, reimplement the \ref draw function and use the passed
12841 QCPPainter to draw the item. You can retrieve the item position in pixel coordinates from the
12842 position member(s) via \ref QCPItemPosition::pixelPosition.
12843
12844 To optimize performance you should calculate a bounding rect first (don't forget to take the pen
12845 width into account), check whether it intersects the \ref clipRect, and only draw the item at all
12846 if this is the case.
12847
12848 \subsection items-selection The selectTest function
12849
12850 Your implementation of the \ref selectTest function may use the helpers \ref
12851 QCPVector2D::distanceSquaredToLine and \ref rectDistance. With these, the implementation of the
12852 selection test becomes significantly simpler for most items. See the documentation of \ref
12853 selectTest for what the function parameters mean and what the function should return.
12854
12855 \subsection anchors Providing anchors
12856
12857 Providing anchors (QCPItemAnchor) starts off like adding a position. First you create a public
12858 member, e.g.
12859
12860 \code QCPItemAnchor * const bottom;\endcode
12861
12862 and create it in the constructor with the \ref createAnchor function, assigning it a name and an
12863 anchor id (an integer enumerating all anchors on the item, you may create an own enum for this).
12864 Since anchors can be placed anywhere, relative to the item's position(s), your item needs to
12865 provide the position of every anchor with the reimplementation of the \ref anchorPixelPosition(int
12866 anchorId) function.
12867
12868 In essence the QCPItemAnchor is merely an intermediary that itself asks your item for the pixel
12869 position when anything attached to the anchor needs to know the coordinates.
12870*/
12871
12872/* start of documentation of inline functions */
12873
12874/*! \fn QList<QCPItemPosition*> QCPAbstractItem::positions() const
12875
12876 Returns all positions of the item in a list.
12877
12878 \see anchors, position
12879*/
12880
12881/*! \fn QList<QCPItemAnchor*> QCPAbstractItem::anchors() const
12882
12883 Returns all anchors of the item in a list. Note that since a position (QCPItemPosition) is always
12884 also an anchor, the list will also contain the positions of this item.
12885
12886 \see positions, anchor
12887*/
12888
12889/* end of documentation of inline functions */
12890/* start documentation of pure virtual functions */
12891
12892/*! \fn void QCPAbstractItem::draw(QCPPainter *painter) = 0
12893 \internal
12894
12895 Draws this item with the provided \a painter.
12896
12897 The cliprect of the provided painter is set to the rect returned by \ref clipRect before this
12898 function is called. The clipRect depends on the clipping settings defined by \ref
12899 setClipToAxisRect and \ref setClipAxisRect.
12900*/
12901
12902/* end documentation of pure virtual functions */
12903/* start documentation of signals */
12904
12905/*! \fn void QCPAbstractItem::selectionChanged(bool selected)
12906 This signal is emitted when the selection state of this item has changed, either by user interaction
12907 or by a direct call to \ref setSelected.
12908*/
12909
12910/* end documentation of signals */
12911
12912/*!
12913 Base class constructor which initializes base class members.
12914*/
12916 QCPLayerable(parentPlot),
12917 mClipToAxisRect(false),
12918 mSelectable(true),
12919 mSelected(false)
12920{
12921 parentPlot->registerItem(this);
12922
12923 QList<QCPAxisRect*> rects = parentPlot->axisRects();
12924 if (!rects.isEmpty())
12925 {
12926 setClipToAxisRect(true);
12927 setClipAxisRect(rects.first());
12928 }
12929}
12930
12931QCPAbstractItem::~QCPAbstractItem()
12932{
12933 // don't delete mPositions because every position is also an anchor and thus in mAnchors
12934 qDeleteAll(mAnchors);
12935}
12936
12937/* can't make this a header inline function, because QPointer breaks with forward declared types, see QTBUG-29588 */
12938QCPAxisRect *QCPAbstractItem::clipAxisRect() const
12939{
12940 return mClipAxisRect.data();
12941}
12942
12943/*!
12944 Sets whether the item shall be clipped to an axis rect or whether it shall be visible on the
12945 entire QCustomPlot. The axis rect can be set with \ref setClipAxisRect.
12946
12947 \see setClipAxisRect
12948*/
12950{
12951 mClipToAxisRect = clip;
12952 if (mClipToAxisRect)
12953 setParentLayerable(mClipAxisRect.data());
12954}
12955
12956/*!
12957 Sets the clip axis rect. It defines the rect that will be used to clip the item when \ref
12958 setClipToAxisRect is set to true.
12959
12960 \see setClipToAxisRect
12961*/
12963{
12964 mClipAxisRect = rect;
12965 if (mClipToAxisRect)
12966 setParentLayerable(mClipAxisRect.data());
12967}
12968
12969/*!
12970 Sets whether the user can (de-)select this item by clicking on the QCustomPlot surface.
12971 (When \ref QCustomPlot::setInteractions contains QCustomPlot::iSelectItems.)
12972
12973 However, even when \a selectable was set to false, it is possible to set the selection manually,
12974 by calling \ref setSelected.
12975
12976 \see QCustomPlot::setInteractions, setSelected
12977*/
12979{
12980 if (mSelectable != selectable)
12981 {
12982 mSelectable = selectable;
12983 emit selectableChanged(mSelectable);
12984 }
12985}
12986
12987/*!
12988 Sets whether this item is selected or not. When selected, it might use a different visual
12989 appearance (e.g. pen and brush), this depends on the specific item though.
12990
12991 The entire selection mechanism for items is handled automatically when \ref
12992 QCustomPlot::setInteractions contains QCustomPlot::iSelectItems. You only need to call this
12993 function when you wish to change the selection state manually.
12994
12995 This function can change the selection state even when \ref setSelectable was set to false.
12996
12997 emits the \ref selectionChanged signal when \a selected is different from the previous selection state.
12998
12999 \see setSelectable, selectTest
13000*/
13002{
13003 if (mSelected != selected)
13004 {
13005 mSelected = selected;
13006 emit selectionChanged(mSelected);
13007 }
13008}
13009
13010/*!
13011 Returns the QCPItemPosition with the specified \a name. If this item doesn't have a position by
13012 that name, returns \c nullptr.
13013
13014 This function provides an alternative way to access item positions. Normally, you access
13015 positions direcly by their member pointers (which typically have the same variable name as \a
13016 name).
13017
13018 \see positions, anchor
13019*/
13021{
13022 foreach (QCPItemPosition *position, mPositions)
13023 {
13024 if (position->name() == name)
13025 return position;
13026 }
13027 qDebug() << Q_FUNC_INFO << "position with name not found:" << name;
13028 return nullptr;
13029}
13030
13031/*!
13032 Returns the QCPItemAnchor with the specified \a name. If this item doesn't have an anchor by
13033 that name, returns \c nullptr.
13034
13035 This function provides an alternative way to access item anchors. Normally, you access
13036 anchors direcly by their member pointers (which typically have the same variable name as \a
13037 name).
13038
13039 \see anchors, position
13040*/
13042{
13043 foreach (QCPItemAnchor *anchor, mAnchors)
13044 {
13045 if (anchor->name() == name)
13046 return anchor;
13047 }
13048 qDebug() << Q_FUNC_INFO << "anchor with name not found:" << name;
13049 return nullptr;
13050}
13051
13052/*!
13053 Returns whether this item has an anchor with the specified \a name.
13054
13055 Note that you can check for positions with this function, too. This is because every position is
13056 also an anchor (QCPItemPosition inherits from QCPItemAnchor).
13057
13058 \see anchor, position
13059*/
13061{
13062 foreach (QCPItemAnchor *anchor, mAnchors)
13063 {
13064 if (anchor->name() == name)
13065 return true;
13066 }
13067 return false;
13068}
13069
13070/*! \internal
13071
13072 Returns the rect the visual representation of this item is clipped to. This depends on the
13073 current setting of \ref setClipToAxisRect as well as the axis rect set with \ref setClipAxisRect.
13074
13075 If the item is not clipped to an axis rect, QCustomPlot's viewport rect is returned.
13076
13077 \see draw
13078*/
13080{
13081 if (mClipToAxisRect && mClipAxisRect)
13082 return mClipAxisRect.data()->rect();
13083 else
13084 return mParentPlot->viewport();
13085}
13086
13087/*! \internal
13088
13089 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
13090 before drawing item lines.
13091
13092 This is the antialiasing state the painter passed to the \ref draw method is in by default.
13093
13094 This function takes into account the local setting of the antialiasing flag as well as the
13095 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
13096 QCustomPlot::setNotAntialiasedElements.
13097
13098 \see setAntialiased
13099*/
13101{
13102 applyAntialiasingHint(painter, mAntialiased, QCP::aeItems);
13103}
13104
13105/*! \internal
13106
13107 A convenience function which returns the selectTest value for a specified \a rect and a specified
13108 click position \a pos. \a filledRect defines whether a click inside the rect should also be
13109 considered a hit or whether only the rect border is sensitive to hits.
13110
13111 This function may be used to help with the implementation of the \ref selectTest function for
13112 specific items.
13113
13114 For example, if your item consists of four rects, call this function four times, once for each
13115 rect, in your \ref selectTest reimplementation. Finally, return the minimum (non -1) of all four
13116 returned values.
13117*/
13118double QCPAbstractItem::rectDistance(const QRectF &rect, const QPointF &pos, bool filledRect) const
13119{
13120 double result = -1;
13121
13122 // distance to border:
13123 const QList<QLineF> lines = QList<QLineF>() << QLineF(rect.topLeft(), rect.topRight()) << QLineF(rect.bottomLeft(), rect.bottomRight())
13124 << QLineF(rect.topLeft(), rect.bottomLeft()) << QLineF(rect.topRight(), rect.bottomRight());
13125 const QCPVector2D posVec(pos);
13126 double minDistSqr = (std::numeric_limits<double>::max)();
13127 foreach (const QLineF &line, lines)
13128 {
13129 double distSqr = posVec.distanceSquaredToLine(line.p1(), line.p2());
13130 if (distSqr < minDistSqr)
13132 }
13133 result = qSqrt(minDistSqr);
13134
13135 // filled rect, allow click inside to count as hit:
13136 if (filledRect && result > mParentPlot->selectionTolerance()*0.99)
13137 {
13138 if (rect.contains(pos))
13139 result = mParentPlot->selectionTolerance()*0.99;
13140 }
13141 return result;
13142}
13143
13144/*! \internal
13145
13146 Returns the pixel position of the anchor with Id \a anchorId. This function must be reimplemented in
13147 item subclasses if they want to provide anchors (QCPItemAnchor).
13148
13149 For example, if the item has two anchors with id 0 and 1, this function takes one of these anchor
13150 ids and returns the respective pixel points of the specified anchor.
13151
13152 \see createAnchor
13153*/
13155{
13156 qDebug() << Q_FUNC_INFO << "called on item which shouldn't have any anchors (this method not reimplemented). anchorId" << anchorId;
13157 return {};
13158}
13159
13160/*! \internal
13161
13162 Creates a QCPItemPosition, registers it with this item and returns a pointer to it. The specified
13163 \a name must be a unique string that is usually identical to the variable name of the position
13164 member (This is needed to provide the name-based \ref position access to positions).
13165
13166 Don't delete positions created by this function manually, as the item will take care of it.
13167
13168 Use this function in the constructor (initialization list) of the specific item subclass to
13169 create each position member. Don't create QCPItemPositions with \b new yourself, because they
13170 won't be registered with the item properly.
13171
13172 \see createAnchor
13173*/
13175{
13176 if (hasAnchor(name))
13177 qDebug() << Q_FUNC_INFO << "anchor/position with name exists already:" << name;
13178 QCPItemPosition *newPosition = new QCPItemPosition(mParentPlot, this, name);
13179 mPositions.append(newPosition);
13180 mAnchors.append(newPosition); // every position is also an anchor
13181 newPosition->setAxes(mParentPlot->xAxis, mParentPlot->yAxis);
13183 if (mParentPlot->axisRect())
13184 newPosition->setAxisRect(mParentPlot->axisRect());
13185 newPosition->setCoords(0, 0);
13186 return newPosition;
13187}
13188
13189/*! \internal
13190
13191 Creates a QCPItemAnchor, registers it with this item and returns a pointer to it. The specified
13192 \a name must be a unique string that is usually identical to the variable name of the anchor
13193 member (This is needed to provide the name based \ref anchor access to anchors).
13194
13195 The \a anchorId must be a number identifying the created anchor. It is recommended to create an
13196 enum (e.g. "AnchorIndex") for this on each item that uses anchors. This id is used by the anchor
13197 to identify itself when it calls QCPAbstractItem::anchorPixelPosition. That function then returns
13198 the correct pixel coordinates for the passed anchor id.
13199
13200 Don't delete anchors created by this function manually, as the item will take care of it.
13201
13202 Use this function in the constructor (initialization list) of the specific item subclass to
13203 create each anchor member. Don't create QCPItemAnchors with \b new yourself, because then they
13204 won't be registered with the item properly.
13205
13206 \see createPosition
13207*/
13209{
13210 if (hasAnchor(name))
13211 qDebug() << Q_FUNC_INFO << "anchor/position with name exists already:" << name;
13212 QCPItemAnchor *newAnchor = new QCPItemAnchor(mParentPlot, this, name, anchorId);
13213 mAnchors.append(newAnchor);
13214 return newAnchor;
13215}
13216
13217/* inherits documentation from base class */
13219{
13221 Q_UNUSED(details)
13222 if (mSelectable)
13223 {
13224 bool selBefore = mSelected;
13225 setSelected(additive ? !mSelected : true);
13227 *selectionStateChanged = mSelected != selBefore;
13228 }
13229}
13230
13231/* inherits documentation from base class */
13233{
13234 if (mSelectable)
13235 {
13236 bool selBefore = mSelected;
13237 setSelected(false);
13239 *selectionStateChanged = mSelected != selBefore;
13240 }
13241}
13242
13243/* inherits documentation from base class */
13248/* end of 'src/item.cpp' */
13249
13250
13251/* including file 'src/core.cpp' */
13252/* modified 2021-03-29T02:30:44, size 127198 */
13253
13254////////////////////////////////////////////////////////////////////////////////////////////////////
13255//////////////////// QCustomPlot
13256////////////////////////////////////////////////////////////////////////////////////////////////////
13257
13258/*! \class QCustomPlot
13259
13260 \brief The central class of the library. This is the QWidget which displays the plot and
13261 interacts with the user.
13262
13263 For tutorials on how to use QCustomPlot, see the website\n
13264 http://www.qcustomplot.com/
13265*/
13266
13267/* start of documentation of inline functions */
13268
13269/*! \fn QCPSelectionRect *QCustomPlot::selectionRect() const
13270
13271 Allows access to the currently used QCPSelectionRect instance (or subclass thereof), that is used
13272 to handle and draw selection rect interactions (see \ref setSelectionRectMode).
13273
13274 \see setSelectionRect
13275*/
13276
13277/*! \fn QCPLayoutGrid *QCustomPlot::plotLayout() const
13278
13279 Returns the top level layout of this QCustomPlot instance. It is a \ref QCPLayoutGrid, initially containing just
13280 one cell with the main QCPAxisRect inside.
13281*/
13282
13283/* end of documentation of inline functions */
13284/* start of documentation of signals */
13285
13286/*! \fn void QCustomPlot::mouseDoubleClick(QMouseEvent *event)
13287
13288 This signal is emitted when the QCustomPlot receives a mouse double click event.
13289*/
13290
13291/*! \fn void QCustomPlot::mousePress(QMouseEvent *event)
13292
13293 This signal is emitted when the QCustomPlot receives a mouse press event.
13294
13295 It is emitted before QCustomPlot handles any other mechanism like range dragging. So a slot
13296 connected to this signal can still influence the behaviour e.g. with \ref QCPAxisRect::setRangeDrag or \ref
13297 QCPAxisRect::setRangeDragAxes.
13298*/
13299
13300/*! \fn void QCustomPlot::mouseMove(QMouseEvent *event)
13301
13302 This signal is emitted when the QCustomPlot receives a mouse move event.
13303
13304 It is emitted before QCustomPlot handles any other mechanism like range dragging. So a slot
13305 connected to this signal can still influence the behaviour e.g. with \ref QCPAxisRect::setRangeDrag or \ref
13306 QCPAxisRect::setRangeDragAxes.
13307
13308 \warning It is discouraged to change the drag-axes with \ref QCPAxisRect::setRangeDragAxes here,
13309 because the dragging starting point was saved the moment the mouse was pressed. Thus it only has
13310 a meaning for the range drag axes that were set at that moment. If you want to change the drag
13311 axes, consider doing this in the \ref mousePress signal instead.
13312*/
13313
13314/*! \fn void QCustomPlot::mouseRelease(QMouseEvent *event)
13315
13316 This signal is emitted when the QCustomPlot receives a mouse release event.
13317
13318 It is emitted before QCustomPlot handles any other mechanisms like object selection. So a
13319 slot connected to this signal can still influence the behaviour e.g. with \ref setInteractions or
13320 \ref QCPAbstractPlottable::setSelectable.
13321*/
13322
13323/*! \fn void QCustomPlot::mouseWheel(QMouseEvent *event)
13324
13325 This signal is emitted when the QCustomPlot receives a mouse wheel event.
13326
13327 It is emitted before QCustomPlot handles any other mechanisms like range zooming. So a slot
13328 connected to this signal can still influence the behaviour e.g. with \ref QCPAxisRect::setRangeZoom, \ref
13329 QCPAxisRect::setRangeZoomAxes or \ref QCPAxisRect::setRangeZoomFactor.
13330*/
13331
13332/*! \fn void QCustomPlot::plottableClick(QCPAbstractPlottable *plottable, int dataIndex, QMouseEvent *event)
13333
13334 This signal is emitted when a plottable is clicked.
13335
13336 \a event is the mouse event that caused the click and \a plottable is the plottable that received
13337 the click. The parameter \a dataIndex indicates the data point that was closest to the click
13338 position.
13339
13340 \see plottableDoubleClick
13341*/
13342
13343/*! \fn void QCustomPlot::plottableDoubleClick(QCPAbstractPlottable *plottable, int dataIndex, QMouseEvent *event)
13344
13345 This signal is emitted when a plottable is double clicked.
13346
13347 \a event is the mouse event that caused the click and \a plottable is the plottable that received
13348 the click. The parameter \a dataIndex indicates the data point that was closest to the click
13349 position.
13350
13351 \see plottableClick
13352*/
13353
13354/*! \fn void QCustomPlot::itemClick(QCPAbstractItem *item, QMouseEvent *event)
13355
13356 This signal is emitted when an item is clicked.
13357
13358 \a event is the mouse event that caused the click and \a item is the item that received the
13359 click.
13360
13361 \see itemDoubleClick
13362*/
13363
13364/*! \fn void QCustomPlot::itemDoubleClick(QCPAbstractItem *item, QMouseEvent *event)
13365
13366 This signal is emitted when an item is double clicked.
13367
13368 \a event is the mouse event that caused the click and \a item is the item that received the
13369 click.
13370
13371 \see itemClick
13372*/
13373
13374/*! \fn void QCustomPlot::axisClick(QCPAxis *axis, QCPAxis::SelectablePart part, QMouseEvent *event)
13375
13376 This signal is emitted when an axis is clicked.
13377
13378 \a event is the mouse event that caused the click, \a axis is the axis that received the click and
13379 \a part indicates the part of the axis that was clicked.
13380
13381 \see axisDoubleClick
13382*/
13383
13384/*! \fn void QCustomPlot::axisDoubleClick(QCPAxis *axis, QCPAxis::SelectablePart part, QMouseEvent *event)
13385
13386 This signal is emitted when an axis is double clicked.
13387
13388 \a event is the mouse event that caused the click, \a axis is the axis that received the click and
13389 \a part indicates the part of the axis that was clicked.
13390
13391 \see axisClick
13392*/
13393
13394/*! \fn void QCustomPlot::legendClick(QCPLegend *legend, QCPAbstractLegendItem *item, QMouseEvent *event)
13395
13396 This signal is emitted when a legend (item) is clicked.
13397
13398 \a event is the mouse event that caused the click, \a legend is the legend that received the
13399 click and \a item is the legend item that received the click. If only the legend and no item is
13400 clicked, \a item is \c nullptr. This happens for a click inside the legend padding or the space
13401 between two items.
13402
13403 \see legendDoubleClick
13404*/
13405
13406/*! \fn void QCustomPlot::legendDoubleClick(QCPLegend *legend, QCPAbstractLegendItem *item, QMouseEvent *event)
13407
13408 This signal is emitted when a legend (item) is double clicked.
13409
13410 \a event is the mouse event that caused the click, \a legend is the legend that received the
13411 click and \a item is the legend item that received the click. If only the legend and no item is
13412 clicked, \a item is \c nullptr. This happens for a click inside the legend padding or the space
13413 between two items.
13414
13415 \see legendClick
13416*/
13417
13418/*! \fn void QCustomPlot::selectionChangedByUser()
13419
13420 This signal is emitted after the user has changed the selection in the QCustomPlot, e.g. by
13421 clicking. It is not emitted when the selection state of an object has changed programmatically by
13422 a direct call to <tt>setSelected()</tt>/<tt>setSelection()</tt> on an object or by calling \ref
13423 deselectAll.
13424
13425 In addition to this signal, selectable objects also provide individual signals, for example \ref
13426 QCPAxis::selectionChanged or \ref QCPAbstractPlottable::selectionChanged. Note that those signals
13427 are emitted even if the selection state is changed programmatically.
13428
13429 See the documentation of \ref setInteractions for details about the selection mechanism.
13430
13431 \see selectedPlottables, selectedGraphs, selectedItems, selectedAxes, selectedLegends
13432*/
13433
13434/*! \fn void QCustomPlot::beforeReplot()
13435
13436 This signal is emitted immediately before a replot takes place (caused by a call to the slot \ref
13437 replot).
13438
13439 It is safe to mutually connect the replot slot with this signal on two QCustomPlots to make them
13440 replot synchronously, it won't cause an infinite recursion.
13441
13442 \see replot, afterReplot, afterLayout
13443*/
13444
13445/*! \fn void QCustomPlot::afterLayout()
13446
13447 This signal is emitted immediately after the layout step has been completed, which occurs right
13448 before drawing the plot. This is typically during a call to \ref replot, and in such cases this
13449 signal is emitted in between the signals \ref beforeReplot and \ref afterReplot. Unlike those
13450 signals however, this signal is also emitted during off-screen painting, such as when calling
13451 \ref toPixmap or \ref savePdf.
13452
13453 The layout step queries all layouts and layout elements in the plot for their proposed size and
13454 arranges the objects accordingly as preparation for the subsequent drawing step. Through this
13455 signal, you have the opportunity to update certain things in your plot that depend crucially on
13456 the exact dimensions/positioning of layout elements such as axes and axis rects.
13457
13458 \warning However, changing any parameters of this QCustomPlot instance which would normally
13459 affect the layouting (e.g. axis range order of magnitudes, tick label sizes, etc.) will not issue
13460 a second run of the layout step. It will propagate directly to the draw step and may cause
13461 graphical inconsistencies such as overlapping objects, if sizes or positions have changed.
13462
13463 \see updateLayout, beforeReplot, afterReplot
13464*/
13465
13466/*! \fn void QCustomPlot::afterReplot()
13467
13468 This signal is emitted immediately after a replot has taken place (caused by a call to the slot \ref
13469 replot).
13470
13471 It is safe to mutually connect the replot slot with this signal on two QCustomPlots to make them
13472 replot synchronously, it won't cause an infinite recursion.
13473
13474 \see replot, beforeReplot, afterLayout
13475*/
13476
13477/* end of documentation of signals */
13478/* start of documentation of public members */
13479
13480/*! \var QCPAxis *QCustomPlot::xAxis
13481
13482 A pointer to the primary x Axis (bottom) of the main axis rect of the plot.
13483
13484 QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
13485 yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
13486 axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
13487 layout system\endlink to add multiple axis rects or multiple axes to one side, use the \ref
13488 QCPAxisRect::axis interface to access the new axes. If one of the four default axes or the
13489 default legend is removed due to manipulation of the layout system (e.g. by removing the main
13490 axis rect), the corresponding pointers become \c nullptr.
13491
13492 If an axis convenience pointer is currently \c nullptr and a new axis rect or a corresponding
13493 axis is added in the place of the main axis rect, QCustomPlot resets the convenience pointers to
13494 the according new axes. Similarly the \ref legend convenience pointer will be reset if a legend
13495 is added after the main legend was removed before.
13496*/
13497
13498/*! \var QCPAxis *QCustomPlot::yAxis
13499
13500 A pointer to the primary y Axis (left) of the main axis rect of the plot.
13501
13502 QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
13503 yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
13504 axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
13505 layout system\endlink to add multiple axis rects or multiple axes to one side, use the \ref
13506 QCPAxisRect::axis interface to access the new axes. If one of the four default axes or the
13507 default legend is removed due to manipulation of the layout system (e.g. by removing the main
13508 axis rect), the corresponding pointers become \c nullptr.
13509
13510 If an axis convenience pointer is currently \c nullptr and a new axis rect or a corresponding
13511 axis is added in the place of the main axis rect, QCustomPlot resets the convenience pointers to
13512 the according new axes. Similarly the \ref legend convenience pointer will be reset if a legend
13513 is added after the main legend was removed before.
13514*/
13515
13516/*! \var QCPAxis *QCustomPlot::xAxis2
13517
13518 A pointer to the secondary x Axis (top) of the main axis rect of the plot. Secondary axes are
13519 invisible by default. Use QCPAxis::setVisible to change this (or use \ref
13520 QCPAxisRect::setupFullAxesBox).
13521
13522 QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
13523 yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
13524 axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
13525 layout system\endlink to add multiple axis rects or multiple axes to one side, use the \ref
13526 QCPAxisRect::axis interface to access the new axes. If one of the four default axes or the
13527 default legend is removed due to manipulation of the layout system (e.g. by removing the main
13528 axis rect), the corresponding pointers become \c nullptr.
13529
13530 If an axis convenience pointer is currently \c nullptr and a new axis rect or a corresponding
13531 axis is added in the place of the main axis rect, QCustomPlot resets the convenience pointers to
13532 the according new axes. Similarly the \ref legend convenience pointer will be reset if a legend
13533 is added after the main legend was removed before.
13534*/
13535
13536/*! \var QCPAxis *QCustomPlot::yAxis2
13537
13538 A pointer to the secondary y Axis (right) of the main axis rect of the plot. Secondary axes are
13539 invisible by default. Use QCPAxis::setVisible to change this (or use \ref
13540 QCPAxisRect::setupFullAxesBox).
13541
13542 QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
13543 yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
13544 axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
13545 layout system\endlink to add multiple axis rects or multiple axes to one side, use the \ref
13546 QCPAxisRect::axis interface to access the new axes. If one of the four default axes or the
13547 default legend is removed due to manipulation of the layout system (e.g. by removing the main
13548 axis rect), the corresponding pointers become \c nullptr.
13549
13550 If an axis convenience pointer is currently \c nullptr and a new axis rect or a corresponding
13551 axis is added in the place of the main axis rect, QCustomPlot resets the convenience pointers to
13552 the according new axes. Similarly the \ref legend convenience pointer will be reset if a legend
13553 is added after the main legend was removed before.
13554*/
13555
13556/*! \var QCPLegend *QCustomPlot::legend
13557
13558 A pointer to the default legend of the main axis rect. The legend is invisible by default. Use
13559 QCPLegend::setVisible to change this.
13560
13561 QCustomPlot offers convenient pointers to the axes (\ref xAxis, \ref yAxis, \ref xAxis2, \ref
13562 yAxis2) and the \ref legend. They make it very easy working with plots that only have a single
13563 axis rect and at most one axis at each axis rect side. If you use \link thelayoutsystem the
13564 layout system\endlink to add multiple legends to the plot, use the layout system interface to
13565 access the new legend. For example, legends can be placed inside an axis rect's \ref
13566 QCPAxisRect::insetLayout "inset layout", and must then also be accessed via the inset layout. If
13567 the default legend is removed due to manipulation of the layout system (e.g. by removing the main
13568 axis rect), the corresponding pointer becomes \c nullptr.
13569
13570 If an axis convenience pointer is currently \c nullptr and a new axis rect or a corresponding
13571 axis is added in the place of the main axis rect, QCustomPlot resets the convenience pointers to
13572 the according new axes. Similarly the \ref legend convenience pointer will be reset if a legend
13573 is added after the main legend was removed before.
13574*/
13575
13576/* end of documentation of public members */
13577
13578/*!
13579 Constructs a QCustomPlot and sets reasonable default values.
13580*/
13582 QWidget(parent),
13583 xAxis(nullptr),
13584 yAxis(nullptr),
13585 xAxis2(nullptr),
13586 yAxis2(nullptr),
13587 legend(nullptr),
13588 mBufferDevicePixelRatio(1.0), // will be adapted to primary screen below
13589 mPlotLayout(nullptr),
13590 mAutoAddPlottableToLegend(true),
13591 mAntialiasedElements(QCP::aeNone),
13592 mNotAntialiasedElements(QCP::aeNone),
13593 mInteractions(QCP::iNone),
13594 mSelectionTolerance(8),
13595 mNoAntialiasingOnDrag(false),
13596 mBackgroundBrush(Qt::white, Qt::SolidPattern),
13597 mBackgroundScaled(true),
13598 mBackgroundScaledMode(Qt::KeepAspectRatioByExpanding),
13599 mCurrentLayer(nullptr),
13600 mPlottingHints(QCP::phCacheLabels|QCP::phImmediateRefresh),
13601 mMultiSelectModifier(Qt::ControlModifier),
13602 mSelectionRectMode(QCP::srmNone),
13603 mSelectionRect(nullptr),
13604 mOpenGl(false),
13605 mMouseHasMoved(false),
13606 mMouseEventLayerable(nullptr),
13607 mMouseSignalLayerable(nullptr),
13608 mReplotting(false),
13609 mReplotQueued(false),
13610 mReplotTime(0),
13611 mReplotTimeAverage(0),
13612 mOpenGlMultisamples(16),
13613 mOpenGlAntialiasedElementsBackup(QCP::aeNone),
13614 mOpenGlCacheLabelsBackup(true)
13615{
13621 setMouseTracking(true);
13622 QLocale currentLocale = locale();
13624 setLocale(currentLocale);
13625#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
13626# ifdef QCP_DEVICEPIXELRATIO_FLOAT
13628# else
13630# endif
13631#endif
13632
13633 mOpenGlAntialiasedElementsBackup = mAntialiasedElements;
13634 mOpenGlCacheLabelsBackup = mPlottingHints.testFlag(QCP::phCacheLabels);
13635 // create initial layers:
13636 mLayers.append(new QCPLayer(this, QLatin1String("background")));
13637 mLayers.append(new QCPLayer(this, QLatin1String("grid")));
13638 mLayers.append(new QCPLayer(this, QLatin1String("main")));
13639 mLayers.append(new QCPLayer(this, QLatin1String("axes")));
13640 mLayers.append(new QCPLayer(this, QLatin1String("legend")));
13641 mLayers.append(new QCPLayer(this, QLatin1String("overlay")));
13645
13646 // create initial layout, axis rect and legend:
13647 mPlotLayout = new QCPLayoutGrid;
13648 mPlotLayout->initializeParentPlot(this);
13649 mPlotLayout->setParent(this); // important because if parent is QWidget, QCPLayout::sizeConstraintsChanged will call QWidget::updateGeometry
13650 mPlotLayout->setLayer(QLatin1String("main"));
13651 QCPAxisRect *defaultAxisRect = new QCPAxisRect(this, true);
13652 mPlotLayout->addElement(0, 0, defaultAxisRect);
13657 legend = new QCPLegend;
13658 legend->setVisible(false);
13659 defaultAxisRect->insetLayout()->addElement(legend, Qt::AlignRight|Qt::AlignTop);
13660 defaultAxisRect->insetLayout()->setMargins(QMargins(12, 12, 12, 12));
13661
13662 defaultAxisRect->setLayer(QLatin1String("background"));
13663 xAxis->setLayer(QLatin1String("axes"));
13664 yAxis->setLayer(QLatin1String("axes"));
13665 xAxis2->setLayer(QLatin1String("axes"));
13666 yAxis2->setLayer(QLatin1String("axes"));
13667 xAxis->grid()->setLayer(QLatin1String("grid"));
13668 yAxis->grid()->setLayer(QLatin1String("grid"));
13669 xAxis2->grid()->setLayer(QLatin1String("grid"));
13670 yAxis2->grid()->setLayer(QLatin1String("grid"));
13671 legend->setLayer(QLatin1String("legend"));
13672
13673 // create selection rect instance:
13674 mSelectionRect = new QCPSelectionRect(this);
13675 mSelectionRect->setLayer(QLatin1String("overlay"));
13676
13677 setViewport(rect()); // needs to be called after mPlotLayout has been created
13678
13680}
13681
13682QCustomPlot::~QCustomPlot()
13683{
13685 clearItems();
13686
13687 if (mPlotLayout)
13688 {
13689 delete mPlotLayout;
13690 mPlotLayout = nullptr;
13691 }
13692
13693 mCurrentLayer = nullptr;
13694 qDeleteAll(mLayers); // don't use removeLayer, because it would prevent the last layer to be removed
13695 mLayers.clear();
13696}
13697
13698/*!
13699 Sets which elements are forcibly drawn antialiased as an \a or combination of QCP::AntialiasedElement.
13700
13701 This overrides the antialiasing settings for whole element groups, normally controlled with the
13702 \a setAntialiasing function on the individual elements. If an element is neither specified in
13703 \ref setAntialiasedElements nor in \ref setNotAntialiasedElements, the antialiasing setting on
13704 each individual element instance is used.
13705
13706 For example, if \a antialiasedElements contains \ref QCP::aePlottables, all plottables will be
13707 drawn antialiased, no matter what the specific QCPAbstractPlottable::setAntialiased value was set
13708 to.
13709
13710 if an element in \a antialiasedElements is already set in \ref setNotAntialiasedElements, it is
13711 removed from there.
13712
13713 \see setNotAntialiasedElements
13714*/
13716{
13717 mAntialiasedElements = antialiasedElements;
13718
13719 // make sure elements aren't in mNotAntialiasedElements and mAntialiasedElements simultaneously:
13720 if ((mNotAntialiasedElements & mAntialiasedElements) != 0)
13721 mNotAntialiasedElements |= ~mAntialiasedElements;
13722}
13723
13724/*!
13725 Sets whether the specified \a antialiasedElement is forcibly drawn antialiased.
13726
13727 See \ref setAntialiasedElements for details.
13728
13729 \see setNotAntialiasedElement
13730*/
13732{
13733 if (!enabled && mAntialiasedElements.testFlag(antialiasedElement))
13734 mAntialiasedElements &= ~antialiasedElement;
13735 else if (enabled && !mAntialiasedElements.testFlag(antialiasedElement))
13736 mAntialiasedElements |= antialiasedElement;
13737
13738 // make sure elements aren't in mNotAntialiasedElements and mAntialiasedElements simultaneously:
13739 if ((mNotAntialiasedElements & mAntialiasedElements) != 0)
13740 mNotAntialiasedElements |= ~mAntialiasedElements;
13741}
13742
13743/*!
13744 Sets which elements are forcibly drawn not antialiased as an \a or combination of
13745 QCP::AntialiasedElement.
13746
13747 This overrides the antialiasing settings for whole element groups, normally controlled with the
13748 \a setAntialiasing function on the individual elements. If an element is neither specified in
13749 \ref setAntialiasedElements nor in \ref setNotAntialiasedElements, the antialiasing setting on
13750 each individual element instance is used.
13751
13752 For example, if \a notAntialiasedElements contains \ref QCP::aePlottables, no plottables will be
13753 drawn antialiased, no matter what the specific QCPAbstractPlottable::setAntialiased value was set
13754 to.
13755
13756 if an element in \a notAntialiasedElements is already set in \ref setAntialiasedElements, it is
13757 removed from there.
13758
13759 \see setAntialiasedElements
13760*/
13762{
13763 mNotAntialiasedElements = notAntialiasedElements;
13764
13765 // make sure elements aren't in mNotAntialiasedElements and mAntialiasedElements simultaneously:
13766 if ((mNotAntialiasedElements & mAntialiasedElements) != 0)
13767 mAntialiasedElements |= ~mNotAntialiasedElements;
13768}
13769
13770/*!
13771 Sets whether the specified \a notAntialiasedElement is forcibly drawn not antialiased.
13772
13773 See \ref setNotAntialiasedElements for details.
13774
13775 \see setAntialiasedElement
13776*/
13778{
13779 if (!enabled && mNotAntialiasedElements.testFlag(notAntialiasedElement))
13780 mNotAntialiasedElements &= ~notAntialiasedElement;
13781 else if (enabled && !mNotAntialiasedElements.testFlag(notAntialiasedElement))
13782 mNotAntialiasedElements |= notAntialiasedElement;
13783
13784 // make sure elements aren't in mNotAntialiasedElements and mAntialiasedElements simultaneously:
13785 if ((mNotAntialiasedElements & mAntialiasedElements) != 0)
13786 mAntialiasedElements |= ~mNotAntialiasedElements;
13787}
13788
13789/*!
13790 If set to true, adding a plottable (e.g. a graph) to the QCustomPlot automatically also adds the
13791 plottable to the legend (QCustomPlot::legend).
13792
13793 \see addGraph, QCPLegend::addItem
13794*/
13796{
13797 mAutoAddPlottableToLegend = on;
13798}
13799
13800/*!
13801 Sets the possible interactions of this QCustomPlot as an or-combination of \ref QCP::Interaction
13802 enums. There are the following types of interactions:
13803
13804 <b>Axis range manipulation</b> is controlled via \ref QCP::iRangeDrag and \ref QCP::iRangeZoom. When the
13805 respective interaction is enabled, the user may drag axes ranges and zoom with the mouse wheel.
13806 For details how to control which axes the user may drag/zoom and in what orientations, see \ref
13807 QCPAxisRect::setRangeDrag, \ref QCPAxisRect::setRangeZoom, \ref QCPAxisRect::setRangeDragAxes,
13808 \ref QCPAxisRect::setRangeZoomAxes.
13809
13810 <b>Plottable data selection</b> is controlled by \ref QCP::iSelectPlottables. If \ref
13811 QCP::iSelectPlottables is set, the user may select plottables (graphs, curves, bars,...) and
13812 their data by clicking on them or in their vicinity (\ref setSelectionTolerance). Whether the
13813 user can actually select a plottable and its data can further be restricted with the \ref
13814 QCPAbstractPlottable::setSelectable method on the specific plottable. For details, see the
13815 special page about the \ref dataselection "data selection mechanism". To retrieve a list of all
13816 currently selected plottables, call \ref selectedPlottables. If you're only interested in
13817 QCPGraphs, you may use the convenience function \ref selectedGraphs.
13818
13819 <b>Item selection</b> is controlled by \ref QCP::iSelectItems. If \ref QCP::iSelectItems is set, the user
13820 may select items (QCPItemLine, QCPItemText,...) by clicking on them or in their vicinity. To find
13821 out whether a specific item is selected, call QCPAbstractItem::selected(). To retrieve a list of
13822 all currently selected items, call \ref selectedItems.
13823
13824 <b>Axis selection</b> is controlled with \ref QCP::iSelectAxes. If \ref QCP::iSelectAxes is set, the user
13825 may select parts of the axes by clicking on them. What parts exactly (e.g. Axis base line, tick
13826 labels, axis label) are selectable can be controlled via \ref QCPAxis::setSelectableParts for
13827 each axis. To retrieve a list of all axes that currently contain selected parts, call \ref
13828 selectedAxes. Which parts of an axis are selected, can be retrieved with QCPAxis::selectedParts().
13829
13830 <b>Legend selection</b> is controlled with \ref QCP::iSelectLegend. If this is set, the user may
13831 select the legend itself or individual items by clicking on them. What parts exactly are
13832 selectable can be controlled via \ref QCPLegend::setSelectableParts. To find out whether the
13833 legend or any of its child items are selected, check the value of QCPLegend::selectedParts. To
13834 find out which child items are selected, call \ref QCPLegend::selectedItems.
13835
13836 <b>All other selectable elements</b> The selection of all other selectable objects (e.g.
13837 QCPTextElement, or your own layerable subclasses) is controlled with \ref QCP::iSelectOther. If set, the
13838 user may select those objects by clicking on them. To find out which are currently selected, you
13839 need to check their selected state explicitly.
13840
13841 If the selection state has changed by user interaction, the \ref selectionChangedByUser signal is
13842 emitted. Each selectable object additionally emits an individual selectionChanged signal whenever
13843 their selection state has changed, i.e. not only by user interaction.
13844
13845 To allow multiple objects to be selected by holding the selection modifier (\ref
13846 setMultiSelectModifier), set the flag \ref QCP::iMultiSelect.
13847
13848 \note In addition to the selection mechanism presented here, QCustomPlot always emits
13849 corresponding signals, when an object is clicked or double clicked. see \ref plottableClick and
13850 \ref plottableDoubleClick for example.
13851
13852 \see setInteraction, setSelectionTolerance
13853*/
13855{
13856 mInteractions = interactions;
13857}
13858
13859/*!
13860 Sets the single \a interaction of this QCustomPlot to \a enabled.
13861
13862 For details about the interaction system, see \ref setInteractions.
13863
13864 \see setInteractions
13865*/
13867{
13868 if (!enabled && mInteractions.testFlag(interaction))
13869 mInteractions &= ~interaction;
13870 else if (enabled && !mInteractions.testFlag(interaction))
13871 mInteractions |= interaction;
13872}
13873
13874/*!
13875 Sets the tolerance that is used to decide whether a click selects an object (e.g. a plottable) or
13876 not.
13877
13878 If the user clicks in the vicinity of the line of e.g. a QCPGraph, it's only regarded as a
13879 potential selection when the minimum distance between the click position and the graph line is
13880 smaller than \a pixels. Objects that are defined by an area (e.g. QCPBars) only react to clicks
13881 directly inside the area and ignore this selection tolerance. In other words, it only has meaning
13882 for parts of objects that are too thin to exactly hit with a click and thus need such a
13883 tolerance.
13884
13885 \see setInteractions, QCPLayerable::selectTest
13886*/
13888{
13889 mSelectionTolerance = pixels;
13890}
13891
13892/*!
13893 Sets whether antialiasing is disabled for this QCustomPlot while the user is dragging axes
13894 ranges. If many objects, especially plottables, are drawn antialiased, this greatly improves
13895 performance during dragging. Thus it creates a more responsive user experience. As soon as the
13896 user stops dragging, the last replot is done with normal antialiasing, to restore high image
13897 quality.
13898
13899 \see setAntialiasedElements, setNotAntialiasedElements
13900*/
13902{
13903 mNoAntialiasingOnDrag = enabled;
13904}
13905
13906/*!
13907 Sets the plotting hints for this QCustomPlot instance as an \a or combination of QCP::PlottingHint.
13908
13909 \see setPlottingHint
13910*/
13912{
13913 mPlottingHints = hints;
13914}
13915
13916/*!
13917 Sets the specified plotting \a hint to \a enabled.
13918
13919 \see setPlottingHints
13920*/
13922{
13923 QCP::PlottingHints newHints = mPlottingHints;
13924 if (!enabled)
13925 newHints &= ~hint;
13926 else
13927 newHints |= hint;
13928
13929 if (newHints != mPlottingHints)
13931}
13932
13933/*!
13934 Sets the keyboard modifier that will be recognized as multi-select-modifier.
13935
13936 If \ref QCP::iMultiSelect is specified in \ref setInteractions, the user may select multiple
13937 objects (or data points) by clicking on them one after the other while holding down \a modifier.
13938
13939 By default the multi-select-modifier is set to Qt::ControlModifier.
13940
13941 \see setInteractions
13942*/
13944{
13945 mMultiSelectModifier = modifier;
13946}
13947
13948/*!
13949 Sets how QCustomPlot processes mouse click-and-drag interactions by the user.
13950
13951 If \a mode is \ref QCP::srmNone, the mouse drag is forwarded to the underlying objects. For
13952 example, QCPAxisRect may process a mouse drag by dragging axis ranges, see \ref
13953 QCPAxisRect::setRangeDrag. If \a mode is not \ref QCP::srmNone, the current selection rect (\ref
13954 selectionRect) becomes activated and allows e.g. rect zooming and data point selection.
13955
13956 If you wish to provide your user both with axis range dragging and data selection/range zooming,
13957 use this method to switch between the modes just before the interaction is processed, e.g. in
13958 reaction to the \ref mousePress or \ref mouseMove signals. For example you could check whether
13959 the user is holding a certain keyboard modifier, and then decide which \a mode shall be set.
13960
13961 If a selection rect interaction is currently active, and \a mode is set to \ref QCP::srmNone, the
13962 interaction is canceled (\ref QCPSelectionRect::cancel). Switching between any of the other modes
13963 will keep the selection rect active. Upon completion of the interaction, the behaviour is as
13964 defined by the currently set \a mode, not the mode that was set when the interaction started.
13965
13966 \see setInteractions, setSelectionRect, QCPSelectionRect
13967*/
13969{
13970 if (mSelectionRect)
13971 {
13972 if (mode == QCP::srmNone)
13973 mSelectionRect->cancel(); // when switching to none, we immediately want to abort a potentially active selection rect
13974
13975 // disconnect old connections:
13976 if (mSelectionRectMode == QCP::srmSelect)
13977 disconnect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectSelection(QRect,QMouseEvent*)));
13978 else if (mSelectionRectMode == QCP::srmZoom)
13979 disconnect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectZoom(QRect,QMouseEvent*)));
13980
13981 // establish new ones:
13982 if (mode == QCP::srmSelect)
13983 connect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectSelection(QRect,QMouseEvent*)));
13984 else if (mode == QCP::srmZoom)
13985 connect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectZoom(QRect,QMouseEvent*)));
13986 }
13987
13988 mSelectionRectMode = mode;
13989}
13990
13991/*!
13992 Sets the \ref QCPSelectionRect instance that QCustomPlot will use if \a mode is not \ref
13993 QCP::srmNone and the user performs a click-and-drag interaction. QCustomPlot takes ownership of
13994 the passed \a selectionRect. It can be accessed later via \ref selectionRect.
13995
13996 This method is useful if you wish to replace the default QCPSelectionRect instance with an
13997 instance of a QCPSelectionRect subclass, to introduce custom behaviour of the selection rect.
13998
13999 \see setSelectionRectMode
14000*/
14002{
14003 delete mSelectionRect;
14004
14005 mSelectionRect = selectionRect;
14006
14007 if (mSelectionRect)
14008 {
14009 // establish connections with new selection rect:
14010 if (mSelectionRectMode == QCP::srmSelect)
14011 connect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectSelection(QRect,QMouseEvent*)));
14012 else if (mSelectionRectMode == QCP::srmZoom)
14013 connect(mSelectionRect, SIGNAL(accepted(QRect,QMouseEvent*)), this, SLOT(processRectZoom(QRect,QMouseEvent*)));
14014 }
14015}
14016
14017/*!
14018 \warning This is still an experimental feature and its performance depends on the system that it
14019 runs on. Having multiple QCustomPlot widgets in one application with enabled OpenGL rendering
14020 might cause context conflicts on some systems.
14021
14022 This method allows to enable OpenGL plot rendering, for increased plotting performance of
14023 graphically demanding plots (thick lines, translucent fills, etc.).
14024
14025 If \a enabled is set to true, QCustomPlot will try to initialize OpenGL and, if successful,
14026 continue plotting with hardware acceleration. The parameter \a multisampling controls how many
14027 samples will be used per pixel, it essentially controls the antialiasing quality. If \a
14028 multisampling is set too high for the current graphics hardware, the maximum allowed value will
14029 be used.
14030
14031 You can test whether switching to OpenGL rendering was successful by checking whether the
14032 according getter \a QCustomPlot::openGl() returns true. If the OpenGL initialization fails,
14033 rendering continues with the regular software rasterizer, and an according qDebug output is
14034 generated.
14035
14036 If switching to OpenGL was successful, this method disables label caching (\ref setPlottingHint
14037 "setPlottingHint(QCP::phCacheLabels, false)") and turns on QCustomPlot's antialiasing override
14038 for all elements (\ref setAntialiasedElements "setAntialiasedElements(QCP::aeAll)"), leading to a
14039 higher quality output. The antialiasing override allows for pixel-grid aligned drawing in the
14040 OpenGL paint device. As stated before, in OpenGL rendering the actual antialiasing of the plot is
14041 controlled with \a multisampling. If \a enabled is set to false, the antialiasing/label caching
14042 settings are restored to what they were before OpenGL was enabled, if they weren't altered in the
14043 meantime.
14044
14045 \note OpenGL support is only enabled if QCustomPlot is compiled with the macro \c QCUSTOMPLOT_USE_OPENGL
14046 defined. This define must be set before including the QCustomPlot header both during compilation
14047 of the QCustomPlot library as well as when compiling your application. It is best to just include
14048 the line <tt>DEFINES += QCUSTOMPLOT_USE_OPENGL</tt> in the respective qmake project files.
14049 \note If you are using a Qt version before 5.0, you must also add the module "opengl" to your \c
14050 QT variable in the qmake project files. For Qt versions 5.0 and higher, QCustomPlot switches to a
14051 newer OpenGL interface which is already in the "gui" module.
14052*/
14054{
14055 mOpenGlMultisamples = qMax(0, multisampling);
14056#ifdef QCUSTOMPLOT_USE_OPENGL
14057 mOpenGl = enabled;
14058 if (mOpenGl)
14059 {
14060 if (setupOpenGl())
14061 {
14062 // backup antialiasing override and labelcaching setting so we can restore upon disabling OpenGL
14063 mOpenGlAntialiasedElementsBackup = mAntialiasedElements;
14064 mOpenGlCacheLabelsBackup = mPlottingHints.testFlag(QCP::phCacheLabels);
14065 // set antialiasing override to antialias all (aligns gl pixel grid properly), and disable label caching (would use software rasterizer for pixmap caches):
14068 } else
14069 {
14070 qDebug() << Q_FUNC_INFO << "Failed to enable OpenGL, continuing plotting without hardware acceleration.";
14071 mOpenGl = false;
14072 }
14073 } else
14074 {
14075 // restore antialiasing override and labelcaching to what it was before enabling OpenGL, if nobody changed it in the meantime:
14076 if (mAntialiasedElements == QCP::aeAll)
14077 setAntialiasedElements(mOpenGlAntialiasedElementsBackup);
14078 if (!mPlottingHints.testFlag(QCP::phCacheLabels))
14079 setPlottingHint(QCP::phCacheLabels, mOpenGlCacheLabelsBackup);
14080 freeOpenGl();
14081 }
14082 // recreate all paint buffers:
14083 mPaintBuffers.clear();
14085#else
14087 qDebug() << Q_FUNC_INFO << "QCustomPlot can't use OpenGL because QCUSTOMPLOT_USE_OPENGL was not defined during compilation (add 'DEFINES += QCUSTOMPLOT_USE_OPENGL' to your qmake .pro file)";
14088#endif
14089}
14090
14091/*!
14092 Sets the viewport of this QCustomPlot. Usually users of QCustomPlot don't need to change the
14093 viewport manually.
14094
14095 The viewport is the area in which the plot is drawn. All mechanisms, e.g. margin calculation take
14096 the viewport to be the outer border of the plot. The viewport normally is the rect() of the
14097 QCustomPlot widget, i.e. a rect with top left (0, 0) and size of the QCustomPlot widget.
14098
14099 Don't confuse the viewport with the axis rect (QCustomPlot::axisRect). An axis rect is typically
14100 an area enclosed by four axes, where the graphs/plottables are drawn in. The viewport is larger
14101 and contains also the axes themselves, their tick numbers, their labels, or even additional axis
14102 rects, color scales and other layout elements.
14103
14104 This function is used to allow arbitrary size exports with \ref toPixmap, \ref savePng, \ref
14105 savePdf, etc. by temporarily changing the viewport size.
14106*/
14108{
14109 mViewport = rect;
14110 if (mPlotLayout)
14111 mPlotLayout->setOuterRect(mViewport);
14112}
14113
14114/*!
14115 Sets the device pixel ratio used by the paint buffers of this QCustomPlot instance.
14116
14117 Normally, this doesn't need to be set manually, because it is initialized with the regular \a
14118 QWidget::devicePixelRatio which is configured by Qt to fit the display device (e.g. 1 for normal
14119 displays, 2 for High-DPI displays).
14120
14121 Device pixel ratios are supported by Qt only for Qt versions since 5.4. If this method is called
14122 when QCustomPlot is being used with older Qt versions, outputs an according qDebug message and
14123 leaves the internal buffer device pixel ratio at 1.0.
14124*/
14126{
14127 if (!qFuzzyCompare(ratio, mBufferDevicePixelRatio))
14128 {
14129#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
14130 mBufferDevicePixelRatio = ratio;
14131 foreach (QSharedPointer<QCPAbstractPaintBuffer> buffer, mPaintBuffers)
14132 buffer->setDevicePixelRatio(mBufferDevicePixelRatio);
14133 // Note: axis label cache has devicePixelRatio as part of cache hash, so no need to manually clear cache here
14134#else
14135 qDebug() << Q_FUNC_INFO << "Device pixel ratios not supported for Qt versions before 5.4";
14136 mBufferDevicePixelRatio = 1.0;
14137#endif
14138 }
14139}
14140
14141/*!
14142 Sets \a pm as the viewport background pixmap (see \ref setViewport). The pixmap is always drawn
14143 below all other objects in the plot.
14144
14145 For cases where the provided pixmap doesn't have the same size as the viewport, scaling can be
14146 enabled with \ref setBackgroundScaled and the scaling mode (whether and how the aspect ratio is
14147 preserved) can be set with \ref setBackgroundScaledMode. To set all these options in one call,
14148 consider using the overloaded version of this function.
14149
14150 If a background brush was set with \ref setBackground(const QBrush &brush), the viewport will
14151 first be filled with that brush, before drawing the background pixmap. This can be useful for
14152 background pixmaps with translucent areas.
14153
14154 \see setBackgroundScaled, setBackgroundScaledMode
14155*/
14157{
14158 mBackgroundPixmap = pm;
14159 mScaledBackgroundPixmap = QPixmap();
14160}
14161
14162/*!
14163 Sets the background brush of the viewport (see \ref setViewport).
14164
14165 Before drawing everything else, the background is filled with \a brush. If a background pixmap
14166 was set with \ref setBackground(const QPixmap &pm), this brush will be used to fill the viewport
14167 before the background pixmap is drawn. This can be useful for background pixmaps with translucent
14168 areas.
14169
14170 Set \a brush to Qt::NoBrush or Qt::Transparent to leave background transparent. This can be
14171 useful for exporting to image formats which support transparency, e.g. \ref savePng.
14172
14173 \see setBackgroundScaled, setBackgroundScaledMode
14174*/
14176{
14177 mBackgroundBrush = brush;
14178}
14179
14180/*! \overload
14181
14182 Allows setting the background pixmap of the viewport, whether it shall be scaled and how it
14183 shall be scaled in one call.
14184
14185 \see setBackground(const QPixmap &pm), setBackgroundScaled, setBackgroundScaledMode
14186*/
14188{
14189 mBackgroundPixmap = pm;
14190 mScaledBackgroundPixmap = QPixmap();
14191 mBackgroundScaled = scaled;
14192 mBackgroundScaledMode = mode;
14193}
14194
14195/*!
14196 Sets whether the viewport background pixmap shall be scaled to fit the viewport. If \a scaled is
14197 set to true, control whether and how the aspect ratio of the original pixmap is preserved with
14198 \ref setBackgroundScaledMode.
14199
14200 Note that the scaled version of the original pixmap is buffered, so there is no performance
14201 penalty on replots. (Except when the viewport dimensions are changed continuously.)
14202
14203 \see setBackground, setBackgroundScaledMode
14204*/
14206{
14207 mBackgroundScaled = scaled;
14208}
14209
14210/*!
14211 If scaling of the viewport background pixmap is enabled (\ref setBackgroundScaled), use this
14212 function to define whether and how the aspect ratio of the original pixmap is preserved.
14213
14214 \see setBackground, setBackgroundScaled
14215*/
14217{
14218 mBackgroundScaledMode = mode;
14219}
14220
14221/*!
14222 Returns the plottable with \a index. If the index is invalid, returns \c nullptr.
14223
14224 There is an overloaded version of this function with no parameter which returns the last added
14225 plottable, see QCustomPlot::plottable()
14226
14227 \see plottableCount
14228*/
14230{
14231 if (index >= 0 && index < mPlottables.size())
14232 {
14233 return mPlottables.at(index);
14234 } else
14235 {
14236 qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
14237 return nullptr;
14238 }
14239}
14240
14241/*! \overload
14242
14243 Returns the last plottable that was added to the plot. If there are no plottables in the plot,
14244 returns \c nullptr.
14245
14246 \see plottableCount
14247*/
14249{
14250 if (!mPlottables.isEmpty())
14251 {
14252 return mPlottables.last();
14253 } else
14254 return nullptr;
14255}
14256
14257/*!
14258 Removes the specified plottable from the plot and deletes it. If necessary, the corresponding
14259 legend item is also removed from the default legend (QCustomPlot::legend).
14260
14261 Returns true on success.
14262
14263 \see clearPlottables
14264*/
14266{
14267 if (!mPlottables.contains(plottable))
14268 {
14269 qDebug() << Q_FUNC_INFO << "plottable not in list:" << reinterpret_cast<quintptr>(plottable);
14270 return false;
14271 }
14272
14273 // remove plottable from legend:
14275 // special handling for QCPGraphs to maintain the simple graph interface:
14277 mGraphs.removeOne(graph);
14278 // remove plottable:
14279 delete plottable;
14280 mPlottables.removeOne(plottable);
14281 return true;
14282}
14283
14284/*! \overload
14285
14286 Removes and deletes the plottable by its \a index.
14287*/
14289{
14290 if (index >= 0 && index < mPlottables.size())
14291 return removePlottable(mPlottables[index]);
14292 else
14293 {
14294 qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
14295 return false;
14296 }
14297}
14298
14299/*!
14300 Removes all plottables from the plot and deletes them. Corresponding legend items are also
14301 removed from the default legend (QCustomPlot::legend).
14302
14303 Returns the number of plottables removed.
14304
14305 \see removePlottable
14306*/
14308{
14309 int c = mPlottables.size();
14310 for (int i=c-1; i >= 0; --i)
14311 removePlottable(mPlottables[i]);
14312 return c;
14313}
14314
14315/*!
14316 Returns the number of currently existing plottables in the plot
14317
14318 \see plottable
14319*/
14321{
14322 return mPlottables.size();
14323}
14324
14325/*!
14326 Returns a list of the selected plottables. If no plottables are currently selected, the list is empty.
14327
14328 There is a convenience function if you're only interested in selected graphs, see \ref selectedGraphs.
14329
14330 \see setInteractions, QCPAbstractPlottable::setSelectable, QCPAbstractPlottable::setSelection
14331*/
14333{
14335 foreach (QCPAbstractPlottable *plottable, mPlottables)
14336 {
14337 if (plottable->selected())
14338 result.append(plottable);
14339 }
14340 return result;
14341}
14342
14343/*!
14344 Returns any plottable at the pixel position \a pos. Since it can capture all plottables, the
14345 return type is the abstract base class of all plottables, QCPAbstractPlottable.
14346
14347 For details, and if you wish to specify a certain plottable type (e.g. QCPGraph), see the
14348 template method plottableAt<PlottableType>()
14349
14350 \see plottableAt<PlottableType>(), itemAt, layoutElementAt
14351*/
14353{
14355}
14356
14357/*!
14358 Returns whether this QCustomPlot instance contains the \a plottable.
14359*/
14361{
14362 return mPlottables.contains(plottable);
14363}
14364
14365/*!
14366 Returns the graph with \a index. If the index is invalid, returns \c nullptr.
14367
14368 There is an overloaded version of this function with no parameter which returns the last created
14369 graph, see QCustomPlot::graph()
14370
14371 \see graphCount, addGraph
14372*/
14374{
14375 if (index >= 0 && index < mGraphs.size())
14376 {
14377 return mGraphs.at(index);
14378 } else
14379 {
14380 qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
14381 return nullptr;
14382 }
14383}
14384
14385/*! \overload
14386
14387 Returns the last graph, that was created with \ref addGraph. If there are no graphs in the plot,
14388 returns \c nullptr.
14389
14390 \see graphCount, addGraph
14391*/
14393{
14394 if (!mGraphs.isEmpty())
14395 {
14396 return mGraphs.last();
14397 } else
14398 return nullptr;
14399}
14400
14401/*!
14402 Creates a new graph inside the plot. If \a keyAxis and \a valueAxis are left unspecified (0), the
14403 bottom (xAxis) is used as key and the left (yAxis) is used as value axis. If specified, \a
14404 keyAxis and \a valueAxis must reside in this QCustomPlot.
14405
14406 \a keyAxis will be used as key axis (typically "x") and \a valueAxis as value axis (typically
14407 "y") for the graph.
14408
14409 Returns a pointer to the newly created graph, or \c nullptr if adding the graph failed.
14410
14411 \see graph, graphCount, removeGraph, clearGraphs
14412*/
14414{
14415 if (!keyAxis) keyAxis = xAxis;
14416 if (!valueAxis) valueAxis = yAxis;
14417 if (!keyAxis || !valueAxis)
14418 {
14419 qDebug() << Q_FUNC_INFO << "can't use default QCustomPlot xAxis or yAxis, because at least one is invalid (has been deleted)";
14420 return nullptr;
14421 }
14422 if (keyAxis->parentPlot() != this || valueAxis->parentPlot() != this)
14423 {
14424 qDebug() << Q_FUNC_INFO << "passed keyAxis or valueAxis doesn't have this QCustomPlot as parent";
14425 return nullptr;
14426 }
14427
14428 QCPGraph *newGraph = new QCPGraph(keyAxis, valueAxis);
14429 newGraph->setName(QLatin1String("Graph ")+QString::number(mGraphs.size()));
14430 return newGraph;
14431}
14432
14433/*!
14434 Removes the specified \a graph from the plot and deletes it. If necessary, the corresponding
14435 legend item is also removed from the default legend (QCustomPlot::legend). If any other graphs in
14436 the plot have a channel fill set towards the removed graph, the channel fill property of those
14437 graphs is reset to \c nullptr (no channel fill).
14438
14439 Returns true on success.
14440
14441 \see clearGraphs
14442*/
14444{
14445 return removePlottable(graph);
14446}
14447
14448/*! \overload
14449
14450 Removes and deletes the graph by its \a index.
14451*/
14453{
14454 if (index >= 0 && index < mGraphs.size())
14455 return removeGraph(mGraphs[index]);
14456 else
14457 return false;
14458}
14459
14460/*!
14461 Removes all graphs from the plot and deletes them. Corresponding legend items are also removed
14462 from the default legend (QCustomPlot::legend).
14463
14464 Returns the number of graphs removed.
14465
14466 \see removeGraph
14467*/
14469{
14470 int c = mGraphs.size();
14471 for (int i=c-1; i >= 0; --i)
14472 removeGraph(mGraphs[i]);
14473 return c;
14474}
14475
14476/*!
14477 Returns the number of currently existing graphs in the plot
14478
14479 \see graph, addGraph
14480*/
14482{
14483 return mGraphs.size();
14484}
14485
14486/*!
14487 Returns a list of the selected graphs. If no graphs are currently selected, the list is empty.
14488
14489 If you are not only interested in selected graphs but other plottables like QCPCurve, QCPBars,
14490 etc., use \ref selectedPlottables.
14491
14492 \see setInteractions, selectedPlottables, QCPAbstractPlottable::setSelectable, QCPAbstractPlottable::setSelection
14493*/
14495{
14496 QList<QCPGraph*> result;
14497 foreach (QCPGraph *graph, mGraphs)
14498 {
14499 if (graph->selected())
14500 result.append(graph);
14501 }
14502 return result;
14503}
14504
14505/*!
14506 Returns the item with \a index. If the index is invalid, returns \c nullptr.
14507
14508 There is an overloaded version of this function with no parameter which returns the last added
14509 item, see QCustomPlot::item()
14510
14511 \see itemCount
14512*/
14514{
14515 if (index >= 0 && index < mItems.size())
14516 {
14517 return mItems.at(index);
14518 } else
14519 {
14520 qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
14521 return nullptr;
14522 }
14523}
14524
14525/*! \overload
14526
14527 Returns the last item that was added to this plot. If there are no items in the plot,
14528 returns \c nullptr.
14529
14530 \see itemCount
14531*/
14533{
14534 if (!mItems.isEmpty())
14535 {
14536 return mItems.last();
14537 } else
14538 return nullptr;
14539}
14540
14541/*!
14542 Removes the specified item from the plot and deletes it.
14543
14544 Returns true on success.
14545
14546 \see clearItems
14547*/
14549{
14550 if (mItems.contains(item))
14551 {
14552 delete item;
14553 mItems.removeOne(item);
14554 return true;
14555 } else
14556 {
14557 qDebug() << Q_FUNC_INFO << "item not in list:" << reinterpret_cast<quintptr>(item);
14558 return false;
14559 }
14560}
14561
14562/*! \overload
14563
14564 Removes and deletes the item by its \a index.
14565*/
14567{
14568 if (index >= 0 && index < mItems.size())
14569 return removeItem(mItems[index]);
14570 else
14571 {
14572 qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
14573 return false;
14574 }
14575}
14576
14577/*!
14578 Removes all items from the plot and deletes them.
14579
14580 Returns the number of items removed.
14581
14582 \see removeItem
14583*/
14585{
14586 int c = mItems.size();
14587 for (int i=c-1; i >= 0; --i)
14588 removeItem(mItems[i]);
14589 return c;
14590}
14591
14592/*!
14593 Returns the number of currently existing items in the plot
14594
14595 \see item
14596*/
14598{
14599 return mItems.size();
14600}
14601
14602/*!
14603 Returns a list of the selected items. If no items are currently selected, the list is empty.
14604
14605 \see setInteractions, QCPAbstractItem::setSelectable, QCPAbstractItem::setSelected
14606*/
14608{
14610 foreach (QCPAbstractItem *item, mItems)
14611 {
14612 if (item->selected())
14613 result.append(item);
14614 }
14615 return result;
14616}
14617
14618/*!
14619 Returns the item at the pixel position \a pos. Since it can capture all items, the
14620 return type is the abstract base class of all items, QCPAbstractItem.
14621
14622 For details, and if you wish to specify a certain item type (e.g. QCPItemLine), see the
14623 template method itemAt<ItemType>()
14624
14625 \see itemAt<ItemType>(), plottableAt, layoutElementAt
14626*/
14631
14632/*!
14633 Returns whether this QCustomPlot contains the \a item.
14634
14635 \see item
14636*/
14638{
14639 return mItems.contains(item);
14640}
14641
14642/*!
14643 Returns the layer with the specified \a name. If there is no layer with the specified name, \c
14644 nullptr is returned.
14645
14646 Layer names are case-sensitive.
14647
14648 \see addLayer, moveLayer, removeLayer
14649*/
14651{
14652 foreach (QCPLayer *layer, mLayers)
14653 {
14654 if (layer->name() == name)
14655 return layer;
14656 }
14657 return nullptr;
14658}
14659
14660/*! \overload
14661
14662 Returns the layer by \a index. If the index is invalid, \c nullptr is returned.
14663
14664 \see addLayer, moveLayer, removeLayer
14665*/
14667{
14668 if (index >= 0 && index < mLayers.size())
14669 {
14670 return mLayers.at(index);
14671 } else
14672 {
14673 qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
14674 return nullptr;
14675 }
14676}
14677
14678/*!
14679 Returns the layer that is set as current layer (see \ref setCurrentLayer).
14680*/
14682{
14683 return mCurrentLayer;
14684}
14685
14686/*!
14687 Sets the layer with the specified \a name to be the current layer. All layerables (\ref
14688 QCPLayerable), e.g. plottables and items, are created on the current layer.
14689
14690 Returns true on success, i.e. if there is a layer with the specified \a name in the QCustomPlot.
14691
14692 Layer names are case-sensitive.
14693
14694 \see addLayer, moveLayer, removeLayer, QCPLayerable::setLayer
14695*/
14697{
14698 if (QCPLayer *newCurrentLayer = layer(name))
14699 {
14701 } else
14702 {
14703 qDebug() << Q_FUNC_INFO << "layer with name doesn't exist:" << name;
14704 return false;
14705 }
14706}
14707
14708/*! \overload
14709
14710 Sets the provided \a layer to be the current layer.
14711
14712 Returns true on success, i.e. when \a layer is a valid layer in the QCustomPlot.
14713
14714 \see addLayer, moveLayer, removeLayer
14715*/
14717{
14718 if (!mLayers.contains(layer))
14719 {
14720 qDebug() << Q_FUNC_INFO << "layer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(layer);
14721 return false;
14722 }
14723
14724 mCurrentLayer = layer;
14725 return true;
14726}
14727
14728/*!
14729 Returns the number of currently existing layers in the plot
14730
14731 \see layer, addLayer
14732*/
14734{
14735 return mLayers.size();
14736}
14737
14738/*!
14739 Adds a new layer to this QCustomPlot instance. The new layer will have the name \a name, which
14740 must be unique. Depending on \a insertMode, it is positioned either below or above \a otherLayer.
14741
14742 Returns true on success, i.e. if there is no other layer named \a name and \a otherLayer is a
14743 valid layer inside this QCustomPlot.
14744
14745 If \a otherLayer is 0, the highest layer in the QCustomPlot will be used.
14746
14747 For an explanation of what layers are in QCustomPlot, see the documentation of \ref QCPLayer.
14748
14749 \see layer, moveLayer, removeLayer
14750*/
14752{
14753 if (!otherLayer)
14754 otherLayer = mLayers.last();
14755 if (!mLayers.contains(otherLayer))
14756 {
14757 qDebug() << Q_FUNC_INFO << "otherLayer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(otherLayer);
14758 return false;
14759 }
14760 if (layer(name))
14761 {
14762 qDebug() << Q_FUNC_INFO << "A layer exists already with the name" << name;
14763 return false;
14764 }
14765
14766 QCPLayer *newLayer = new QCPLayer(this, name);
14767 mLayers.insert(otherLayer->index() + (insertMode==limAbove ? 1:0), newLayer);
14769 setupPaintBuffers(); // associates new layer with the appropriate paint buffer
14770 return true;
14771}
14772
14773/*!
14774 Removes the specified \a layer and returns true on success.
14775
14776 All layerables (e.g. plottables and items) on the removed layer will be moved to the layer below
14777 \a layer. If \a layer is the bottom layer, the layerables are moved to the layer above. In both
14778 cases, the total rendering order of all layerables in the QCustomPlot is preserved.
14779
14780 If \a layer is the current layer (\ref setCurrentLayer), the layer below (or above, if bottom
14781 layer) becomes the new current layer.
14782
14783 It is not possible to remove the last layer of the plot.
14784
14785 \see layer, addLayer, moveLayer
14786*/
14788{
14789 if (!mLayers.contains(layer))
14790 {
14791 qDebug() << Q_FUNC_INFO << "layer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(layer);
14792 return false;
14793 }
14794 if (mLayers.size() < 2)
14795 {
14796 qDebug() << Q_FUNC_INFO << "can't remove last layer";
14797 return false;
14798 }
14799
14800 // append all children of this layer to layer below (if this is lowest layer, prepend to layer above)
14801 int removedIndex = layer->index();
14802 bool isFirstLayer = removedIndex==0;
14803 QCPLayer *targetLayer = isFirstLayer ? mLayers.at(removedIndex+1) : mLayers.at(removedIndex-1);
14805 if (isFirstLayer) // prepend in reverse order (such that relative order stays the same)
14806 std::reverse(children.begin(), children.end());
14807 foreach (QCPLayerable *child, children)
14808 child->moveToLayer(targetLayer, isFirstLayer); // prepend if isFirstLayer, otherwise append
14809
14810 // if removed layer is current layer, change current layer to layer below/above:
14811 if (layer == mCurrentLayer)
14813
14814 // invalidate the paint buffer that was responsible for this layer:
14816 pb->setInvalidated();
14817
14818 // remove layer:
14819 delete layer;
14820 mLayers.removeOne(layer);
14822 return true;
14823}
14824
14825/*!
14826 Moves the specified \a layer either above or below \a otherLayer. Whether it's placed above or
14827 below is controlled with \a insertMode.
14828
14829 Returns true on success, i.e. when both \a layer and \a otherLayer are valid layers in the
14830 QCustomPlot.
14831
14832 \see layer, addLayer, moveLayer
14833*/
14835{
14836 if (!mLayers.contains(layer))
14837 {
14838 qDebug() << Q_FUNC_INFO << "layer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(layer);
14839 return false;
14840 }
14841 if (!mLayers.contains(otherLayer))
14842 {
14843 qDebug() << Q_FUNC_INFO << "otherLayer not a layer of this QCustomPlot:" << reinterpret_cast<quintptr>(otherLayer);
14844 return false;
14845 }
14846
14847 if (layer->index() > otherLayer->index())
14848 mLayers.move(layer->index(), otherLayer->index() + (insertMode==limAbove ? 1:0));
14849 else if (layer->index() < otherLayer->index())
14850 mLayers.move(layer->index(), otherLayer->index() + (insertMode==limAbove ? 0:-1));
14851
14852 // invalidate the paint buffers that are responsible for the layers:
14854 pb->setInvalidated();
14855 if (QSharedPointer<QCPAbstractPaintBuffer> pb = otherLayer->mPaintBuffer.toStrongRef())
14856 pb->setInvalidated();
14857
14859 return true;
14860}
14861
14862/*!
14863 Returns the number of axis rects in the plot.
14864
14865 All axis rects can be accessed via QCustomPlot::axisRect().
14866
14867 Initially, only one axis rect exists in the plot.
14868
14869 \see axisRect, axisRects
14870*/
14872{
14873 return axisRects().size();
14874}
14875
14876/*!
14877 Returns the axis rect with \a index.
14878
14879 Initially, only one axis rect (with index 0) exists in the plot. If multiple axis rects were
14880 added, all of them may be accessed with this function in a linear fashion (even when they are
14881 nested in a layout hierarchy or inside other axis rects via QCPAxisRect::insetLayout).
14882
14883 The order of the axis rects is given by the fill order of the \ref QCPLayout that is holding
14884 them. For example, if the axis rects are in the top level grid layout (accessible via \ref
14885 QCustomPlot::plotLayout), they are ordered from left to right, top to bottom, if the layout's
14886 default \ref QCPLayoutGrid::setFillOrder "setFillOrder" of \ref QCPLayoutGrid::foColumnsFirst
14887 "foColumnsFirst" wasn't changed.
14888
14889 If you want to access axis rects by their row and column index, use the layout interface. For
14890 example, use \ref QCPLayoutGrid::element of the top level grid layout, and \c qobject_cast the
14891 returned layout element to \ref QCPAxisRect. (See also \ref thelayoutsystem.)
14892
14893 \see axisRectCount, axisRects, QCPLayoutGrid::setFillOrder
14894*/
14896{
14898 if (index >= 0 && index < rectList.size())
14899 {
14900 return rectList.at(index);
14901 } else
14902 {
14903 qDebug() << Q_FUNC_INFO << "invalid axis rect index" << index;
14904 return nullptr;
14905 }
14906}
14907
14908/*!
14909 Returns all axis rects in the plot.
14910
14911 The order of the axis rects is given by the fill order of the \ref QCPLayout that is holding
14912 them. For example, if the axis rects are in the top level grid layout (accessible via \ref
14913 QCustomPlot::plotLayout), they are ordered from left to right, top to bottom, if the layout's
14914 default \ref QCPLayoutGrid::setFillOrder "setFillOrder" of \ref QCPLayoutGrid::foColumnsFirst
14915 "foColumnsFirst" wasn't changed.
14916
14917 \see axisRectCount, axisRect, QCPLayoutGrid::setFillOrder
14918*/
14920{
14921 QList<QCPAxisRect*> result;
14923 if (mPlotLayout)
14924 elementStack.push(mPlotLayout);
14925
14926 while (!elementStack.isEmpty())
14927 {
14928 foreach (QCPLayoutElement *element, elementStack.pop()->elements(false))
14929 {
14930 if (element)
14931 {
14932 elementStack.push(element);
14934 result.append(ar);
14935 }
14936 }
14937 }
14938
14939 return result;
14940}
14941
14942/*!
14943 Returns the layout element at pixel position \a pos. If there is no element at that position,
14944 returns \c nullptr.
14945
14946 Only visible elements are used. If \ref QCPLayoutElement::setVisible on the element itself or on
14947 any of its parent elements is set to false, it will not be considered.
14948
14949 \see itemAt, plottableAt
14950*/
14952{
14953 QCPLayoutElement *currentElement = mPlotLayout;
14954 bool searchSubElements = true;
14956 {
14957 searchSubElements = false;
14958 foreach (QCPLayoutElement *subElement, currentElement->elements(false))
14959 {
14960 if (subElement && subElement->realVisibility() && subElement->selectTest(pos, false) >= 0)
14961 {
14963 searchSubElements = true;
14964 break;
14965 }
14966 }
14967 }
14968 return currentElement;
14969}
14970
14971/*!
14972 Returns the layout element of type \ref QCPAxisRect at pixel position \a pos. This method ignores
14973 other layout elements even if they are visually in front of the axis rect (e.g. a \ref
14974 QCPLegend). If there is no axis rect at that position, returns \c nullptr.
14975
14976 Only visible axis rects are used. If \ref QCPLayoutElement::setVisible on the axis rect itself or
14977 on any of its parent elements is set to false, it will not be considered.
14978
14979 \see layoutElementAt
14980*/
14982{
14983 QCPAxisRect *result = nullptr;
14984 QCPLayoutElement *currentElement = mPlotLayout;
14985 bool searchSubElements = true;
14987 {
14988 searchSubElements = false;
14989 foreach (QCPLayoutElement *subElement, currentElement->elements(false))
14990 {
14991 if (subElement && subElement->realVisibility() && subElement->selectTest(pos, false) >= 0)
14992 {
14994 searchSubElements = true;
14996 result = ar;
14997 break;
14998 }
14999 }
15000 }
15001 return result;
15002}
15003
15004/*!
15005 Returns the axes that currently have selected parts, i.e. whose selection state is not \ref
15006 QCPAxis::spNone.
15007
15008 \see selectedPlottables, selectedLegends, setInteractions, QCPAxis::setSelectedParts,
15009 QCPAxis::setSelectableParts
15010*/
15012{
15013 QList<QCPAxis*> result, allAxes;
15014 foreach (QCPAxisRect *rect, axisRects())
15015 allAxes << rect->axes();
15016
15017 foreach (QCPAxis *axis, allAxes)
15018 {
15019 if (axis->selectedParts() != QCPAxis::spNone)
15020 result.append(axis);
15021 }
15022
15023 return result;
15024}
15025
15026/*!
15027 Returns the legends that currently have selected parts, i.e. whose selection state is not \ref
15028 QCPLegend::spNone.
15029
15030 \see selectedPlottables, selectedAxes, setInteractions, QCPLegend::setSelectedParts,
15031 QCPLegend::setSelectableParts, QCPLegend::selectedItems
15032*/
15034{
15035 QList<QCPLegend*> result;
15036
15038 if (mPlotLayout)
15039 elementStack.push(mPlotLayout);
15040
15041 while (!elementStack.isEmpty())
15042 {
15043 foreach (QCPLayoutElement *subElement, elementStack.pop()->elements(false))
15044 {
15045 if (subElement)
15046 {
15049 {
15050 if (leg->selectedParts() != QCPLegend::spNone)
15051 result.append(leg);
15052 }
15053 }
15054 }
15055 }
15056
15057 return result;
15058}
15059
15060/*!
15061 Deselects all layerables (plottables, items, axes, legends,...) of the QCustomPlot.
15062
15063 Since calling this function is not a user interaction, this does not emit the \ref
15064 selectionChangedByUser signal. The individual selectionChanged signals are emitted though, if the
15065 objects were previously selected.
15066
15067 \see setInteractions, selectedPlottables, selectedItems, selectedAxes, selectedLegends
15068*/
15070{
15071 foreach (QCPLayer *layer, mLayers)
15072 {
15073 foreach (QCPLayerable *layerable, layer->children())
15074 layerable->deselectEvent(nullptr);
15075 }
15076}
15077
15078/*!
15079 Causes a complete replot into the internal paint buffer(s). Finally, the widget surface is
15080 refreshed with the new buffer contents. This is the method that must be called to make changes to
15081 the plot, e.g. on the axis ranges or data points of graphs, visible.
15082
15083 The parameter \a refreshPriority can be used to fine-tune the timing of the replot. For example
15084 if your application calls \ref replot very quickly in succession (e.g. multiple independent
15085 functions change some aspects of the plot and each wants to make sure the change gets replotted),
15086 it is advisable to set \a refreshPriority to \ref QCustomPlot::rpQueuedReplot. This way, the
15087 actual replotting is deferred to the next event loop iteration. Multiple successive calls of \ref
15088 replot with this priority will only cause a single replot, avoiding redundant replots and
15089 improving performance.
15090
15091 Under a few circumstances, QCustomPlot causes a replot by itself. Those are resize events of the
15092 QCustomPlot widget and user interactions (object selection and range dragging/zooming).
15093
15094 Before the replot happens, the signal \ref beforeReplot is emitted. After the replot, \ref
15095 afterReplot is emitted. It is safe to mutually connect the replot slot with any of those two
15096 signals on two QCustomPlots to make them replot synchronously, it won't cause an infinite
15097 recursion.
15098
15099 If a layer is in mode \ref QCPLayer::lmBuffered (\ref QCPLayer::setMode), it is also possible to
15100 replot only that specific layer via \ref QCPLayer::replot. See the documentation there for
15101 details.
15102
15103 \see replotTime
15104*/
15106{
15108 {
15109 if (!mReplotQueued)
15110 {
15111 mReplotQueued = true;
15112 QTimer::singleShot(0, this, SLOT(replot()));
15113 }
15114 return;
15115 }
15116
15117 if (mReplotting) // incase signals loop back to replot slot
15118 return;
15119 mReplotting = true;
15120 mReplotQueued = false;
15122
15123# if QT_VERSION < QT_VERSION_CHECK(4, 8, 0)
15125 replotTimer.start();
15126# else
15128 replotTimer.start();
15129# endif
15130
15131 updateLayout();
15132 // draw all layered objects (grid, axes, plottables, items, legend,...) into their buffers:
15134 foreach (QCPLayer *layer, mLayers)
15136 foreach (QSharedPointer<QCPAbstractPaintBuffer> buffer, mPaintBuffers)
15137 buffer->setInvalidated(false);
15138
15140 repaint();
15141 else
15142 update();
15143
15144# if QT_VERSION < QT_VERSION_CHECK(4, 8, 0)
15145 mReplotTime = replotTimer.elapsed();
15146# else
15147 mReplotTime = replotTimer.nsecsElapsed()*1e-6;
15148# endif
15149 if (!qFuzzyIsNull(mReplotTimeAverage))
15150 mReplotTimeAverage = mReplotTimeAverage*0.9 + mReplotTime*0.1; // exponential moving average with a time constant of 10 last replots
15151 else
15152 mReplotTimeAverage = mReplotTime; // no previous replots to average with, so initialize with replot time
15153
15154 emit afterReplot();
15155 mReplotting = false;
15156}
15157
15158/*!
15159 Returns the time in milliseconds that the last replot took. If \a average is set to true, an
15160 exponential moving average over the last couple of replots is returned.
15161
15162 \see replot
15163*/
15164double QCustomPlot::replotTime(bool average) const
15165{
15166 return average ? mReplotTimeAverage : mReplotTime;
15167}
15168
15169/*!
15170 Rescales the axes such that all plottables (like graphs) in the plot are fully visible.
15171
15172 if \a onlyVisiblePlottables is set to true, only the plottables that have their visibility set to true
15173 (QCPLayerable::setVisible), will be used to rescale the axes.
15174
15175 \see QCPAbstractPlottable::rescaleAxes, QCPAxis::rescale
15176*/
15178{
15180 foreach (QCPAxisRect *rect, axisRects())
15181 allAxes << rect->axes();
15182
15183 foreach (QCPAxis *axis, allAxes)
15185}
15186
15187/*!
15188 Saves a PDF with the vectorized plot to the file \a fileName. The axis ratio as well as the scale
15189 of texts and lines will be derived from the specified \a width and \a height. This means, the
15190 output will look like the normal on-screen output of a QCustomPlot widget with the corresponding
15191 pixel width and height. If either \a width or \a height is zero, the exported image will have the
15192 same dimensions as the QCustomPlot widget currently has.
15193
15194 Setting \a exportPen to \ref QCP::epNoCosmetic allows to disable the use of cosmetic pens when
15195 drawing to the PDF file. Cosmetic pens are pens with numerical width 0, which are always drawn as
15196 a one pixel wide line, no matter what zoom factor is set in the PDF-Viewer. For more information
15197 about cosmetic pens, see the QPainter and QPen documentation.
15198
15199 The objects of the plot will appear in the current selection state. If you don't want any
15200 selected objects to be painted in their selected look, deselect everything with \ref deselectAll
15201 before calling this function.
15202
15203 Returns true on success.
15204
15205 \warning
15206 \li If you plan on editing the exported PDF file with a vector graphics editor like Inkscape, it
15207 is advised to set \a exportPen to \ref QCP::epNoCosmetic to avoid losing those cosmetic lines
15208 (which might be quite many, because cosmetic pens are the default for e.g. axes and tick marks).
15209 \li If calling this function inside the constructor of the parent of the QCustomPlot widget
15210 (i.e. the MainWindow constructor, if QCustomPlot is inside the MainWindow), always provide
15211 explicit non-zero widths and heights. If you leave \a width or \a height as 0 (default), this
15212 function uses the current width and height of the QCustomPlot widget. However, in Qt, these
15213 aren't defined yet inside the constructor, so you would get an image that has strange
15214 widths/heights.
15215
15216 \a pdfCreator and \a pdfTitle may be used to set the according metadata fields in the resulting
15217 PDF file.
15218
15219 \note On Android systems, this method does nothing and issues an according qDebug warning
15220 message. This is also the case if for other reasons the define flag \c QT_NO_PRINTER is set.
15221
15222 \see savePng, saveBmp, saveJpg, saveRastered
15223*/
15224bool QCustomPlot::savePdf(const QString &fileName, int width, int height, QCP::ExportPen exportPen, const QString &pdfCreator, const QString &pdfTitle)
15225{
15226 bool success = false;
15227#ifdef QT_NO_PRINTER
15228 Q_UNUSED(fileName)
15234 qDebug() << Q_FUNC_INFO << "Qt was built without printer support (QT_NO_PRINTER). PDF not created.";
15235#else
15236 int newWidth, newHeight;
15237 if (width == 0 || height == 0)
15238 {
15239 newWidth = this->width();
15240 newHeight = this->height();
15241 } else
15242 {
15243 newWidth = width;
15244 newHeight = height;
15245 }
15246
15248 printer.setOutputFileName(fileName);
15253 QRect oldViewport = viewport();
15255#if QT_VERSION < QT_VERSION_CHECK(5, 3, 0)
15256 printer.setFullPage(true);
15257 printer.setPaperSize(viewport().size(), QPrinter::DevicePixel);
15258#else
15259 QPageLayout pageLayout;
15262 pageLayout.setMargins(QMarginsF(0, 0, 0, 0));
15264 printer.setPageLayout(pageLayout);
15265#endif
15267 if (printpainter.begin(&printer))
15268 {
15272 printpainter.setWindow(mViewport);
15273 if (mBackgroundBrush.style() != Qt::NoBrush &&
15274 mBackgroundBrush.color() != Qt::white &&
15275 mBackgroundBrush.color() != Qt::transparent &&
15276 mBackgroundBrush.color().alpha() > 0) // draw pdf background color if not white/transparent
15277 printpainter.fillRect(viewport(), mBackgroundBrush);
15279 printpainter.end();
15280 success = true;
15281 }
15283#endif // QT_NO_PRINTER
15284 return success;
15285}
15286
15287/*!
15288 Saves a PNG image file to \a fileName on disc. The output plot will have the dimensions \a width
15289 and \a height in pixels, multiplied by \a scale. If either \a width or \a height is zero, the
15290 current width and height of the QCustomPlot widget is used instead. Line widths and texts etc.
15291 are not scaled up when larger widths/heights are used. If you want that effect, use the \a scale
15292 parameter.
15293
15294 For example, if you set both \a width and \a height to 100 and \a scale to 2, you will end up with an
15295 image file of size 200*200 in which all graphical elements are scaled up by factor 2 (line widths,
15296 texts, etc.). This scaling is not done by stretching a 100*100 image, the result will have full
15297 200*200 pixel resolution.
15298
15299 If you use a high scaling factor, it is recommended to enable antialiasing for all elements by
15300 temporarily setting \ref QCustomPlot::setAntialiasedElements to \ref QCP::aeAll as this allows
15301 QCustomPlot to place objects with sub-pixel accuracy.
15302
15303 image compression can be controlled with the \a quality parameter which must be between 0 and 100
15304 or -1 to use the default setting.
15305
15306 The \a resolution will be written to the image file header and has no direct consequence for the
15307 quality or the pixel size. However, if opening the image with a tool which respects the metadata,
15308 it will be able to scale the image to match either a given size in real units of length (inch,
15309 centimeters, etc.), or the target display DPI. You can specify in which units \a resolution is
15310 given, by setting \a resolutionUnit. The \a resolution is converted to the format's expected
15311 resolution unit internally.
15312
15313 Returns true on success. If this function fails, most likely the PNG format isn't supported by
15314 the system, see Qt docs about QImageWriter::supportedImageFormats().
15315
15316 The objects of the plot will appear in the current selection state. If you don't want any selected
15317 objects to be painted in their selected look, deselect everything with \ref deselectAll before calling
15318 this function.
15319
15320 If you want the PNG to have a transparent background, call \ref setBackground(const QBrush &brush)
15321 with no brush (Qt::NoBrush) or a transparent color (Qt::transparent), before saving.
15322
15323 \warning If calling this function inside the constructor of the parent of the QCustomPlot widget
15324 (i.e. the MainWindow constructor, if QCustomPlot is inside the MainWindow), always provide
15325 explicit non-zero widths and heights. If you leave \a width or \a height as 0 (default), this
15326 function uses the current width and height of the QCustomPlot widget. However, in Qt, these
15327 aren't defined yet inside the constructor, so you would get an image that has strange
15328 widths/heights.
15329
15330 \see savePdf, saveBmp, saveJpg, saveRastered
15331*/
15332bool QCustomPlot::savePng(const QString &fileName, int width, int height, double scale, int quality, int resolution, QCP::ResolutionUnit resolutionUnit)
15333{
15334 return saveRastered(fileName, width, height, scale, "PNG", quality, resolution, resolutionUnit);
15335}
15336
15337/*!
15338 Saves a JPEG image file to \a fileName on disc. The output plot will have the dimensions \a width
15339 and \a height in pixels, multiplied by \a scale. If either \a width or \a height is zero, the
15340 current width and height of the QCustomPlot widget is used instead. Line widths and texts etc.
15341 are not scaled up when larger widths/heights are used. If you want that effect, use the \a scale
15342 parameter.
15343
15344 For example, if you set both \a width and \a height to 100 and \a scale to 2, you will end up with an
15345 image file of size 200*200 in which all graphical elements are scaled up by factor 2 (line widths,
15346 texts, etc.). This scaling is not done by stretching a 100*100 image, the result will have full
15347 200*200 pixel resolution.
15348
15349 If you use a high scaling factor, it is recommended to enable antialiasing for all elements by
15350 temporarily setting \ref QCustomPlot::setAntialiasedElements to \ref QCP::aeAll as this allows
15351 QCustomPlot to place objects with sub-pixel accuracy.
15352
15353 image compression can be controlled with the \a quality parameter which must be between 0 and 100
15354 or -1 to use the default setting.
15355
15356 The \a resolution will be written to the image file header and has no direct consequence for the
15357 quality or the pixel size. However, if opening the image with a tool which respects the metadata,
15358 it will be able to scale the image to match either a given size in real units of length (inch,
15359 centimeters, etc.), or the target display DPI. You can specify in which units \a resolution is
15360 given, by setting \a resolutionUnit. The \a resolution is converted to the format's expected
15361 resolution unit internally.
15362
15363 Returns true on success. If this function fails, most likely the JPEG format isn't supported by
15364 the system, see Qt docs about QImageWriter::supportedImageFormats().
15365
15366 The objects of the plot will appear in the current selection state. If you don't want any selected
15367 objects to be painted in their selected look, deselect everything with \ref deselectAll before calling
15368 this function.
15369
15370 \warning If calling this function inside the constructor of the parent of the QCustomPlot widget
15371 (i.e. the MainWindow constructor, if QCustomPlot is inside the MainWindow), always provide
15372 explicit non-zero widths and heights. If you leave \a width or \a height as 0 (default), this
15373 function uses the current width and height of the QCustomPlot widget. However, in Qt, these
15374 aren't defined yet inside the constructor, so you would get an image that has strange
15375 widths/heights.
15376
15377 \see savePdf, savePng, saveBmp, saveRastered
15378*/
15379bool QCustomPlot::saveJpg(const QString &fileName, int width, int height, double scale, int quality, int resolution, QCP::ResolutionUnit resolutionUnit)
15380{
15381 return saveRastered(fileName, width, height, scale, "JPG", quality, resolution, resolutionUnit);
15382}
15383
15384/*!
15385 Saves a BMP image file to \a fileName on disc. The output plot will have the dimensions \a width
15386 and \a height in pixels, multiplied by \a scale. If either \a width or \a height is zero, the
15387 current width and height of the QCustomPlot widget is used instead. Line widths and texts etc.
15388 are not scaled up when larger widths/heights are used. If you want that effect, use the \a scale
15389 parameter.
15390
15391 For example, if you set both \a width and \a height to 100 and \a scale to 2, you will end up with an
15392 image file of size 200*200 in which all graphical elements are scaled up by factor 2 (line widths,
15393 texts, etc.). This scaling is not done by stretching a 100*100 image, the result will have full
15394 200*200 pixel resolution.
15395
15396 If you use a high scaling factor, it is recommended to enable antialiasing for all elements by
15397 temporarily setting \ref QCustomPlot::setAntialiasedElements to \ref QCP::aeAll as this allows
15398 QCustomPlot to place objects with sub-pixel accuracy.
15399
15400 The \a resolution will be written to the image file header and has no direct consequence for the
15401 quality or the pixel size. However, if opening the image with a tool which respects the metadata,
15402 it will be able to scale the image to match either a given size in real units of length (inch,
15403 centimeters, etc.), or the target display DPI. You can specify in which units \a resolution is
15404 given, by setting \a resolutionUnit. The \a resolution is converted to the format's expected
15405 resolution unit internally.
15406
15407 Returns true on success. If this function fails, most likely the BMP format isn't supported by
15408 the system, see Qt docs about QImageWriter::supportedImageFormats().
15409
15410 The objects of the plot will appear in the current selection state. If you don't want any selected
15411 objects to be painted in their selected look, deselect everything with \ref deselectAll before calling
15412 this function.
15413
15414 \warning If calling this function inside the constructor of the parent of the QCustomPlot widget
15415 (i.e. the MainWindow constructor, if QCustomPlot is inside the MainWindow), always provide
15416 explicit non-zero widths and heights. If you leave \a width or \a height as 0 (default), this
15417 function uses the current width and height of the QCustomPlot widget. However, in Qt, these
15418 aren't defined yet inside the constructor, so you would get an image that has strange
15419 widths/heights.
15420
15421 \see savePdf, savePng, saveJpg, saveRastered
15422*/
15423bool QCustomPlot::saveBmp(const QString &fileName, int width, int height, double scale, int resolution, QCP::ResolutionUnit resolutionUnit)
15424{
15425 return saveRastered(fileName, width, height, scale, "BMP", -1, resolution, resolutionUnit);
15426}
15427
15428/*! \internal
15429
15430 Returns a minimum size hint that corresponds to the minimum size of the top level layout
15431 (\ref plotLayout). To prevent QCustomPlot from being collapsed to size/width zero, set a minimum
15432 size (setMinimumSize) either on the whole QCustomPlot or on any layout elements inside the plot.
15433 This is especially important, when placed in a QLayout where other components try to take in as
15434 much space as possible (e.g. QMdiArea).
15435*/
15437{
15438 return mPlotLayout->minimumOuterSizeHint();
15439}
15440
15441/*! \internal
15442
15443 Returns a size hint that is the same as \ref minimumSizeHint.
15444
15445*/
15447{
15448 return mPlotLayout->minimumOuterSizeHint();
15449}
15450
15451/*! \internal
15452
15453 Event handler for when the QCustomPlot widget needs repainting. This does not cause a \ref replot, but
15454 draws the internal buffer on the widget surface.
15455*/
15457{
15458 Q_UNUSED(event)
15459 QCPPainter painter(this);
15460 if (painter.isActive())
15461 {
15462#if QT_VERSION < QT_VERSION_CHECK(6, 0, 0)
15463 painter.setRenderHint(QPainter::HighQualityAntialiasing); // to make Antialiasing look good if using the OpenGL graphicssystem
15464#endif
15465 if (mBackgroundBrush.style() != Qt::NoBrush)
15466 painter.fillRect(mViewport, mBackgroundBrush);
15467 drawBackground(&painter);
15468 foreach (QSharedPointer<QCPAbstractPaintBuffer> buffer, mPaintBuffers)
15469 buffer->draw(&painter);
15470 }
15471}
15472
15473/*! \internal
15474
15475 Event handler for a resize of the QCustomPlot widget. The viewport (which becomes the outer rect
15476 of mPlotLayout) is resized appropriately. Finally a \ref replot is performed.
15477*/
15479{
15480 Q_UNUSED(event)
15481 // resize and repaint the buffer:
15482 setViewport(rect());
15483 replot(rpQueuedRefresh); // queued refresh is important here, to prevent painting issues in some contexts (e.g. MDI subwindow)
15484}
15485
15486bool QCustomPlot::event( QEvent *event ){
15487 switch( event->type() ){
15488 case QEvent::Gesture: {
15489 QGestureEvent *gestureEve = static_cast<QGestureEvent*>(event);
15490 if( QGesture *pinch = gestureEve->gesture(Qt::PinchGesture) ){
15491 QPinchGesture *pinchEve = static_cast<QPinchGesture *>(pinch);
15492 qreal scaleFactor = pinchEve->totalScaleFactor( );
15493 if( scaleFactor > 1.0 ){
15494 scaleFactor *= 5;
15495 }else{
15496 scaleFactor *= -15;
15497 }
15499 this->wheelEvent( wheelEve );
15500 }
15501 return true;
15502 }
15503 default: {
15504 break;
15505 }
15506 }
15507
15508 return QWidget::event( event );
15509}
15510
15511/*! \internal
15512
15513 Event handler for when a double click occurs. Emits the \ref mouseDoubleClick signal, then
15514 determines the layerable under the cursor and forwards the event to it. Finally, emits the
15515 specialized signals when certain objecs are clicked (e.g. \ref plottableDoubleClick, \ref
15516 axisDoubleClick, etc.).
15517
15518 \see mousePressEvent, mouseReleaseEvent
15519*/
15521{
15522 emit mouseDoubleClick(event);
15523 mMouseHasMoved = false;
15524 mMousePressPos = event->pos();
15525
15526 // determine layerable under the cursor (this event is called instead of the second press event in a double-click):
15527 QList<QVariant> details;
15528 QList<QCPLayerable*> candidates = layerableListAt(mMousePressPos, false, &details);
15529 for (int i=0; i<candidates.size(); ++i)
15530 {
15531 event->accept(); // default impl of QCPLayerable's mouse events ignore the event, in that case propagate to next candidate in list
15532 candidates.at(i)->mouseDoubleClickEvent(event, details.at(i));
15533 if (event->isAccepted())
15534 {
15535 mMouseEventLayerable = candidates.at(i);
15536 mMouseEventLayerableDetails = details.at(i);
15537 break;
15538 }
15539 }
15540
15541 // emit specialized object double click signals:
15542 if (!candidates.isEmpty())
15543 {
15545 {
15546 int dataIndex = 0;
15547 if (!details.first().value<QCPDataSelection>().isEmpty())
15548 dataIndex = details.first().value<QCPDataSelection>().dataRange().begin();
15549 emit plottableDoubleClick(ap, dataIndex, event);
15550 } else if (QCPAxis *ax = qobject_cast<QCPAxis*>(candidates.first()))
15551 emit axisDoubleClick(ax, details.first().value<QCPAxis::SelectablePart>(), event);
15553 emit itemDoubleClick(ai, event);
15554 else if (QCPLegend *lg = qobject_cast<QCPLegend*>(candidates.first()))
15555 emit legendDoubleClick(lg, nullptr, event);
15557 emit legendDoubleClick(li->parentLegend(), li, event);
15558 }
15559
15560 event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
15561}
15562
15563/*! \internal
15564
15565 Event handler for when a mouse button is pressed. Emits the mousePress signal.
15566
15567 If the current \ref setSelectionRectMode is not \ref QCP::srmNone, passes the event to the
15568 selection rect. Otherwise determines the layerable under the cursor and forwards the event to it.
15569
15570 \see mouseMoveEvent, mouseReleaseEvent
15571*/
15573{
15574 emit mousePress(event);
15575 // save some state to tell in releaseEvent whether it was a click:
15576 mMouseHasMoved = false;
15577 mMousePressPos = event->pos();
15578
15579 if (mSelectionRect && mSelectionRectMode != QCP::srmNone)
15580 {
15581 if (mSelectionRectMode != QCP::srmZoom || qobject_cast<QCPAxisRect*>(axisRectAt(mMousePressPos))) // in zoom mode only activate selection rect if on an axis rect
15582 mSelectionRect->startSelection(event);
15583 } else
15584 {
15585 // no selection rect interaction, prepare for click signal emission and forward event to layerable under the cursor:
15586 QList<QVariant> details;
15587 QList<QCPLayerable*> candidates = layerableListAt(mMousePressPos, false, &details);
15588 if (!candidates.isEmpty())
15589 {
15590 mMouseSignalLayerable = candidates.first(); // candidate for signal emission is always topmost hit layerable (signal emitted in release event)
15591 mMouseSignalLayerableDetails = details.first();
15592 }
15593 // forward event to topmost candidate which accepts the event:
15594 for (int i=0; i<candidates.size(); ++i)
15595 {
15596 event->accept(); // default impl of QCPLayerable's mouse events call ignore() on the event, in that case propagate to next candidate in list
15597 candidates.at(i)->mousePressEvent(event, details.at(i));
15598 if (event->isAccepted())
15599 {
15600 mMouseEventLayerable = candidates.at(i);
15601 mMouseEventLayerableDetails = details.at(i);
15602 break;
15603 }
15604 }
15605 }
15606
15607 event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
15608}
15609
15610/*! \internal
15611
15612 Event handler for when the cursor is moved. Emits the \ref mouseMove signal.
15613
15614 If the selection rect (\ref setSelectionRect) is currently active, the event is forwarded to it
15615 in order to update the rect geometry.
15616
15617 Otherwise, if a layout element has mouse capture focus (a mousePressEvent happened on top of the
15618 layout element before), the mouseMoveEvent is forwarded to that element.
15619
15620 \see mousePressEvent, mouseReleaseEvent
15621*/
15623{
15624 emit mouseMove(event);
15625
15626 if (!mMouseHasMoved && (mMousePressPos-event->pos()).manhattanLength() > 3)
15627 mMouseHasMoved = true; // moved too far from mouse press position, don't handle as click on mouse release
15628
15629 if (mSelectionRect && mSelectionRect->isActive())
15630 mSelectionRect->moveSelection(event);
15631 else if (mMouseEventLayerable) // call event of affected layerable:
15632 mMouseEventLayerable->mouseMoveEvent(event, mMousePressPos);
15633
15634 event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
15635}
15636
15637/*! \internal
15638
15639 Event handler for when a mouse button is released. Emits the \ref mouseRelease signal.
15640
15641 If the mouse was moved less than a certain threshold in any direction since the \ref
15642 mousePressEvent, it is considered a click which causes the selection mechanism (if activated via
15643 \ref setInteractions) to possibly change selection states accordingly. Further, specialized mouse
15644 click signals are emitted (e.g. \ref plottableClick, \ref axisClick, etc.)
15645
15646 If a layerable is the mouse capturer (a \ref mousePressEvent happened on top of the layerable
15647 before), the \ref mouseReleaseEvent is forwarded to that element.
15648
15649 \see mousePressEvent, mouseMoveEvent
15650*/
15652{
15653 emit mouseRelease(event);
15654
15655 if (!mMouseHasMoved) // mouse hasn't moved (much) between press and release, so handle as click
15656 {
15657 if (mSelectionRect && mSelectionRect->isActive()) // a simple click shouldn't successfully finish a selection rect, so cancel it here
15658 mSelectionRect->cancel();
15659 if (event->button() == Qt::LeftButton)
15660 processPointSelection(event);
15661
15662 // emit specialized click signals of QCustomPlot instance:
15663 if (QCPAbstractPlottable *ap = qobject_cast<QCPAbstractPlottable*>(mMouseSignalLayerable))
15664 {
15665 int dataIndex = 0;
15666 if (!mMouseSignalLayerableDetails.value<QCPDataSelection>().isEmpty())
15667 dataIndex = mMouseSignalLayerableDetails.value<QCPDataSelection>().dataRange().begin();
15668 emit plottableClick(ap, dataIndex, event);
15669 } else if (QCPAxis *ax = qobject_cast<QCPAxis*>(mMouseSignalLayerable))
15670 emit axisClick(ax, mMouseSignalLayerableDetails.value<QCPAxis::SelectablePart>(), event);
15671 else if (QCPAbstractItem *ai = qobject_cast<QCPAbstractItem*>(mMouseSignalLayerable))
15672 emit itemClick(ai, event);
15673 else if (QCPLegend *lg = qobject_cast<QCPLegend*>(mMouseSignalLayerable))
15674 emit legendClick(lg, nullptr, event);
15675 else if (QCPAbstractLegendItem *li = qobject_cast<QCPAbstractLegendItem*>(mMouseSignalLayerable))
15676 emit legendClick(li->parentLegend(), li, event);
15677 mMouseSignalLayerable = nullptr;
15678 }
15679
15680 if (mSelectionRect && mSelectionRect->isActive()) // Note: if a click was detected above, the selection rect is canceled there
15681 {
15682 // finish selection rect, the appropriate action will be taken via signal-slot connection:
15683 mSelectionRect->endSelection(event);
15684 } else
15685 {
15686 // call event of affected layerable:
15687 if (mMouseEventLayerable)
15688 {
15689 mMouseEventLayerable->mouseReleaseEvent(event, mMousePressPos);
15690 mMouseEventLayerable = nullptr;
15691 }
15692 }
15693
15694 if (noAntialiasingOnDrag())
15696
15697 event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
15698}
15699
15700/*! \internal
15701
15702 Event handler for mouse wheel events. First, the \ref mouseWheel signal is emitted. Then
15703 determines the affected layerable and forwards the event to it.
15704*/
15706{
15707 emit mouseWheel(event);
15708
15709#if QT_VERSION < QT_VERSION_CHECK(5, 14, 0)
15710 const QPointF pos = event->pos();
15711#else
15712 const QPointF pos = event->position();
15713#endif
15714
15715 // forward event to layerable under cursor:
15716 foreach (QCPLayerable *candidate, layerableListAt(pos, false))
15717 {
15718 event->accept(); // default impl of QCPLayerable's mouse events ignore the event, in that case propagate to next candidate in list
15719 candidate->wheelEvent(event);
15720 if (event->isAccepted())
15721 break;
15722 }
15723 event->accept(); // in case QCPLayerable reimplementation manipulates event accepted state. In QWidget event system, QCustomPlot wants to accept the event.
15724}
15725
15726/*! \internal
15727
15728 This function draws the entire plot, including background pixmap, with the specified \a painter.
15729 It does not make use of the paint buffers like \ref replot, so this is the function typically
15730 used by saving/exporting methods such as \ref savePdf or \ref toPainter.
15731
15732 Note that it does not fill the background with the background brush (as the user may specify with
15733 \ref setBackground(const QBrush &brush)), this is up to the respective functions calling this
15734 method.
15735*/
15737{
15738 updateLayout();
15739
15740 // draw viewport background pixmap:
15741 drawBackground(painter);
15742
15743 // draw all layered objects (grid, axes, plottables, items, legend,...):
15744 foreach (QCPLayer *layer, mLayers)
15745 layer->draw(painter);
15746
15747 /* Debug code to draw all layout element rects
15748 foreach (QCPLayoutElement *el, findChildren<QCPLayoutElement*>())
15749 {
15750 painter->setBrush(Qt::NoBrush);
15751 painter->setPen(QPen(QColor(0, 0, 0, 100), 0, Qt::DashLine));
15752 painter->drawRect(el->rect());
15753 painter->setPen(QPen(QColor(255, 0, 0, 100), 0, Qt::DashLine));
15754 painter->drawRect(el->outerRect());
15755 }
15756 */
15757}
15758
15759/*! \internal
15760
15761 Performs the layout update steps defined by \ref QCPLayoutElement::UpdatePhase, by calling \ref
15762 QCPLayoutElement::update on the main plot layout.
15763
15764 Here, the layout elements calculate their positions and margins, and prepare for the following
15765 draw call.
15766*/
15768{
15769 // run through layout phases:
15771 mPlotLayout->update(QCPLayoutElement::upMargins);
15772 mPlotLayout->update(QCPLayoutElement::upLayout);
15773
15774 emit afterLayout();
15775}
15776
15777/*! \internal
15778
15779 Draws the viewport background pixmap of the plot.
15780
15781 If a pixmap was provided via \ref setBackground, this function buffers the scaled version
15782 depending on \ref setBackgroundScaled and \ref setBackgroundScaledMode and then draws it inside
15783 the viewport with the provided \a painter. The scaled version is buffered in
15784 mScaledBackgroundPixmap to prevent expensive rescaling at every redraw. It is only updated, when
15785 the axis rect has changed in a way that requires a rescale of the background pixmap (this is
15786 dependent on the \ref setBackgroundScaledMode), or when a differend axis background pixmap was
15787 set.
15788
15789 Note that this function does not draw a fill with the background brush
15790 (\ref setBackground(const QBrush &brush)) beneath the pixmap.
15791
15792 \see setBackground, setBackgroundScaled, setBackgroundScaledMode
15793*/
15795{
15796 // Note: background color is handled in individual replot/save functions
15797
15798 // draw background pixmap (on top of fill, if brush specified):
15799 if (!mBackgroundPixmap.isNull())
15800 {
15801 if (mBackgroundScaled)
15802 {
15803 // check whether mScaledBackground needs to be updated:
15804 QSize scaledSize(mBackgroundPixmap.size());
15805 scaledSize.scale(mViewport.size(), mBackgroundScaledMode);
15806 if (mScaledBackgroundPixmap.size() != scaledSize)
15807 mScaledBackgroundPixmap = mBackgroundPixmap.scaled(mViewport.size(), mBackgroundScaledMode, Qt::SmoothTransformation);
15808 painter->drawPixmap(mViewport.topLeft(), mScaledBackgroundPixmap, QRect(0, 0, mViewport.width(), mViewport.height()) & mScaledBackgroundPixmap.rect());
15809 } else
15810 {
15811 painter->drawPixmap(mViewport.topLeft(), mBackgroundPixmap, QRect(0, 0, mViewport.width(), mViewport.height()));
15812 }
15813 }
15814}
15815
15816/*! \internal
15817
15818 Goes through the layers and makes sure this QCustomPlot instance holds the correct number of
15819 paint buffers and that they have the correct configuration (size, pixel ratio, etc.).
15820 Allocations, reallocations and deletions of paint buffers are performed as necessary. It also
15821 associates the paint buffers with the layers, so they draw themselves into the right buffer when
15822 \ref QCPLayer::drawToPaintBuffer is called. This means it associates adjacent \ref
15823 QCPLayer::lmLogical layers to a mutual paint buffer and creates dedicated paint buffers for
15824 layers in \ref QCPLayer::lmBuffered mode.
15825
15826 This method uses \ref createPaintBuffer to create new paint buffers.
15827
15828 After this method, the paint buffers are empty (filled with \c Qt::transparent) and invalidated
15829 (so an attempt to replot only a single buffered layer causes a full replot).
15830
15831 This method is called in every \ref replot call, prior to actually drawing the layers (into their
15832 associated paint buffer). If the paint buffers don't need changing/reallocating, this method
15833 basically leaves them alone and thus finishes very fast.
15834*/
15836{
15837 int bufferIndex = 0;
15838 if (mPaintBuffers.isEmpty())
15840
15841 for (int layerIndex = 0; layerIndex < mLayers.size(); ++layerIndex)
15842 {
15843 QCPLayer *layer = mLayers.at(layerIndex);
15844 if (layer->mode() == QCPLayer::lmLogical)
15845 {
15846 layer->mPaintBuffer = mPaintBuffers.at(bufferIndex).toWeakRef();
15847 } else if (layer->mode() == QCPLayer::lmBuffered)
15848 {
15849 ++bufferIndex;
15850 if (bufferIndex >= mPaintBuffers.size())
15852 layer->mPaintBuffer = mPaintBuffers.at(bufferIndex).toWeakRef();
15853 if (layerIndex < mLayers.size()-1 && mLayers.at(layerIndex+1)->mode() == QCPLayer::lmLogical) // not last layer, and next one is logical, so prepare another buffer for next layerables
15854 {
15855 ++bufferIndex;
15856 if (bufferIndex >= mPaintBuffers.size())
15858 }
15859 }
15860 }
15861 // remove unneeded buffers:
15862 while (mPaintBuffers.size()-1 > bufferIndex)
15863 mPaintBuffers.removeLast();
15864 // resize buffers to viewport size and clear contents:
15865 foreach (QSharedPointer<QCPAbstractPaintBuffer> buffer, mPaintBuffers)
15866 {
15867 buffer->setSize(viewport().size()); // won't do anything if already correct size
15868 buffer->clear(Qt::transparent);
15869 buffer->setInvalidated();
15870 }
15871}
15872
15873/*! \internal
15874
15875 This method is used by \ref setupPaintBuffers when it needs to create new paint buffers.
15876
15877 Depending on the current setting of \ref setOpenGl, and the current Qt version, different
15878 backends (subclasses of \ref QCPAbstractPaintBuffer) are created, initialized with the proper
15879 size and device pixel ratio, and returned.
15880*/
15882{
15883 if (mOpenGl)
15884 {
15885#if defined(QCP_OPENGL_FBO)
15886 return new QCPPaintBufferGlFbo(viewport().size(), mBufferDevicePixelRatio, mGlContext, mGlPaintDevice);
15887#elif defined(QCP_OPENGL_PBUFFER)
15888 return new QCPPaintBufferGlPbuffer(viewport().size(), mBufferDevicePixelRatio, mOpenGlMultisamples);
15889#else
15890 qDebug() << Q_FUNC_INFO << "OpenGL enabled even though no support for it compiled in, this shouldn't have happened. Falling back to pixmap paint buffer.";
15891 return new QCPPaintBufferPixmap(viewport().size(), mBufferDevicePixelRatio);
15892#endif
15893 } else
15894 return new QCPPaintBufferPixmap(viewport().size(), mBufferDevicePixelRatio);
15895}
15896
15897/*!
15898 This method returns whether any of the paint buffers held by this QCustomPlot instance are
15899 invalidated.
15900
15901 If any buffer is invalidated, a partial replot (\ref QCPLayer::replot) is not allowed and always
15902 causes a full replot (\ref QCustomPlot::replot) of all layers. This is the case when for example
15903 the layer order has changed, new layers were added or removed, layer modes were changed (\ref
15904 QCPLayer::setMode), or layerables were added or removed.
15905
15906 \see QCPAbstractPaintBuffer::setInvalidated
15907*/
15909{
15910 foreach (QSharedPointer<QCPAbstractPaintBuffer> buffer, mPaintBuffers)
15911 {
15912 if (buffer->invalidated())
15913 return true;
15914 }
15915 return false;
15916}
15917
15918/*! \internal
15919
15920 When \ref setOpenGl is set to true, this method is used to initialize OpenGL (create a context,
15921 surface, paint device).
15922
15923 Returns true on success.
15924
15925 If this method is successful, all paint buffers should be deleted and then reallocated by calling
15926 \ref setupPaintBuffers, so the OpenGL-based paint buffer subclasses (\ref
15927 QCPPaintBufferGlPbuffer, \ref QCPPaintBufferGlFbo) are used for subsequent replots.
15928
15929 \see freeOpenGl
15930*/
15932{
15933#ifdef QCP_OPENGL_FBO
15934 freeOpenGl();
15936 proposedSurfaceFormat.setSamples(mOpenGlMultisamples);
15937#ifdef QCP_OPENGL_OFFSCREENSURFACE
15938 QOffscreenSurface *surface = new QOffscreenSurface;
15939#else
15940 QWindow *surface = new QWindow;
15941 surface->setSurfaceType(QSurface::OpenGLSurface);
15942#endif
15944 surface->create();
15947 mGlContext->setFormat(mGlSurface->format());
15948 if (!mGlContext->create())
15949 {
15950 qDebug() << Q_FUNC_INFO << "Failed to create OpenGL context";
15951 mGlContext.clear();
15952 mGlSurface.clear();
15953 return false;
15954 }
15955 if (!mGlContext->makeCurrent(mGlSurface.data())) // context needs to be current to create paint device
15956 {
15957 qDebug() << Q_FUNC_INFO << "Failed to make opengl context current";
15958 mGlContext.clear();
15959 mGlSurface.clear();
15960 return false;
15961 }
15963 {
15964 qDebug() << Q_FUNC_INFO << "OpenGL of this system doesn't support frame buffer objects";
15965 mGlContext.clear();
15966 mGlSurface.clear();
15967 return false;
15968 }
15970 return true;
15971#elif defined(QCP_OPENGL_PBUFFER)
15972 return QGLFormat::hasOpenGL();
15973#else
15974 return false;
15975#endif
15976}
15977
15978/*! \internal
15979
15980 When \ref setOpenGl is set to false, this method is used to deinitialize OpenGL (releases the
15981 context and frees resources).
15982
15983 After OpenGL is disabled, all paint buffers should be deleted and then reallocated by calling
15984 \ref setupPaintBuffers, so the standard software rendering paint buffer subclass (\ref
15985 QCPPaintBufferPixmap) is used for subsequent replots.
15986
15987 \see setupOpenGl
15988*/
15990{
15991#ifdef QCP_OPENGL_FBO
15992 mGlPaintDevice.clear();
15993 mGlContext.clear();
15994 mGlSurface.clear();
15995#endif
15996}
15997
15998/*! \internal
15999
16000 This method is used by \ref QCPAxisRect::removeAxis to report removed axes to the QCustomPlot
16001 so it may clear its QCustomPlot::xAxis, yAxis, xAxis2 and yAxis2 members accordingly.
16002*/
16004{
16005 if (xAxis == axis)
16006 xAxis = nullptr;
16007 if (xAxis2 == axis)
16008 xAxis2 = nullptr;
16009 if (yAxis == axis)
16010 yAxis = nullptr;
16011 if (yAxis2 == axis)
16012 yAxis2 = nullptr;
16013
16014 // Note: No need to take care of range drag axes and range zoom axes, because they are stored in smart pointers
16015}
16016
16017/*! \internal
16018
16019 This method is used by the QCPLegend destructor to report legend removal to the QCustomPlot so
16020 it may clear its QCustomPlot::legend member accordingly.
16021*/
16023{
16024 if (this->legend == legend)
16025 this->legend = nullptr;
16026}
16027
16028/*! \internal
16029
16030 This slot is connected to the selection rect's \ref QCPSelectionRect::accepted signal when \ref
16031 setSelectionRectMode is set to \ref QCP::srmSelect.
16032
16033 First, it determines which axis rect was the origin of the selection rect judging by the starting
16034 point of the selection. Then it goes through the plottables (\ref QCPAbstractPlottable1D to be
16035 precise) associated with that axis rect and finds the data points that are in \a rect. It does
16036 this by querying their \ref QCPAbstractPlottable1D::selectTestRect method.
16037
16038 Then, the actual selection is done by calling the plottables' \ref
16039 QCPAbstractPlottable::selectEvent, placing the found selected data points in the \a details
16040 parameter as <tt>QVariant(\ref QCPDataSelection)</tt>. All plottables that weren't touched by \a
16041 rect receive a \ref QCPAbstractPlottable::deselectEvent.
16042
16043 \see processRectZoom
16044*/
16046{
16048 typedef QMultiMap<int, SelectionCandidate> SelectionCandidates; // map key is number of selected data points, so we have selections sorted by size
16049
16050 bool selectionStateChanged = false;
16051
16052 if (mInteractions.testFlag(QCP::iSelectPlottables))
16053 {
16055 QRectF rectF(rect.normalized());
16056 if (QCPAxisRect *affectedAxisRect = axisRectAt(rectF.topLeft()))
16057 {
16058 // determine plottables that were hit by the rect and thus are candidates for selection:
16059 foreach (QCPAbstractPlottable *plottable, affectedAxisRect->plottables())
16060 {
16062 {
16063 QCPDataSelection dataSel = plottableInterface->selectTestRect(rectF, true);
16064 if (!dataSel.isEmpty())
16066 }
16067 }
16068
16069 if (!mInteractions.testFlag(QCP::iMultiSelect))
16070 {
16071 // only leave plottable with most selected points in map, since we will only select a single plottable:
16072 if (!potentialSelections.isEmpty())
16073 {
16074 SelectionCandidates::iterator it = potentialSelections.begin();
16075 while (it != std::prev(potentialSelections.end())) // erase all except last element
16076 it = potentialSelections.erase(it);
16077 }
16078 }
16079
16080 bool additive = event->modifiers().testFlag(mMultiSelectModifier);
16081 // deselect all other layerables if not additive selection:
16082 if (!additive)
16083 {
16084 // emit deselection except to those plottables who will be selected afterwards:
16085 foreach (QCPLayer *layer, mLayers)
16086 {
16087 foreach (QCPLayerable *layerable, layer->children())
16088 {
16089 if ((potentialSelections.isEmpty() || potentialSelections.constBegin()->first != layerable) && mInteractions.testFlag(layerable->selectionCategory()))
16090 {
16091 bool selChanged = false;
16092 layerable->deselectEvent(&selChanged);
16094 }
16095 }
16096 }
16097 }
16098
16099 // go through selections in reverse (largest selection first) and emit select events:
16100 SelectionCandidates::const_iterator it = potentialSelections.constEnd();
16101 while (it != potentialSelections.constBegin())
16102 {
16103 --it;
16104 if (mInteractions.testFlag(it.value().first->selectionCategory()))
16105 {
16106 bool selChanged = false;
16107 it.value().first->selectEvent(event, additive, QVariant::fromValue(it.value().second), &selChanged);
16109 }
16110 }
16111 }
16112 }
16113
16115 {
16118 } else if (mSelectionRect)
16119 mSelectionRect->layer()->replot();
16120}
16121
16122/*! \internal
16123
16124 This slot is connected to the selection rect's \ref QCPSelectionRect::accepted signal when \ref
16125 setSelectionRectMode is set to \ref QCP::srmZoom.
16126
16127 It determines which axis rect was the origin of the selection rect judging by the starting point
16128 of the selection, and then zooms the axes defined via \ref QCPAxisRect::setRangeZoomAxes to the
16129 provided \a rect (see \ref QCPAxisRect::zoom).
16130
16131 \see processRectSelection
16132*/
16134{
16135 Q_UNUSED(event)
16136 if (QCPAxisRect *axisRect = axisRectAt(rect.topLeft()))
16137 {
16139 affectedAxes.removeAll(static_cast<QCPAxis*>(nullptr));
16141 }
16142 replot(rpQueuedReplot); // always replot to make selection rect disappear
16143}
16144
16145/*! \internal
16146
16147 This method is called when a simple left mouse click was detected on the QCustomPlot surface.
16148
16149 It first determines the layerable that was hit by the click, and then calls its \ref
16150 QCPLayerable::selectEvent. All other layerables receive a QCPLayerable::deselectEvent (unless the
16151 multi-select modifier was pressed, see \ref setMultiSelectModifier).
16152
16153 In this method the hit layerable is determined a second time using \ref layerableAt (after the
16154 one in \ref mousePressEvent), because we want \a onlySelectable set to true this time. This
16155 implies that the mouse event grabber (mMouseEventLayerable) may be a different one from the
16156 clicked layerable determined here. For example, if a non-selectable layerable is in front of a
16157 selectable layerable at the click position, the front layerable will receive mouse events but the
16158 selectable one in the back will receive the \ref QCPLayerable::selectEvent.
16159
16160 \see processRectSelection, QCPLayerable::selectTest
16161*/
16163{
16164 QVariant details;
16165 QCPLayerable *clickedLayerable = layerableAt(event->pos(), true, &details);
16166 bool selectionStateChanged = false;
16167 bool additive = mInteractions.testFlag(QCP::iMultiSelect) && event->modifiers().testFlag(mMultiSelectModifier);
16168 // deselect all other layerables if not additive selection:
16169 if (!additive)
16170 {
16171 foreach (QCPLayer *layer, mLayers)
16172 {
16173 foreach (QCPLayerable *layerable, layer->children())
16174 {
16175 if (layerable != clickedLayerable && mInteractions.testFlag(layerable->selectionCategory()))
16176 {
16177 bool selChanged = false;
16178 layerable->deselectEvent(&selChanged);
16180 }
16181 }
16182 }
16183 }
16184 if (clickedLayerable && mInteractions.testFlag(clickedLayerable->selectionCategory()))
16185 {
16186 // a layerable was actually clicked, call its selectEvent:
16187 bool selChanged = false;
16188 clickedLayerable->selectEvent(event, additive, details, &selChanged);
16190 }
16192 {
16195 }
16196}
16197
16198/*! \internal
16199
16200 Registers the specified plottable with this QCustomPlot and, if \ref setAutoAddPlottableToLegend
16201 is enabled, adds it to the legend (QCustomPlot::legend). QCustomPlot takes ownership of the
16202 plottable.
16203
16204 Returns true on success, i.e. when \a plottable isn't already in this plot and the parent plot of
16205 \a plottable is this QCustomPlot.
16206
16207 This method is called automatically in the QCPAbstractPlottable base class constructor.
16208*/
16210{
16211 if (mPlottables.contains(plottable))
16212 {
16213 qDebug() << Q_FUNC_INFO << "plottable already added to this QCustomPlot:" << reinterpret_cast<quintptr>(plottable);
16214 return false;
16215 }
16216 if (plottable->parentPlot() != this)
16217 {
16218 qDebug() << Q_FUNC_INFO << "plottable not created with this QCustomPlot as parent:" << reinterpret_cast<quintptr>(plottable);
16219 return false;
16220 }
16221
16222 mPlottables.append(plottable);
16223 // possibly add plottable to legend:
16224 if (mAutoAddPlottableToLegend)
16226 if (!plottable->layer()) // usually the layer is already set in the constructor of the plottable (via QCPLayerable constructor)
16228 return true;
16229}
16230
16231/*! \internal
16232
16233 In order to maintain the simplified graph interface of QCustomPlot, this method is called by the
16234 QCPGraph constructor to register itself with this QCustomPlot's internal graph list. Returns true
16235 on success, i.e. if \a graph is valid and wasn't already registered with this QCustomPlot.
16236
16237 This graph specific registration happens in addition to the call to \ref registerPlottable by the
16238 QCPAbstractPlottable base class.
16239*/
16241{
16242 if (!graph)
16243 {
16244 qDebug() << Q_FUNC_INFO << "passed graph is zero";
16245 return false;
16246 }
16247 if (mGraphs.contains(graph))
16248 {
16249 qDebug() << Q_FUNC_INFO << "graph already registered with this QCustomPlot";
16250 return false;
16251 }
16252
16253 mGraphs.append(graph);
16254 return true;
16255}
16256
16257
16258/*! \internal
16259
16260 Registers the specified item with this QCustomPlot. QCustomPlot takes ownership of the item.
16261
16262 Returns true on success, i.e. when \a item wasn't already in the plot and the parent plot of \a
16263 item is this QCustomPlot.
16264
16265 This method is called automatically in the QCPAbstractItem base class constructor.
16266*/
16268{
16269 if (mItems.contains(item))
16270 {
16271 qDebug() << Q_FUNC_INFO << "item already added to this QCustomPlot:" << reinterpret_cast<quintptr>(item);
16272 return false;
16273 }
16274 if (item->parentPlot() != this)
16275 {
16276 qDebug() << Q_FUNC_INFO << "item not created with this QCustomPlot as parent:" << reinterpret_cast<quintptr>(item);
16277 return false;
16278 }
16279
16280 mItems.append(item);
16281 if (!item->layer()) // usually the layer is already set in the constructor of the item (via QCPLayerable constructor)
16283 return true;
16284}
16285
16286/*! \internal
16287
16288 Assigns all layers their index (QCPLayer::mIndex) in the mLayers list. This method is thus called
16289 after every operation that changes the layer indices, like layer removal, layer creation, layer
16290 moving.
16291*/
16293{
16294 for (int i=0; i<mLayers.size(); ++i)
16295 mLayers.at(i)->mIndex = i;
16296}
16297
16298/*! \internal
16299
16300 Returns the top-most layerable at pixel position \a pos. If \a onlySelectable is set to true,
16301 only those layerables that are selectable will be considered. (Layerable subclasses communicate
16302 their selectability via the QCPLayerable::selectTest method, by returning -1.)
16303
16304 \a selectionDetails is an output parameter that contains selection specifics of the affected
16305 layerable. This is useful if the respective layerable shall be given a subsequent
16306 QCPLayerable::selectEvent (like in \ref mouseReleaseEvent). \a selectionDetails usually contains
16307 information about which part of the layerable was hit, in multi-part layerables (e.g.
16308 QCPAxis::SelectablePart). If the layerable is a plottable, \a selectionDetails contains a \ref
16309 QCPDataSelection instance with the single data point which is closest to \a pos.
16310
16311 \see layerableListAt, layoutElementAt, axisRectAt
16312*/
16314{
16315 QList<QVariant> details;
16317 if (selectionDetails && !details.isEmpty())
16318 *selectionDetails = details.first();
16319 if (!candidates.isEmpty())
16320 return candidates.first();
16321 else
16322 return nullptr;
16323}
16324
16325/*! \internal
16326
16327 Returns the layerables at pixel position \a pos. If \a onlySelectable is set to true, only those
16328 layerables that are selectable will be considered. (Layerable subclasses communicate their
16329 selectability via the QCPLayerable::selectTest method, by returning -1.)
16330
16331 The returned list is sorted by the layerable/drawing order such that the layerable that appears
16332 on top in the plot is at index 0 of the returned list. If you only need to know the top
16333 layerable, rather use \ref layerableAt.
16334
16335 \a selectionDetails is an output parameter that contains selection specifics of the affected
16336 layerable. This is useful if the respective layerable shall be given a subsequent
16337 QCPLayerable::selectEvent (like in \ref mouseReleaseEvent). \a selectionDetails usually contains
16338 information about which part of the layerable was hit, in multi-part layerables (e.g.
16339 QCPAxis::SelectablePart). If the layerable is a plottable, \a selectionDetails contains a \ref
16340 QCPDataSelection instance with the single data point which is closest to \a pos.
16341
16342 \see layerableAt, layoutElementAt, axisRectAt
16343*/
16345{
16346 QList<QCPLayerable*> result;
16347 for (int layerIndex=mLayers.size()-1; layerIndex>=0; --layerIndex)
16348 {
16349 const QList<QCPLayerable*> layerables = mLayers.at(layerIndex)->children();
16350 for (int i=layerables.size()-1; i>=0; --i)
16351 {
16352 if (!layerables.at(i)->realVisibility())
16353 continue;
16354 QVariant details;
16355 double dist = layerables.at(i)->selectTest(pos, onlySelectable, selectionDetails ? &details : nullptr);
16356 if (dist >= 0 && dist < selectionTolerance())
16357 {
16358 result.append(layerables.at(i));
16359 if (selectionDetails)
16360 selectionDetails->append(details);
16361 }
16362 }
16363 }
16364 return result;
16365}
16366
16367/*!
16368 Saves the plot to a rastered image file \a fileName in the image format \a format. The plot is
16369 sized to \a width and \a height in pixels and scaled with \a scale. (width 100 and scale 2.0 lead
16370 to a full resolution file with width 200.) If the \a format supports compression, \a quality may
16371 be between 0 and 100 to control it.
16372
16373 Returns true on success. If this function fails, most likely the given \a format isn't supported
16374 by the system, see Qt docs about QImageWriter::supportedImageFormats().
16375
16376 The \a resolution will be written to the image file header (if the file format supports this) and
16377 has no direct consequence for the quality or the pixel size. However, if opening the image with a
16378 tool which respects the metadata, it will be able to scale the image to match either a given size
16379 in real units of length (inch, centimeters, etc.), or the target display DPI. You can specify in
16380 which units \a resolution is given, by setting \a resolutionUnit. The \a resolution is converted
16381 to the format's expected resolution unit internally.
16382
16383 \see saveBmp, saveJpg, savePng, savePdf
16384*/
16385bool QCustomPlot::saveRastered(const QString &fileName, int width, int height, double scale, const char *format, int quality, int resolution, QCP::ResolutionUnit resolutionUnit)
16386{
16387 QImage buffer = toPixmap(width, height, scale).toImage();
16388
16389 int dotsPerMeter = 0;
16390 switch (resolutionUnit)
16391 {
16392 case QCP::ruDotsPerMeter: dotsPerMeter = resolution; break;
16393 case QCP::ruDotsPerCentimeter: dotsPerMeter = resolution*100; break;
16394 case QCP::ruDotsPerInch: dotsPerMeter = int(resolution/0.0254); break;
16395 }
16396 buffer.setDotsPerMeterX(dotsPerMeter); // this is saved together with some image formats, e.g. PNG, and is relevant when opening image in other tools
16397 buffer.setDotsPerMeterY(dotsPerMeter); // this is saved together with some image formats, e.g. PNG, and is relevant when opening image in other tools
16398 if (!buffer.isNull())
16399 return buffer.save(fileName, format, quality);
16400 else
16401 return false;
16402}
16403
16404/*!
16405 Renders the plot to a pixmap and returns it.
16406
16407 The plot is sized to \a width and \a height in pixels and scaled with \a scale. (width 100 and
16408 scale 2.0 lead to a full resolution pixmap with width 200.)
16409
16410 \see toPainter, saveRastered, saveBmp, savePng, saveJpg, savePdf
16411*/
16412QPixmap QCustomPlot::toPixmap(int width, int height, double scale)
16413{
16414 // this method is somewhat similar to toPainter. Change something here, and a change in toPainter might be necessary, too.
16415 int newWidth, newHeight;
16416 if (width == 0 || height == 0)
16417 {
16418 newWidth = this->width();
16419 newHeight = this->height();
16420 } else
16421 {
16422 newWidth = width;
16423 newHeight = height;
16424 }
16425 int scaledWidth = qRound(scale*newWidth);
16426 int scaledHeight = qRound(scale*newHeight);
16427
16429 result.fill(mBackgroundBrush.style() == Qt::SolidPattern ? mBackgroundBrush.color() : Qt::transparent); // if using non-solid pattern, make transparent now and draw brush pattern later
16430 QCPPainter painter;
16431 painter.begin(&result);
16432 if (painter.isActive())
16433 {
16434 QRect oldViewport = viewport();
16437 if (!qFuzzyCompare(scale, 1.0))
16438 {
16439 if (scale > 1.0) // for scale < 1 we always want cosmetic pens where possible, because else lines might disappear for very small scales
16441 painter.scale(scale, scale);
16442 }
16443 if (mBackgroundBrush.style() != Qt::SolidPattern && mBackgroundBrush.style() != Qt::NoBrush) // solid fills were done a few lines above with QPixmap::fill
16444 painter.fillRect(mViewport, mBackgroundBrush);
16445 draw(&painter);
16447 painter.end();
16448 } else // might happen if pixmap has width or height zero
16449 {
16450 qDebug() << Q_FUNC_INFO << "Couldn't activate painter on pixmap";
16451 return QPixmap();
16452 }
16453 return result;
16454}
16455
16456/*!
16457 Renders the plot using the passed \a painter.
16458
16459 The plot is sized to \a width and \a height in pixels. If the \a painter's scale is not 1.0, the resulting plot will
16460 appear scaled accordingly.
16461
16462 \note If you are restricted to using a QPainter (instead of QCPPainter), create a temporary QPicture and open a QCPPainter
16463 on it. Then call \ref toPainter with this QCPPainter. After ending the paint operation on the picture, draw it with
16464 the QPainter. This will reproduce the painter actions the QCPPainter took, with a QPainter.
16465
16466 \see toPixmap
16467*/
16468void QCustomPlot::toPainter(QCPPainter *painter, int width, int height)
16469{
16470 // this method is somewhat similar to toPixmap. Change something here, and a change in toPixmap might be necessary, too.
16471 int newWidth, newHeight;
16472 if (width == 0 || height == 0)
16473 {
16474 newWidth = this->width();
16475 newHeight = this->height();
16476 } else
16477 {
16478 newWidth = width;
16479 newHeight = height;
16480 }
16481
16482 if (painter->isActive())
16483 {
16484 QRect oldViewport = viewport();
16487 if (mBackgroundBrush.style() != Qt::NoBrush) // unlike in toPixmap, we can't do QPixmap::fill for Qt::SolidPattern brush style, so we also draw solid fills with fillRect here
16488 painter->fillRect(mViewport, mBackgroundBrush);
16489 draw(painter);
16491 } else
16492 qDebug() << Q_FUNC_INFO << "Passed painter is not active";
16493}
16494/* end of 'src/core.cpp' */
16495
16496
16497/* including file 'src/colorgradient.cpp' */
16498/* modified 2021-03-29T02:30:44, size 25278 */
16499
16500
16501////////////////////////////////////////////////////////////////////////////////////////////////////
16502//////////////////// QCPColorGradient
16503////////////////////////////////////////////////////////////////////////////////////////////////////
16504
16505/*! \class QCPColorGradient
16506 \brief Defines a color gradient for use with e.g. \ref QCPColorMap
16507
16508 This class describes a color gradient which can be used to encode data with color. For example,
16509 QCPColorMap and QCPColorScale have \ref QCPColorMap::setGradient "setGradient" methods which
16510 take an instance of this class. Colors are set with \ref setColorStopAt(double position, const QColor &color)
16511 with a \a position from 0 to 1. In between these defined color positions, the
16512 color will be interpolated linearly either in RGB or HSV space, see \ref setColorInterpolation.
16513
16514 Alternatively, load one of the preset color gradients shown in the image below, with \ref
16515 loadPreset, or by directly specifying the preset in the constructor.
16516
16517 Apart from red, green and blue components, the gradient also interpolates the alpha values of the
16518 configured color stops. This allows to display some portions of the data range as transparent in
16519 the plot.
16520
16521 How NaN values are interpreted can be configured with \ref setNanHandling.
16522
16523 \image html QCPColorGradient.png
16524
16525 The constructor \ref QCPColorGradient(GradientPreset preset) allows directly converting a \ref
16526 GradientPreset to a QCPColorGradient. This means that you can directly pass \ref GradientPreset
16527 to all the \a setGradient methods, e.g.:
16528 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolorgradient-setgradient
16529
16530 The total number of levels used in the gradient can be set with \ref setLevelCount. Whether the
16531 color gradient shall be applied periodically (wrapping around) to data values that lie outside
16532 the data range specified on the plottable instance can be controlled with \ref setPeriodic.
16533*/
16534
16535/*!
16536 Constructs a new, empty QCPColorGradient with no predefined color stops. You can add own color
16537 stops with \ref setColorStopAt.
16538
16539 The color level count is initialized to 350.
16540*/
16542 mLevelCount(350),
16543 mColorInterpolation(ciRGB),
16544 mNanHandling(nhNone),
16545 mNanColor(Qt::black),
16546 mPeriodic(false),
16547 mColorBufferInvalidated(true)
16548{
16549 mColorBuffer.fill(qRgb(0, 0, 0), mLevelCount);
16550}
16551
16552/*!
16553 Constructs a new QCPColorGradient initialized with the colors and color interpolation according
16554 to \a preset.
16555
16556 The color level count is initialized to 350.
16557*/
16559 mLevelCount(350),
16560 mColorInterpolation(ciRGB),
16561 mNanHandling(nhNone),
16562 mNanColor(Qt::black),
16563 mPeriodic(false),
16564 mColorBufferInvalidated(true)
16565{
16566 mColorBuffer.fill(qRgb(0, 0, 0), mLevelCount);
16568}
16569
16570/* undocumented operator */
16571bool QCPColorGradient::operator==(const QCPColorGradient &other) const
16572{
16573 return ((other.mLevelCount == this->mLevelCount) &&
16574 (other.mColorInterpolation == this->mColorInterpolation) &&
16575 (other.mNanHandling == this ->mNanHandling) &&
16576 (other.mNanColor == this->mNanColor) &&
16577 (other.mPeriodic == this->mPeriodic) &&
16578 (other.mColorStops == this->mColorStops));
16579}
16580
16581/*!
16582 Sets the number of discretization levels of the color gradient to \a n. The default is 350 which
16583 is typically enough to create a smooth appearance. The minimum number of levels is 2.
16584
16585 \image html QCPColorGradient-levelcount.png
16586*/
16588{
16589 if (n < 2)
16590 {
16591 qDebug() << Q_FUNC_INFO << "n must be greater or equal 2 but was" << n;
16592 n = 2;
16593 }
16594 if (n != mLevelCount)
16595 {
16596 mLevelCount = n;
16597 mColorBufferInvalidated = true;
16598 }
16599}
16600
16601/*!
16602 Sets at which positions from 0 to 1 which color shall occur. The positions are the keys, the
16603 colors are the values of the passed QMap \a colorStops. In between these color stops, the color
16604 is interpolated according to \ref setColorInterpolation.
16605
16606 A more convenient way to create a custom gradient may be to clear all color stops with \ref
16607 clearColorStops (or creating a new, empty QCPColorGradient) and then adding them one by one with
16608 \ref setColorStopAt.
16609
16610 \see clearColorStops
16611*/
16613{
16614 mColorStops = colorStops;
16615 mColorBufferInvalidated = true;
16616}
16617
16618/*!
16619 Sets the \a color the gradient will have at the specified \a position (from 0 to 1). In between
16620 these color stops, the color is interpolated according to \ref setColorInterpolation.
16621
16622 \see setColorStops, clearColorStops
16623*/
16624void QCPColorGradient::setColorStopAt(double position, const QColor &color)
16625{
16626 mColorStops.insert(position, color);
16627 mColorBufferInvalidated = true;
16628}
16629
16630/*!
16631 Sets whether the colors in between the configured color stops (see \ref setColorStopAt) shall be
16632 interpolated linearly in RGB or in HSV color space.
16633
16634 For example, a sweep in RGB space from red to green will have a muddy brown intermediate color,
16635 whereas in HSV space the intermediate color is yellow.
16636*/
16638{
16639 if (interpolation != mColorInterpolation)
16640 {
16641 mColorInterpolation = interpolation;
16642 mColorBufferInvalidated = true;
16643 }
16644}
16645
16646/*!
16647 Sets how NaNs in the data are displayed in the plot.
16648
16649 \see setNanColor
16650*/
16655
16656/*!
16657 Sets the color that NaN data is represented by, if \ref setNanHandling is set
16658 to ref nhNanColor.
16659
16660 \see setNanHandling
16661*/
16663{
16664 mNanColor = color;
16665}
16666
16667/*!
16668 Sets whether data points that are outside the configured data range (e.g. \ref
16669 QCPColorMap::setDataRange) are colored by periodically repeating the color gradient or whether
16670 they all have the same color, corresponding to the respective gradient boundary color.
16671
16672 \image html QCPColorGradient-periodic.png
16673
16674 As shown in the image above, gradients that have the same start and end color are especially
16675 suitable for a periodic gradient mapping, since they produce smooth color transitions throughout
16676 the color map. A preset that has this property is \ref gpHues.
16677
16678 In practice, using periodic color gradients makes sense when the data corresponds to a periodic
16679 dimension, such as an angle or a phase. If this is not the case, the color encoding might become
16680 ambiguous, because multiple different data values are shown as the same color.
16681*/
16683{
16684 mPeriodic = enabled;
16685}
16686
16687/*! \overload
16688
16689 This method is used to quickly convert a \a data array to colors. The colors will be output in
16690 the array \a scanLine. Both \a data and \a scanLine must have the length \a n when passed to this
16691 function. The data range that shall be used for mapping the data value to the gradient is passed
16692 in \a range. \a logarithmic indicates whether the data values shall be mapped to colors
16693 logarithmically.
16694
16695 if \a data actually contains 2D-data linearized via <tt>[row*columnCount + column]</tt>, you can
16696 set \a dataIndexFactor to <tt>columnCount</tt> to convert a column instead of a row of the data
16697 array, in \a scanLine. \a scanLine will remain a regular (1D) array. This works because \a data
16698 is addressed <tt>data[i*dataIndexFactor]</tt>.
16699
16700 Use the overloaded method to additionally provide alpha map data.
16701
16702 The QRgb values that are placed in \a scanLine have their r, g, and b components premultiplied
16703 with alpha (see QImage::Format_ARGB32_Premultiplied).
16704*/
16705void QCPColorGradient::colorize(const double *data, const QCPRange &range, QRgb *scanLine, int n, int dataIndexFactor, bool logarithmic)
16706{
16707 // If you change something here, make sure to also adapt color() and the other colorize() overload
16708 if (!data)
16709 {
16710 qDebug() << Q_FUNC_INFO << "null pointer given as data";
16711 return;
16712 }
16713 if (!scanLine)
16714 {
16715 qDebug() << Q_FUNC_INFO << "null pointer given as scanLine";
16716 return;
16717 }
16718 if (mColorBufferInvalidated)
16720
16721 const bool skipNanCheck = mNanHandling == nhNone;
16722 const double posToIndexFactor = !logarithmic ? (mLevelCount-1)/range.size() : (mLevelCount-1)/qLn(range.upper/range.lower);
16723 for (int i=0; i<n; ++i)
16724 {
16725 const double value = data[dataIndexFactor*i];
16726 if (skipNanCheck || !std::isnan(value))
16727 {
16728 int index = int((!logarithmic ? value-range.lower : qLn(value/range.lower)) * posToIndexFactor);
16729 if (!mPeriodic)
16730 {
16731 index = qBound(0, index, mLevelCount-1);
16732 } else
16733 {
16734 index %= mLevelCount;
16735 if (index < 0)
16736 index += mLevelCount;
16737 }
16738 scanLine[i] = mColorBuffer.at(index);
16739 } else
16740 {
16741 switch(mNanHandling)
16742 {
16743 case nhLowestColor: scanLine[i] = mColorBuffer.first(); break;
16744 case nhHighestColor: scanLine[i] = mColorBuffer.last(); break;
16745 case nhTransparent: scanLine[i] = qRgba(0, 0, 0, 0); break;
16746 case nhNanColor: scanLine[i] = mNanColor.rgba(); break;
16747 case nhNone: break; // shouldn't happen
16748 }
16749 }
16750 }
16751}
16752
16753/*! \overload
16754
16755 Additionally to the other overload of \ref colorize, this method takes the array \a alpha, which
16756 has the same size and structure as \a data and encodes the alpha information per data point.
16757
16758 The QRgb values that are placed in \a scanLine have their r, g and b components premultiplied
16759 with alpha (see QImage::Format_ARGB32_Premultiplied).
16760*/
16761void QCPColorGradient::colorize(const double *data, const unsigned char *alpha, const QCPRange &range, QRgb *scanLine, int n, int dataIndexFactor, bool logarithmic)
16762{
16763 // If you change something here, make sure to also adapt color() and the other colorize() overload
16764 if (!data)
16765 {
16766 qDebug() << Q_FUNC_INFO << "null pointer given as data";
16767 return;
16768 }
16769 if (!alpha)
16770 {
16771 qDebug() << Q_FUNC_INFO << "null pointer given as alpha";
16772 return;
16773 }
16774 if (!scanLine)
16775 {
16776 qDebug() << Q_FUNC_INFO << "null pointer given as scanLine";
16777 return;
16778 }
16779 if (mColorBufferInvalidated)
16781
16782 const bool skipNanCheck = mNanHandling == nhNone;
16783 const double posToIndexFactor = !logarithmic ? (mLevelCount-1)/range.size() : (mLevelCount-1)/qLn(range.upper/range.lower);
16784 for (int i=0; i<n; ++i)
16785 {
16786 const double value = data[dataIndexFactor*i];
16787 if (skipNanCheck || !std::isnan(value))
16788 {
16789 int index = int((!logarithmic ? value-range.lower : qLn(value/range.lower)) * posToIndexFactor);
16790 if (!mPeriodic)
16791 {
16792 index = qBound(0, index, mLevelCount-1);
16793 } else
16794 {
16795 index %= mLevelCount;
16796 if (index < 0)
16797 index += mLevelCount;
16798 }
16799 if (alpha[dataIndexFactor*i] == 255)
16800 {
16801 scanLine[i] = mColorBuffer.at(index);
16802 } else
16803 {
16804 const QRgb rgb = mColorBuffer.at(index);
16805 const float alphaF = alpha[dataIndexFactor*i]/255.0f;
16806 scanLine[i] = qRgba(int(qRed(rgb)*alphaF), int(qGreen(rgb)*alphaF), int(qBlue(rgb)*alphaF), int(qAlpha(rgb)*alphaF)); // also multiply r,g,b with alpha, to conform to Format_ARGB32_Premultiplied
16807 }
16808 } else
16809 {
16810 switch(mNanHandling)
16811 {
16812 case nhLowestColor: scanLine[i] = mColorBuffer.first(); break;
16813 case nhHighestColor: scanLine[i] = mColorBuffer.last(); break;
16814 case nhTransparent: scanLine[i] = qRgba(0, 0, 0, 0); break;
16815 case nhNanColor: scanLine[i] = mNanColor.rgba(); break;
16816 case nhNone: break; // shouldn't happen
16817 }
16818 }
16819 }
16820}
16821
16822/*! \internal
16823
16824 This method is used to colorize a single data value given in \a position, to colors. The data
16825 range that shall be used for mapping the data value to the gradient is passed in \a range. \a
16826 logarithmic indicates whether the data value shall be mapped to a color logarithmically.
16827
16828 If an entire array of data values shall be converted, rather use \ref colorize, for better
16829 performance.
16830
16831 The returned QRgb has its r, g and b components premultiplied with alpha (see
16832 QImage::Format_ARGB32_Premultiplied).
16833*/
16834QRgb QCPColorGradient::color(double position, const QCPRange &range, bool logarithmic)
16835{
16836 // If you change something here, make sure to also adapt ::colorize()
16837 if (mColorBufferInvalidated)
16839
16840 const bool skipNanCheck = mNanHandling == nhNone;
16841 if (!skipNanCheck && std::isnan(position))
16842 {
16843 switch(mNanHandling)
16844 {
16845 case nhLowestColor: return mColorBuffer.first();
16846 case nhHighestColor: return mColorBuffer.last();
16847 case nhTransparent: return qRgba(0, 0, 0, 0);
16848 case nhNanColor: return mNanColor.rgba();
16849 case nhNone: return qRgba(0, 0, 0, 0); // shouldn't happen
16850 }
16851 }
16852
16853 const double posToIndexFactor = !logarithmic ? (mLevelCount-1)/range.size() : (mLevelCount-1)/qLn(range.upper/range.lower);
16854 int index = int((!logarithmic ? position-range.lower : qLn(position/range.lower)) * posToIndexFactor);
16855 if (!mPeriodic)
16856 {
16857 index = qBound(0, index, mLevelCount-1);
16858 } else
16859 {
16860 index %= mLevelCount;
16861 if (index < 0)
16862 index += mLevelCount;
16863 }
16864 return mColorBuffer.at(index);
16865}
16866
16867/*!
16868 Clears the current color stops and loads the specified \a preset. A preset consists of predefined
16869 color stops and the corresponding color interpolation method.
16870
16871 The available presets are:
16872 \image html QCPColorGradient.png
16873*/
16875{
16877 switch (preset)
16878 {
16879 case gpGrayscale:
16883 break;
16884 case gpHot:
16886 setColorStopAt(0, QColor(50, 0, 0));
16887 setColorStopAt(0.2, QColor(180, 10, 0));
16888 setColorStopAt(0.4, QColor(245, 50, 0));
16889 setColorStopAt(0.6, QColor(255, 150, 10));
16890 setColorStopAt(0.8, QColor(255, 255, 50));
16891 setColorStopAt(1, QColor(255, 255, 255));
16892 break;
16893 case gpCold:
16895 setColorStopAt(0, QColor(0, 0, 50));
16896 setColorStopAt(0.2, QColor(0, 10, 180));
16897 setColorStopAt(0.4, QColor(0, 50, 245));
16898 setColorStopAt(0.6, QColor(10, 150, 255));
16899 setColorStopAt(0.8, QColor(50, 255, 255));
16900 setColorStopAt(1, QColor(255, 255, 255));
16901 break;
16902 case gpNight:
16904 setColorStopAt(0, QColor(10, 20, 30));
16905 setColorStopAt(1, QColor(250, 255, 250));
16906 break;
16907 case gpCandy:
16909 setColorStopAt(0, QColor(0, 0, 255));
16910 setColorStopAt(1, QColor(255, 250, 250));
16911 break;
16912 case gpGeography:
16914 setColorStopAt(0, QColor(70, 170, 210));
16915 setColorStopAt(0.20, QColor(90, 160, 180));
16916 setColorStopAt(0.25, QColor(45, 130, 175));
16917 setColorStopAt(0.30, QColor(100, 140, 125));
16918 setColorStopAt(0.5, QColor(100, 140, 100));
16919 setColorStopAt(0.6, QColor(130, 145, 120));
16920 setColorStopAt(0.7, QColor(140, 130, 120));
16921 setColorStopAt(0.9, QColor(180, 190, 190));
16922 setColorStopAt(1, QColor(210, 210, 230));
16923 break;
16924 case gpIon:
16926 setColorStopAt(0, QColor(50, 10, 10));
16927 setColorStopAt(0.45, QColor(0, 0, 255));
16928 setColorStopAt(0.8, QColor(0, 255, 255));
16929 setColorStopAt(1, QColor(0, 255, 0));
16930 break;
16931 case gpThermal:
16933 setColorStopAt(0, QColor(0, 0, 50));
16934 setColorStopAt(0.15, QColor(20, 0, 120));
16935 setColorStopAt(0.33, QColor(200, 30, 140));
16936 setColorStopAt(0.6, QColor(255, 100, 0));
16937 setColorStopAt(0.85, QColor(255, 255, 40));
16938 setColorStopAt(1, QColor(255, 255, 255));
16939 break;
16940 case gpPolar:
16942 setColorStopAt(0, QColor(50, 255, 255));
16943 setColorStopAt(0.18, QColor(10, 70, 255));
16944 setColorStopAt(0.28, QColor(10, 10, 190));
16945 setColorStopAt(0.5, QColor(0, 0, 0));
16946 setColorStopAt(0.72, QColor(190, 10, 10));
16947 setColorStopAt(0.82, QColor(255, 70, 10));
16948 setColorStopAt(1, QColor(255, 255, 50));
16949 break;
16950 case gpSpectrum:
16952 setColorStopAt(0, QColor(50, 0, 50));
16953 setColorStopAt(0.15, QColor(0, 0, 255));
16954 setColorStopAt(0.35, QColor(0, 255, 255));
16955 setColorStopAt(0.6, QColor(255, 255, 0));
16956 setColorStopAt(0.75, QColor(255, 30, 0));
16957 setColorStopAt(1, QColor(50, 0, 0));
16958 break;
16959 case gpJet:
16961 setColorStopAt(0, QColor(0, 0, 100));
16962 setColorStopAt(0.15, QColor(0, 50, 255));
16963 setColorStopAt(0.35, QColor(0, 255, 255));
16964 setColorStopAt(0.65, QColor(255, 255, 0));
16965 setColorStopAt(0.85, QColor(255, 30, 0));
16966 setColorStopAt(1, QColor(100, 0, 0));
16967 break;
16968 case gpHues:
16970 setColorStopAt(0, QColor(255, 0, 0));
16971 setColorStopAt(1.0/3.0, QColor(0, 0, 255));
16972 setColorStopAt(2.0/3.0, QColor(0, 255, 0));
16973 setColorStopAt(1, QColor(255, 0, 0));
16974 break;
16975 }
16976}
16977
16978/*!
16979 Clears all color stops.
16980
16981 \see setColorStops, setColorStopAt
16982*/
16984{
16985 mColorStops.clear();
16986 mColorBufferInvalidated = true;
16987}
16988
16989/*!
16990 Returns an inverted gradient. The inverted gradient has all properties as this \ref
16991 QCPColorGradient, but the order of the color stops is inverted.
16992
16993 \see setColorStops, setColorStopAt
16994*/
16996{
16997 QCPColorGradient result(*this);
16998 result.clearColorStops();
16999 for (QMap<double, QColor>::const_iterator it=mColorStops.constBegin(); it!=mColorStops.constEnd(); ++it)
17000 result.setColorStopAt(1.0-it.key(), it.value());
17001 return result;
17002}
17003
17004/*! \internal
17005
17006 Returns true if the color gradient uses transparency, i.e. if any of the configured color stops
17007 has an alpha value below 255.
17008*/
17010{
17011 for (QMap<double, QColor>::const_iterator it=mColorStops.constBegin(); it!=mColorStops.constEnd(); ++it)
17012 {
17013 if (it.value().alpha() < 255)
17014 return true;
17015 }
17016 return false;
17017}
17018
17019/*! \internal
17020
17021 Updates the internal color buffer which will be used by \ref colorize and \ref color, to quickly
17022 convert positions to colors. This is where the interpolation between color stops is calculated.
17023*/
17025{
17026 if (mColorBuffer.size() != mLevelCount)
17027 mColorBuffer.resize(mLevelCount);
17028 if (mColorStops.size() > 1)
17029 {
17030 double indexToPosFactor = 1.0/double(mLevelCount-1);
17031 const bool useAlpha = stopsUseAlpha();
17032 for (int i=0; i<mLevelCount; ++i)
17033 {
17034 double position = i*indexToPosFactor;
17035 QMap<double, QColor>::const_iterator it = const_cast<const QMap<double, QColor> &>(mColorStops).lowerBound(position);
17036 if (it == mColorStops.constEnd()) // position is on or after last stop, use color of last stop
17037 {
17038 if (useAlpha)
17039 {
17040 const QColor col = std::prev(it).value();
17041 const double alphaPremultiplier = col.alpha()/255.0; // since we use QImage::Format_ARGB32_Premultiplied
17042 mColorBuffer[i] = qRgba(int(col.red()*alphaPremultiplier),
17043 int(col.green()*alphaPremultiplier),
17044 int(col.blue()*alphaPremultiplier),
17045 col.alpha());
17046 } else
17047 mColorBuffer[i] = std::prev(it).value().rgba();
17048 } else if (it == mColorStops.constBegin()) // position is on or before first stop, use color of first stop
17049 {
17050 if (useAlpha)
17051 {
17052 const QColor &col = it.value();
17053 const double alphaPremultiplier = col.alpha()/255.0; // since we use QImage::Format_ARGB32_Premultiplied
17054 mColorBuffer[i] = qRgba(int(col.red()*alphaPremultiplier),
17055 int(col.green()*alphaPremultiplier),
17056 int(col.blue()*alphaPremultiplier),
17057 col.alpha());
17058 } else
17059 mColorBuffer[i] = it.value().rgba();
17060 } else // position is in between stops (or on an intermediate stop), interpolate color
17061 {
17064 double t = (position-low.key())/(high.key()-low.key()); // interpolation factor 0..1
17065 switch (mColorInterpolation)
17066 {
17067 case ciRGB:
17068 {
17069 if (useAlpha)
17070 {
17071 const int alpha = int((1-t)*low.value().alpha() + t*high.value().alpha());
17072 const double alphaPremultiplier = alpha/255.0; // since we use QImage::Format_ARGB32_Premultiplied
17073 mColorBuffer[i] = qRgba(int( ((1-t)*low.value().red() + t*high.value().red())*alphaPremultiplier ),
17074 int( ((1-t)*low.value().green() + t*high.value().green())*alphaPremultiplier ),
17075 int( ((1-t)*low.value().blue() + t*high.value().blue())*alphaPremultiplier ),
17076 alpha);
17077 } else
17078 {
17079 mColorBuffer[i] = qRgb(int( ((1-t)*low.value().red() + t*high.value().red()) ),
17080 int( ((1-t)*low.value().green() + t*high.value().green()) ),
17081 int( ((1-t)*low.value().blue() + t*high.value().blue())) );
17082 }
17083 break;
17084 }
17085 case ciHSV:
17086 {
17087 QColor lowHsv = low.value().toHsv();
17088 QColor highHsv = high.value().toHsv();
17089 double hue = 0;
17090 double hueDiff = highHsv.hueF()-lowHsv.hueF();
17091 if (hueDiff > 0.5)
17092 hue = lowHsv.hueF() - t*(1.0-hueDiff);
17093 else if (hueDiff < -0.5)
17094 hue = lowHsv.hueF() + t*(1.0+hueDiff);
17095 else
17096 hue = lowHsv.hueF() + t*hueDiff;
17097 if (hue < 0) hue += 1.0;
17098 else if (hue >= 1.0) hue -= 1.0;
17099 if (useAlpha)
17100 {
17101 const QRgb rgb = QColor::fromHsvF(hue,
17102 (1-t)*lowHsv.saturationF() + t*highHsv.saturationF(),
17103 (1-t)*lowHsv.valueF() + t*highHsv.valueF()).rgb();
17104 const double alpha = (1-t)*lowHsv.alphaF() + t*highHsv.alphaF();
17105 mColorBuffer[i] = qRgba(int(qRed(rgb)*alpha), int(qGreen(rgb)*alpha), int(qBlue(rgb)*alpha), int(255*alpha));
17106 }
17107 else
17108 {
17109 mColorBuffer[i] = QColor::fromHsvF(hue,
17110 (1-t)*lowHsv.saturationF() + t*highHsv.saturationF(),
17111 (1-t)*lowHsv.valueF() + t*highHsv.valueF()).rgb();
17112 }
17113 break;
17114 }
17115 }
17116 }
17117 }
17118 } else if (mColorStops.size() == 1)
17119 {
17120 const QRgb rgb = mColorStops.constBegin().value().rgb();
17121 const double alpha = mColorStops.constBegin().value().alphaF();
17122 mColorBuffer.fill(qRgba(int(qRed(rgb)*alpha), int(qGreen(rgb)*alpha), int(qBlue(rgb)*alpha), int(255*alpha)));
17123 } else // mColorStops is empty, fill color buffer with black
17124 {
17125 mColorBuffer.fill(qRgb(0, 0, 0));
17126 }
17127 mColorBufferInvalidated = false;
17128}
17129/* end of 'src/colorgradient.cpp' */
17130
17131
17132/* including file 'src/selectiondecorator-bracket.cpp' */
17133/* modified 2021-03-29T02:30:44, size 12308 */
17134
17135////////////////////////////////////////////////////////////////////////////////////////////////////
17136//////////////////// QCPSelectionDecoratorBracket
17137////////////////////////////////////////////////////////////////////////////////////////////////////
17138
17139/*! \class QCPSelectionDecoratorBracket
17140 \brief A selection decorator which draws brackets around each selected data segment
17141
17142 Additionally to the regular highlighting of selected segments via color, fill and scatter style,
17143 this \ref QCPSelectionDecorator subclass draws markers at the begin and end of each selected data
17144 segment of the plottable.
17145
17146 The shape of the markers can be controlled with \ref setBracketStyle, \ref setBracketWidth and
17147 \ref setBracketHeight. The color/fill can be controlled with \ref setBracketPen and \ref
17148 setBracketBrush.
17149
17150 To introduce custom bracket styles, it is only necessary to sublcass \ref
17151 QCPSelectionDecoratorBracket and reimplement \ref drawBracket. The rest will be managed by the
17152 base class.
17153*/
17154
17155/*!
17156 Creates a new QCPSelectionDecoratorBracket instance with default values.
17157*/
17159 mBracketPen(QPen(Qt::black)),
17160 mBracketBrush(Qt::NoBrush),
17161 mBracketWidth(5),
17162 mBracketHeight(50),
17163 mBracketStyle(bsSquareBracket),
17164 mTangentToData(false),
17165 mTangentAverage(2)
17166{
17167
17168}
17169
17170QCPSelectionDecoratorBracket::~QCPSelectionDecoratorBracket()
17171{
17172}
17173
17174/*!
17175 Sets the pen that will be used to draw the brackets at the beginning and end of each selected
17176 data segment.
17177*/
17179{
17180 mBracketPen = pen;
17181}
17182
17183/*!
17184 Sets the brush that will be used to draw the brackets at the beginning and end of each selected
17185 data segment.
17186*/
17188{
17189 mBracketBrush = brush;
17190}
17191
17192/*!
17193 Sets the width of the drawn bracket. The width dimension is always parallel to the key axis of
17194 the data, or the tangent direction of the current data slope, if \ref setTangentToData is
17195 enabled.
17196*/
17198{
17199 mBracketWidth = width;
17200}
17201
17202/*!
17203 Sets the height of the drawn bracket. The height dimension is always perpendicular to the key axis
17204 of the data, or the tangent direction of the current data slope, if \ref setTangentToData is
17205 enabled.
17206*/
17208{
17209 mBracketHeight = height;
17210}
17211
17212/*!
17213 Sets the shape that the bracket/marker will have.
17214
17215 \see setBracketWidth, setBracketHeight
17216*/
17221
17222/*!
17223 Sets whether the brackets will be rotated such that they align with the slope of the data at the
17224 position that they appear in.
17225
17226 For noisy data, it might be more visually appealing to average the slope over multiple data
17227 points. This can be configured via \ref setTangentAverage.
17228*/
17230{
17231 mTangentToData = enabled;
17232}
17233
17234/*!
17235 Controls over how many data points the slope shall be averaged, when brackets shall be aligned
17236 with the data (if \ref setTangentToData is true).
17237
17238 From the position of the bracket, \a pointCount points towards the selected data range will be
17239 taken into account. The smallest value of \a pointCount is 1, which is effectively equivalent to
17240 disabling \ref setTangentToData.
17241*/
17243{
17244 mTangentAverage = pointCount;
17245 if (mTangentAverage < 1)
17246 mTangentAverage = 1;
17247}
17248
17249/*!
17250 Draws the bracket shape with \a painter. The parameter \a direction is either -1 or 1 and
17251 indicates whether the bracket shall point to the left or the right (i.e. is a closing or opening
17252 bracket, respectively).
17253
17254 The passed \a painter already contains all transformations that are necessary to position and
17255 rotate the bracket appropriately. Painting operations can be performed as if drawing upright
17256 brackets on flat data with horizontal key axis, with (0, 0) being the center of the bracket.
17257
17258 If you wish to sublcass \ref QCPSelectionDecoratorBracket in order to provide custom bracket
17259 shapes (see \ref QCPSelectionDecoratorBracket::bsUserStyle), this is the method you should
17260 reimplement.
17261*/
17263{
17264 switch (mBracketStyle)
17265 {
17266 case bsSquareBracket:
17267 {
17268 painter->drawLine(QLineF(mBracketWidth*direction, -mBracketHeight*0.5, 0, -mBracketHeight*0.5));
17269 painter->drawLine(QLineF(mBracketWidth*direction, mBracketHeight*0.5, 0, mBracketHeight*0.5));
17270 painter->drawLine(QLineF(0, -mBracketHeight*0.5, 0, mBracketHeight*0.5));
17271 break;
17272 }
17273 case bsHalfEllipse:
17274 {
17275 painter->drawArc(QRectF(-mBracketWidth*0.5, -mBracketHeight*0.5, mBracketWidth, mBracketHeight), -90*16, -180*16*direction);
17276 break;
17277 }
17278 case bsEllipse:
17279 {
17280 painter->drawEllipse(QRectF(-mBracketWidth*0.5, -mBracketHeight*0.5, mBracketWidth, mBracketHeight));
17281 break;
17282 }
17283 case bsPlus:
17284 {
17285 painter->drawLine(QLineF(0, -mBracketHeight*0.5, 0, mBracketHeight*0.5));
17286 painter->drawLine(QLineF(-mBracketWidth*0.5, 0, mBracketWidth*0.5, 0));
17287 break;
17288 }
17289 default:
17290 {
17291 qDebug() << Q_FUNC_INFO << "unknown/custom bracket style can't be handeld by default implementation:" << static_cast<int>(mBracketStyle);
17292 break;
17293 }
17294 }
17295}
17296
17297/*!
17298 Draws the bracket decoration on the data points at the begin and end of each selected data
17299 segment given in \a seletion.
17300
17301 It uses the method \ref drawBracket to actually draw the shapes.
17302
17303 \seebaseclassmethod
17304*/
17306{
17307 if (!mPlottable || selection.isEmpty()) return;
17308
17309 if (QCPPlottableInterface1D *interface1d = mPlottable->interface1D())
17310 {
17311 foreach (const QCPDataRange &dataRange, selection.dataRanges())
17312 {
17313 // determine position and (if tangent mode is enabled) angle of brackets:
17314 int openBracketDir = (mPlottable->keyAxis() && !mPlottable->keyAxis()->rangeReversed()) ? 1 : -1;
17318 double openBracketAngle = 0;
17319 double closeBracketAngle = 0;
17320 if (mTangentToData)
17321 {
17324 }
17325 // draw opening bracket:
17326 QTransform oldTransform = painter->transform();
17327 painter->setPen(mBracketPen);
17328 painter->setBrush(mBracketBrush);
17329 painter->translate(openBracketPos);
17330 painter->rotate(openBracketAngle/M_PI*180.0);
17331 drawBracket(painter, openBracketDir);
17332 painter->setTransform(oldTransform);
17333 // draw closing bracket:
17334 painter->setPen(mBracketPen);
17335 painter->setBrush(mBracketBrush);
17336 painter->translate(closeBracketPos);
17337 painter->rotate(closeBracketAngle/M_PI*180.0);
17338 drawBracket(painter, closeBracketDir);
17339 painter->setTransform(oldTransform);
17340 }
17341 }
17342}
17343
17344/*! \internal
17345
17346 If \ref setTangentToData is enabled, brackets need to be rotated according to the data slope.
17347 This method returns the angle in radians by which a bracket at the given \a dataIndex must be
17348 rotated.
17349
17350 The parameter \a direction must be set to either -1 or 1, representing whether it is an opening
17351 or closing bracket. Since for slope calculation multiple data points are required, this defines
17352 the direction in which the algorithm walks, starting at \a dataIndex, to average those data
17353 points. (see \ref setTangentToData and \ref setTangentAverage)
17354
17355 \a interface1d is the interface to the plottable's data which is used to query data coordinates.
17356*/
17358{
17360 return 0;
17361 direction = direction < 0 ? -1 : 1; // enforce direction is either -1 or 1
17362
17363 // how many steps we can actually go from index in the given direction without exceeding data bounds:
17364 int averageCount;
17365 if (direction < 0)
17366 averageCount = qMin(mTangentAverage, dataIndex);
17367 else
17368 averageCount = qMin(mTangentAverage, interface1d->dataCount()-1-dataIndex);
17369 qDebug() << averageCount;
17370 // calculate point average of averageCount points:
17373 int currentIndex = dataIndex;
17374 for (int i=0; i<averageCount; ++i)
17375 {
17376 points[i] = getPixelCoordinates(interface1d, currentIndex);
17377 pointsAverage += points[i];
17378 currentIndex += direction;
17379 }
17380 pointsAverage /= double(averageCount);
17381
17382 // calculate slope of linear regression through points:
17383 double numSum = 0;
17384 double denomSum = 0;
17385 for (int i=0; i<averageCount; ++i)
17386 {
17387 const double dx = points.at(i).x()-pointsAverage.x();
17388 const double dy = points.at(i).y()-pointsAverage.y();
17389 numSum += dx*dy;
17390 denomSum += dx*dx;
17391 }
17393 {
17394 return qAtan2(numSum, denomSum);
17395 } else // undetermined angle, probably mTangentAverage == 1, so using only one data point
17396 return 0;
17397}
17398
17399/*! \internal
17400
17401 Returns the pixel coordinates of the data point at \a dataIndex, using \a interface1d to access
17402 the data points.
17403*/
17405{
17406 QCPAxis *keyAxis = mPlottable->keyAxis();
17407 QCPAxis *valueAxis = mPlottable->valueAxis();
17408 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return {0, 0}; }
17409
17410 if (keyAxis->orientation() == Qt::Horizontal)
17411 return {keyAxis->coordToPixel(interface1d->dataMainKey(dataIndex)), valueAxis->coordToPixel(interface1d->dataMainValue(dataIndex))};
17412 else
17413 return {valueAxis->coordToPixel(interface1d->dataMainValue(dataIndex)), keyAxis->coordToPixel(interface1d->dataMainKey(dataIndex))};
17414}
17415/* end of 'src/selectiondecorator-bracket.cpp' */
17416
17417
17418/* including file 'src/layoutelements/layoutelement-axisrect.cpp' */
17419/* modified 2021-03-29T02:30:44, size 47193 */
17420
17421
17422////////////////////////////////////////////////////////////////////////////////////////////////////
17423//////////////////// QCPAxisRect
17424////////////////////////////////////////////////////////////////////////////////////////////////////
17425
17426/*! \class QCPAxisRect
17427 \brief Holds multiple axes and arranges them in a rectangular shape.
17428
17429 This class represents an axis rect, a rectangular area that is bounded on all sides with an
17430 arbitrary number of axes.
17431
17432 Initially QCustomPlot has one axis rect, accessible via QCustomPlot::axisRect(). However, the
17433 layout system allows to have multiple axis rects, e.g. arranged in a grid layout
17434 (QCustomPlot::plotLayout).
17435
17436 By default, QCPAxisRect comes with four axes, at bottom, top, left and right. They can be
17437 accessed via \ref axis by providing the respective axis type (\ref QCPAxis::AxisType) and index.
17438 If you need all axes in the axis rect, use \ref axes. The top and right axes are set to be
17439 invisible initially (QCPAxis::setVisible). To add more axes to a side, use \ref addAxis or \ref
17440 addAxes. To remove an axis, use \ref removeAxis.
17441
17442 The axis rect layerable itself only draws a background pixmap or color, if specified (\ref
17443 setBackground). It is placed on the "background" layer initially (see \ref QCPLayer for an
17444 explanation of the QCustomPlot layer system). The axes that are held by the axis rect can be
17445 placed on other layers, independently of the axis rect.
17446
17447 Every axis rect has a child layout of type \ref QCPLayoutInset. It is accessible via \ref
17448 insetLayout and can be used to have other layout elements (or even other layouts with multiple
17449 elements) hovering inside the axis rect.
17450
17451 If an axis rect is clicked and dragged, it processes this by moving certain axis ranges. The
17452 behaviour can be controlled with \ref setRangeDrag and \ref setRangeDragAxes. If the mouse wheel
17453 is scrolled while the cursor is on the axis rect, certain axes are scaled. This is controllable
17454 via \ref setRangeZoom, \ref setRangeZoomAxes and \ref setRangeZoomFactor. These interactions are
17455 only enabled if \ref QCustomPlot::setInteractions contains \ref QCP::iRangeDrag and \ref
17456 QCP::iRangeZoom.
17457
17458 \image html AxisRectSpacingOverview.png
17459 <center>Overview of the spacings and paddings that define the geometry of an axis. The dashed
17460 line on the far left indicates the viewport/widget border.</center>
17461*/
17462
17463/* start documentation of inline functions */
17464
17465/*! \fn QCPLayoutInset *QCPAxisRect::insetLayout() const
17466
17467 Returns the inset layout of this axis rect. It can be used to place other layout elements (or
17468 even layouts with multiple other elements) inside/on top of an axis rect.
17469
17470 \see QCPLayoutInset
17471*/
17472
17473/*! \fn int QCPAxisRect::left() const
17474
17475 Returns the pixel position of the left border of this axis rect. Margins are not taken into
17476 account here, so the returned value is with respect to the inner \ref rect.
17477*/
17478
17479/*! \fn int QCPAxisRect::right() const
17480
17481 Returns the pixel position of the right border of this axis rect. Margins are not taken into
17482 account here, so the returned value is with respect to the inner \ref rect.
17483*/
17484
17485/*! \fn int QCPAxisRect::top() const
17486
17487 Returns the pixel position of the top border of this axis rect. Margins are not taken into
17488 account here, so the returned value is with respect to the inner \ref rect.
17489*/
17490
17491/*! \fn int QCPAxisRect::bottom() const
17492
17493 Returns the pixel position of the bottom border of this axis rect. Margins are not taken into
17494 account here, so the returned value is with respect to the inner \ref rect.
17495*/
17496
17497/*! \fn int QCPAxisRect::width() const
17498
17499 Returns the pixel width of this axis rect. Margins are not taken into account here, so the
17500 returned value is with respect to the inner \ref rect.
17501*/
17502
17503/*! \fn int QCPAxisRect::height() const
17504
17505 Returns the pixel height of this axis rect. Margins are not taken into account here, so the
17506 returned value is with respect to the inner \ref rect.
17507*/
17508
17509/*! \fn QSize QCPAxisRect::size() const
17510
17511 Returns the pixel size of this axis rect. Margins are not taken into account here, so the
17512 returned value is with respect to the inner \ref rect.
17513*/
17514
17515/*! \fn QPoint QCPAxisRect::topLeft() const
17516
17517 Returns the top left corner of this axis rect in pixels. Margins are not taken into account here,
17518 so the returned value is with respect to the inner \ref rect.
17519*/
17520
17521/*! \fn QPoint QCPAxisRect::topRight() const
17522
17523 Returns the top right corner of this axis rect in pixels. Margins are not taken into account
17524 here, so the returned value is with respect to the inner \ref rect.
17525*/
17526
17527/*! \fn QPoint QCPAxisRect::bottomLeft() const
17528
17529 Returns the bottom left corner of this axis rect in pixels. Margins are not taken into account
17530 here, so the returned value is with respect to the inner \ref rect.
17531*/
17532
17533/*! \fn QPoint QCPAxisRect::bottomRight() const
17534
17535 Returns the bottom right corner of this axis rect in pixels. Margins are not taken into account
17536 here, so the returned value is with respect to the inner \ref rect.
17537*/
17538
17539/*! \fn QPoint QCPAxisRect::center() const
17540
17541 Returns the center of this axis rect in pixels. Margins are not taken into account here, so the
17542 returned value is with respect to the inner \ref rect.
17543*/
17544
17545/* end documentation of inline functions */
17546
17547/*!
17548 Creates a QCPAxisRect instance and sets default values. An axis is added for each of the four
17549 sides, the top and right axes are set invisible initially.
17550*/
17552 QCPLayoutElement(parentPlot),
17553 mBackgroundBrush(Qt::NoBrush),
17554 mBackgroundScaled(true),
17555 mBackgroundScaledMode(Qt::KeepAspectRatioByExpanding),
17556 mInsetLayout(new QCPLayoutInset),
17557 mRangeDrag(Qt::Horizontal|Qt::Vertical),
17558 mRangeZoom(Qt::Horizontal|Qt::Vertical),
17559 mRangeZoomFactorHorz(0.85),
17560 mRangeZoomFactorVert(0.85),
17561 mDragging(false)
17562{
17563 mInsetLayout->initializeParentPlot(mParentPlot);
17564 mInsetLayout->setParentLayerable(this);
17565 mInsetLayout->setParent(this);
17566
17567 setMinimumSize(50, 50);
17568 setMinimumMargins(QMargins(15, 15, 15, 15));
17573
17574 if (setupDefaultAxes)
17575 {
17578 QCPAxis *xAxis2 = addAxis(QCPAxis::atTop);
17579 QCPAxis *yAxis2 = addAxis(QCPAxis::atRight);
17580 setRangeDragAxes(xAxis, yAxis);
17581 setRangeZoomAxes(xAxis, yAxis);
17582 xAxis2->setVisible(false);
17583 yAxis2->setVisible(false);
17584 xAxis->grid()->setVisible(true);
17585 yAxis->grid()->setVisible(true);
17586 xAxis2->grid()->setVisible(false);
17587 yAxis2->grid()->setVisible(false);
17588 xAxis2->grid()->setZeroLinePen(Qt::NoPen);
17589 yAxis2->grid()->setZeroLinePen(Qt::NoPen);
17590 xAxis2->grid()->setVisible(false);
17591 yAxis2->grid()->setVisible(false);
17592 }
17593}
17594
17595QCPAxisRect::~QCPAxisRect()
17596{
17597 delete mInsetLayout;
17598 mInsetLayout = nullptr;
17599
17600 foreach (QCPAxis *axis, axes())
17602}
17603
17604/*!
17605 Returns the number of axes on the axis rect side specified with \a type.
17606
17607 \see axis
17608*/
17610{
17611 return mAxes.value(type).size();
17612}
17613
17614/*!
17615 Returns the axis with the given \a index on the axis rect side specified with \a type.
17616
17617 \see axisCount, axes
17618*/
17620{
17621 QList<QCPAxis*> ax(mAxes.value(type));
17622 if (index >= 0 && index < ax.size())
17623 {
17624 return ax.at(index);
17625 } else
17626 {
17627 qDebug() << Q_FUNC_INFO << "Axis index out of bounds:" << index;
17628 return nullptr;
17629 }
17630}
17631
17632/*!
17633 Returns all axes on the axis rect sides specified with \a types.
17634
17635 \a types may be a single \ref QCPAxis::AxisType or an <tt>or</tt>-combination, to get the axes of
17636 multiple sides.
17637
17638 \see axis
17639*/
17641{
17642 QList<QCPAxis*> result;
17643 if (types.testFlag(QCPAxis::atLeft))
17644 result << mAxes.value(QCPAxis::atLeft);
17645 if (types.testFlag(QCPAxis::atRight))
17646 result << mAxes.value(QCPAxis::atRight);
17647 if (types.testFlag(QCPAxis::atTop))
17648 result << mAxes.value(QCPAxis::atTop);
17649 if (types.testFlag(QCPAxis::atBottom))
17650 result << mAxes.value(QCPAxis::atBottom);
17651 return result;
17652}
17653
17654/*! \overload
17655
17656 Returns all axes of this axis rect.
17657*/
17659{
17660 QList<QCPAxis*> result;
17662 while (it.hasNext())
17663 {
17664 it.next();
17665 result << it.value();
17666 }
17667 return result;
17668}
17669
17670/*!
17671 Adds a new axis to the axis rect side specified with \a type, and returns it. If \a axis is 0, a
17672 new QCPAxis instance is created internally. QCustomPlot owns the returned axis, so if you want to
17673 remove an axis, use \ref removeAxis instead of deleting it manually.
17674
17675 You may inject QCPAxis instances (or subclasses of QCPAxis) by setting \a axis to an axis that was
17676 previously created outside QCustomPlot. It is important to note that QCustomPlot takes ownership
17677 of the axis, so you may not delete it afterwards. Further, the \a axis must have been created
17678 with this axis rect as parent and with the same axis type as specified in \a type. If this is not
17679 the case, a debug output is generated, the axis is not added, and the method returns \c nullptr.
17680
17681 This method can not be used to move \a axis between axis rects. The same \a axis instance must
17682 not be added multiple times to the same or different axis rects.
17683
17684 If an axis rect side already contains one or more axes, the lower and upper endings of the new
17685 axis (\ref QCPAxis::setLowerEnding, \ref QCPAxis::setUpperEnding) are set to \ref
17686 QCPLineEnding::esHalfBar.
17687
17688 \see addAxes, setupFullAxesBox
17689*/
17691{
17692 QCPAxis *newAxis = axis;
17693 if (!newAxis)
17694 {
17695 newAxis = new QCPAxis(this, type);
17696 } else // user provided existing axis instance, do some sanity checks
17697 {
17698 if (newAxis->axisType() != type)
17699 {
17700 qDebug() << Q_FUNC_INFO << "passed axis has different axis type than specified in type parameter";
17701 return nullptr;
17702 }
17703 if (newAxis->axisRect() != this)
17704 {
17705 qDebug() << Q_FUNC_INFO << "passed axis doesn't have this axis rect as parent axis rect";
17706 return nullptr;
17707 }
17708 if (axes().contains(newAxis))
17709 {
17710 qDebug() << Q_FUNC_INFO << "passed axis is already owned by this axis rect";
17711 return nullptr;
17712 }
17713 }
17714 if (!mAxes[type].isEmpty()) // multiple axes on one side, add half-bar axis ending to additional axes with offset
17715 {
17716 bool invert = (type == QCPAxis::atRight) || (type == QCPAxis::atBottom);
17717 newAxis->setLowerEnding(QCPLineEnding(QCPLineEnding::esHalfBar, 6, 10, !invert));
17718 newAxis->setUpperEnding(QCPLineEnding(QCPLineEnding::esHalfBar, 6, 10, invert));
17719 }
17720 mAxes[type].append(newAxis);
17721
17722 // reset convenience axis pointers on parent QCustomPlot if they are unset:
17723 if (mParentPlot && mParentPlot->axisRectCount() > 0 && mParentPlot->axisRect(0) == this)
17724 {
17725 switch (type)
17726 {
17727 case QCPAxis::atBottom: { if (!mParentPlot->xAxis) mParentPlot->xAxis = newAxis; break; }
17728 case QCPAxis::atLeft: { if (!mParentPlot->yAxis) mParentPlot->yAxis = newAxis; break; }
17729 case QCPAxis::atTop: { if (!mParentPlot->xAxis2) mParentPlot->xAxis2 = newAxis; break; }
17730 case QCPAxis::atRight: { if (!mParentPlot->yAxis2) mParentPlot->yAxis2 = newAxis; break; }
17731 }
17732 }
17733
17734 return newAxis;
17735}
17736
17737/*!
17738 Adds a new axis with \ref addAxis to each axis rect side specified in \a types. This may be an
17739 <tt>or</tt>-combination of QCPAxis::AxisType, so axes can be added to multiple sides at once.
17740
17741 Returns a list of the added axes.
17742
17743 \see addAxis, setupFullAxesBox
17744*/
17746{
17747 QList<QCPAxis*> result;
17748 if (types.testFlag(QCPAxis::atLeft))
17749 result << addAxis(QCPAxis::atLeft);
17750 if (types.testFlag(QCPAxis::atRight))
17751 result << addAxis(QCPAxis::atRight);
17752 if (types.testFlag(QCPAxis::atTop))
17753 result << addAxis(QCPAxis::atTop);
17754 if (types.testFlag(QCPAxis::atBottom))
17755 result << addAxis(QCPAxis::atBottom);
17756 return result;
17757}
17758
17759/*!
17760 Removes the specified \a axis from the axis rect and deletes it.
17761
17762 Returns true on success, i.e. if \a axis was a valid axis in this axis rect.
17763
17764 \see addAxis
17765*/
17767{
17768 // don't access axis->axisType() to provide safety when axis is an invalid pointer, rather go through all axis containers:
17770 while (it.hasNext())
17771 {
17772 it.next();
17773 if (it.value().contains(axis))
17774 {
17775 if (it.value().first() == axis && it.value().size() > 1) // if removing first axis, transfer axis offset to the new first axis (which at this point is the second axis, if it exists)
17776 it.value()[1]->setOffset(axis->offset());
17777 mAxes[it.key()].removeOne(axis);
17778 if (qobject_cast<QCustomPlot*>(parentPlot())) // make sure this isn't called from QObject dtor when QCustomPlot is already destructed (happens when the axis rect is not in any layout and thus QObject-child of QCustomPlot)
17779 parentPlot()->axisRemoved(axis);
17780 delete axis;
17781 return true;
17782 }
17783 }
17784 qDebug() << Q_FUNC_INFO << "Axis isn't in axis rect:" << reinterpret_cast<quintptr>(axis);
17785 return false;
17786}
17787
17788/*!
17789 Zooms in (or out) to the passed rectangular region \a pixelRect, given in pixel coordinates.
17790
17791 All axes of this axis rect will have their range zoomed accordingly. If you only wish to zoom
17792 specific axes, use the overloaded version of this method.
17793
17794 \see QCustomPlot::setSelectionRectMode
17795*/
17797{
17798 zoom(pixelRect, axes());
17799}
17800
17801/*! \overload
17802
17803 Zooms in (or out) to the passed rectangular region \a pixelRect, given in pixel coordinates.
17804
17805 Only the axes passed in \a affectedAxes will have their ranges zoomed accordingly.
17806
17807 \see QCustomPlot::setSelectionRectMode
17808*/
17810{
17811 foreach (QCPAxis *axis, affectedAxes)
17812 {
17813 if (!axis)
17814 {
17815 qDebug() << Q_FUNC_INFO << "a passed axis was zero";
17816 continue;
17817 }
17820 pixelRange = QCPRange(pixelRect.left(), pixelRect.right());
17821 else
17822 pixelRange = QCPRange(pixelRect.top(), pixelRect.bottom());
17824 }
17825}
17826
17827/*!
17828 Convenience function to create an axis on each side that doesn't have any axes yet and set their
17829 visibility to true. Further, the top/right axes are assigned the following properties of the
17830 bottom/left axes:
17831
17832 \li range (\ref QCPAxis::setRange)
17833 \li range reversed (\ref QCPAxis::setRangeReversed)
17834 \li scale type (\ref QCPAxis::setScaleType)
17835 \li tick visibility (\ref QCPAxis::setTicks)
17836 \li number format (\ref QCPAxis::setNumberFormat)
17837 \li number precision (\ref QCPAxis::setNumberPrecision)
17838 \li tick count of ticker (\ref QCPAxisTicker::setTickCount)
17839 \li tick origin of ticker (\ref QCPAxisTicker::setTickOrigin)
17840
17841 Tick label visibility (\ref QCPAxis::setTickLabels) of the right and top axes are set to false.
17842
17843 If \a connectRanges is true, the \ref QCPAxis::rangeChanged "rangeChanged" signals of the bottom
17844 and left axes are connected to the \ref QCPAxis::setRange slots of the top and right axes.
17845*/
17847{
17848 QCPAxis *xAxis, *yAxis, *xAxis2, *yAxis2;
17849 if (axisCount(QCPAxis::atBottom) == 0)
17850 xAxis = addAxis(QCPAxis::atBottom);
17851 else
17852 xAxis = axis(QCPAxis::atBottom);
17853
17854 if (axisCount(QCPAxis::atLeft) == 0)
17855 yAxis = addAxis(QCPAxis::atLeft);
17856 else
17857 yAxis = axis(QCPAxis::atLeft);
17858
17859 if (axisCount(QCPAxis::atTop) == 0)
17860 xAxis2 = addAxis(QCPAxis::atTop);
17861 else
17862 xAxis2 = axis(QCPAxis::atTop);
17863
17864 if (axisCount(QCPAxis::atRight) == 0)
17865 yAxis2 = addAxis(QCPAxis::atRight);
17866 else
17867 yAxis2 = axis(QCPAxis::atRight);
17868
17869 xAxis->setVisible(true);
17870 yAxis->setVisible(true);
17871 xAxis2->setVisible(true);
17872 yAxis2->setVisible(true);
17873 xAxis2->setTickLabels(false);
17874 yAxis2->setTickLabels(false);
17875
17876 xAxis2->setRange(xAxis->range());
17877 xAxis2->setRangeReversed(xAxis->rangeReversed());
17878 xAxis2->setScaleType(xAxis->scaleType());
17879 xAxis2->setTicks(xAxis->ticks());
17880 xAxis2->setNumberFormat(xAxis->numberFormat());
17881 xAxis2->setNumberPrecision(xAxis->numberPrecision());
17882 xAxis2->ticker()->setTickCount(xAxis->ticker()->tickCount());
17883 xAxis2->ticker()->setTickOrigin(xAxis->ticker()->tickOrigin());
17884
17885 yAxis2->setRange(yAxis->range());
17886 yAxis2->setRangeReversed(yAxis->rangeReversed());
17887 yAxis2->setScaleType(yAxis->scaleType());
17888 yAxis2->setTicks(yAxis->ticks());
17889 yAxis2->setNumberFormat(yAxis->numberFormat());
17890 yAxis2->setNumberPrecision(yAxis->numberPrecision());
17891 yAxis2->ticker()->setTickCount(yAxis->ticker()->tickCount());
17892 yAxis2->ticker()->setTickOrigin(yAxis->ticker()->tickOrigin());
17893
17894 if (connectRanges)
17895 {
17896 connect(xAxis, SIGNAL(rangeChanged(QCPRange)), xAxis2, SLOT(setRange(QCPRange)));
17897 connect(yAxis, SIGNAL(rangeChanged(QCPRange)), yAxis2, SLOT(setRange(QCPRange)));
17898 }
17899}
17900
17901/*!
17902 Returns a list of all the plottables that are associated with this axis rect.
17903
17904 A plottable is considered associated with an axis rect if its key or value axis (or both) is in
17905 this axis rect.
17906
17907 \see graphs, items
17908*/
17910{
17911 // Note: don't append all QCPAxis::plottables() into a list, because we might get duplicate entries
17913 foreach (QCPAbstractPlottable *plottable, mParentPlot->mPlottables)
17914 {
17915 if (plottable->keyAxis()->axisRect() == this || plottable->valueAxis()->axisRect() == this)
17916 result.append(plottable);
17917 }
17918 return result;
17919}
17920
17921/*!
17922 Returns a list of all the graphs that are associated with this axis rect.
17923
17924 A graph is considered associated with an axis rect if its key or value axis (or both) is in
17925 this axis rect.
17926
17927 \see plottables, items
17928*/
17930{
17931 // Note: don't append all QCPAxis::graphs() into a list, because we might get duplicate entries
17932 QList<QCPGraph*> result;
17933 foreach (QCPGraph *graph, mParentPlot->mGraphs)
17934 {
17935 if (graph->keyAxis()->axisRect() == this || graph->valueAxis()->axisRect() == this)
17936 result.append(graph);
17937 }
17938 return result;
17939}
17940
17941/*!
17942 Returns a list of all the items that are associated with this axis rect.
17943
17944 An item is considered associated with an axis rect if any of its positions has key or value axis
17945 set to an axis that is in this axis rect, or if any of its positions has \ref
17946 QCPItemPosition::setAxisRect set to the axis rect, or if the clip axis rect (\ref
17947 QCPAbstractItem::setClipAxisRect) is set to this axis rect.
17948
17949 \see plottables, graphs
17950*/
17952{
17953 // Note: don't just append all QCPAxis::items() into a list, because we might get duplicate entries
17954 // and miss those items that have this axis rect as clipAxisRect.
17956 foreach (QCPAbstractItem *item, mParentPlot->mItems)
17957 {
17958 if (item->clipAxisRect() == this)
17959 {
17960 result.append(item);
17961 continue;
17962 }
17963 foreach (QCPItemPosition *position, item->positions())
17964 {
17965 if (position->axisRect() == this ||
17966 position->keyAxis()->axisRect() == this ||
17967 position->valueAxis()->axisRect() == this)
17968 {
17969 result.append(item);
17970 break;
17971 }
17972 }
17973 }
17974 return result;
17975}
17976
17977/*!
17978 This method is called automatically upon replot and doesn't need to be called by users of
17979 QCPAxisRect.
17980
17981 Calls the base class implementation to update the margins (see \ref QCPLayoutElement::update),
17982 and finally passes the \ref rect to the inset layout (\ref insetLayout) and calls its
17983 QCPInsetLayout::update function.
17984
17985 \seebaseclassmethod
17986*/
17988{
17990
17991 switch (phase)
17992 {
17993 case upPreparation:
17994 {
17995 foreach (QCPAxis *axis, axes())
17997 break;
17998 }
17999 case upLayout:
18000 {
18001 mInsetLayout->setOuterRect(rect());
18002 break;
18003 }
18004 default: break;
18005 }
18006
18007 // pass update call on to inset layout (doesn't happen automatically, because QCPAxisRect doesn't derive from QCPLayout):
18008 mInsetLayout->update(phase);
18009}
18010
18011/* inherits documentation from base class */
18013{
18015 if (mInsetLayout)
18016 {
18017 result << mInsetLayout;
18018 if (recursive)
18019 result << mInsetLayout->elements(recursive);
18020 }
18021 return result;
18022}
18023
18024/* inherits documentation from base class */
18026{
18027 painter->setAntialiasing(false);
18028}
18029
18030/* inherits documentation from base class */
18032{
18033 drawBackground(painter);
18034}
18035
18036/*!
18037 Sets \a pm as the axis background pixmap. The axis background pixmap will be drawn inside the
18038 axis rect. Since axis rects place themselves on the "background" layer by default, the axis rect
18039 backgrounds are usually drawn below everything else.
18040
18041 For cases where the provided pixmap doesn't have the same size as the axis rect, scaling can be
18042 enabled with \ref setBackgroundScaled and the scaling mode (i.e. whether and how the aspect ratio
18043 is preserved) can be set with \ref setBackgroundScaledMode. To set all these options in one call,
18044 consider using the overloaded version of this function.
18045
18046 Below the pixmap, the axis rect may be optionally filled with a brush, if specified with \ref
18047 setBackground(const QBrush &brush).
18048
18049 \see setBackgroundScaled, setBackgroundScaledMode, setBackground(const QBrush &brush)
18050*/
18052{
18053 mBackgroundPixmap = pm;
18054 mScaledBackgroundPixmap = QPixmap();
18055}
18056
18057/*! \overload
18058
18059 Sets \a brush as the background brush. The axis rect background will be filled with this brush.
18060 Since axis rects place themselves on the "background" layer by default, the axis rect backgrounds
18061 are usually drawn below everything else.
18062
18063 The brush will be drawn before (under) any background pixmap, which may be specified with \ref
18064 setBackground(const QPixmap &pm).
18065
18066 To disable drawing of a background brush, set \a brush to Qt::NoBrush.
18067
18068 \see setBackground(const QPixmap &pm)
18069*/
18071{
18072 mBackgroundBrush = brush;
18073}
18074
18075/*! \overload
18076
18077 Allows setting the background pixmap of the axis rect, whether it shall be scaled and how it
18078 shall be scaled in one call.
18079
18080 \see setBackground(const QPixmap &pm), setBackgroundScaled, setBackgroundScaledMode
18081*/
18083{
18084 mBackgroundPixmap = pm;
18085 mScaledBackgroundPixmap = QPixmap();
18086 mBackgroundScaled = scaled;
18087 mBackgroundScaledMode = mode;
18088}
18089
18090/*!
18091 Sets whether the axis background pixmap shall be scaled to fit the axis rect or not. If \a scaled
18092 is set to true, you may control whether and how the aspect ratio of the original pixmap is
18093 preserved with \ref setBackgroundScaledMode.
18094
18095 Note that the scaled version of the original pixmap is buffered, so there is no performance
18096 penalty on replots. (Except when the axis rect dimensions are changed continuously.)
18097
18098 \see setBackground, setBackgroundScaledMode
18099*/
18101{
18102 mBackgroundScaled = scaled;
18103}
18104
18105/*!
18106 If scaling of the axis background pixmap is enabled (\ref setBackgroundScaled), use this function to
18107 define whether and how the aspect ratio of the original pixmap passed to \ref setBackground is preserved.
18108 \see setBackground, setBackgroundScaled
18109*/
18111{
18112 mBackgroundScaledMode = mode;
18113}
18114
18115/*!
18116 Returns the range drag axis of the \a orientation provided. If multiple axes were set, returns
18117 the first one (use \ref rangeDragAxes to retrieve a list with all set axes).
18118
18119 \see setRangeDragAxes
18120*/
18122{
18123 if (orientation == Qt::Horizontal)
18124 return mRangeDragHorzAxis.isEmpty() ? nullptr : mRangeDragHorzAxis.first().data();
18125 else
18126 return mRangeDragVertAxis.isEmpty() ? nullptr : mRangeDragVertAxis.first().data();
18127}
18128
18129/*!
18130 Returns the range zoom axis of the \a orientation provided. If multiple axes were set, returns
18131 the first one (use \ref rangeZoomAxes to retrieve a list with all set axes).
18132
18133 \see setRangeZoomAxes
18134*/
18136{
18137 if (orientation == Qt::Horizontal)
18138 return mRangeZoomHorzAxis.isEmpty() ? nullptr : mRangeZoomHorzAxis.first().data();
18139 else
18140 return mRangeZoomVertAxis.isEmpty() ? nullptr : mRangeZoomVertAxis.first().data();
18141}
18142
18143/*!
18144 Returns all range drag axes of the \a orientation provided.
18145
18146 \see rangeZoomAxis, setRangeZoomAxes
18147*/
18149{
18150 QList<QCPAxis*> result;
18151 if (orientation == Qt::Horizontal)
18152 {
18153 foreach (QPointer<QCPAxis> axis, mRangeDragHorzAxis)
18154 {
18155 if (!axis.isNull())
18156 result.append(axis.data());
18157 }
18158 } else
18159 {
18160 foreach (QPointer<QCPAxis> axis, mRangeDragVertAxis)
18161 {
18162 if (!axis.isNull())
18163 result.append(axis.data());
18164 }
18165 }
18166 return result;
18167}
18168
18169/*!
18170 Returns all range zoom axes of the \a orientation provided.
18171
18172 \see rangeDragAxis, setRangeDragAxes
18173*/
18175{
18176 QList<QCPAxis*> result;
18177 if (orientation == Qt::Horizontal)
18178 {
18179 foreach (QPointer<QCPAxis> axis, mRangeZoomHorzAxis)
18180 {
18181 if (!axis.isNull())
18182 result.append(axis.data());
18183 }
18184 } else
18185 {
18186 foreach (QPointer<QCPAxis> axis, mRangeZoomVertAxis)
18187 {
18188 if (!axis.isNull())
18189 result.append(axis.data());
18190 }
18191 }
18192 return result;
18193}
18194
18195/*!
18196 Returns the range zoom factor of the \a orientation provided.
18197
18198 \see setRangeZoomFactor
18199*/
18201{
18202 return (orientation == Qt::Horizontal ? mRangeZoomFactorHorz : mRangeZoomFactorVert);
18203}
18204
18205/*!
18206 Sets which axis orientation may be range dragged by the user with mouse interaction.
18207 What orientation corresponds to which specific axis can be set with
18208 \ref setRangeDragAxes(QCPAxis *horizontal, QCPAxis *vertical). By
18209 default, the horizontal axis is the bottom axis (xAxis) and the vertical axis
18210 is the left axis (yAxis).
18211
18212 To disable range dragging entirely, pass \c nullptr as \a orientations or remove \ref
18213 QCP::iRangeDrag from \ref QCustomPlot::setInteractions. To enable range dragging for both
18214 directions, pass <tt>Qt::Horizontal | Qt::Vertical</tt> as \a orientations.
18215
18216 In addition to setting \a orientations to a non-zero value, make sure \ref QCustomPlot::setInteractions
18217 contains \ref QCP::iRangeDrag to enable the range dragging interaction.
18218
18219 \see setRangeZoom, setRangeDragAxes, QCustomPlot::setNoAntialiasingOnDrag
18220*/
18222{
18223 mRangeDrag = orientations;
18224}
18225
18226/*!
18227 Sets which axis orientation may be zoomed by the user with the mouse wheel. What orientation
18228 corresponds to which specific axis can be set with \ref setRangeZoomAxes(QCPAxis *horizontal,
18229 QCPAxis *vertical). By default, the horizontal axis is the bottom axis (xAxis) and the vertical
18230 axis is the left axis (yAxis).
18231
18232 To disable range zooming entirely, pass \c nullptr as \a orientations or remove \ref
18233 QCP::iRangeZoom from \ref QCustomPlot::setInteractions. To enable range zooming for both
18234 directions, pass <tt>Qt::Horizontal | Qt::Vertical</tt> as \a orientations.
18235
18236 In addition to setting \a orientations to a non-zero value, make sure \ref QCustomPlot::setInteractions
18237 contains \ref QCP::iRangeZoom to enable the range zooming interaction.
18238
18239 \see setRangeZoomFactor, setRangeZoomAxes, setRangeDrag
18240*/
18242{
18243 mRangeZoom = orientations;
18244}
18245
18246/*! \overload
18247
18248 Sets the axes whose range will be dragged when \ref setRangeDrag enables mouse range dragging on
18249 the QCustomPlot widget. Pass \c nullptr if no axis shall be dragged in the respective
18250 orientation.
18251
18252 Use the overload taking a list of axes, if multiple axes (more than one per orientation) shall
18253 react to dragging interactions.
18254
18255 \see setRangeZoomAxes
18256*/
18258{
18260 if (horizontal)
18261 horz.append(horizontal);
18262 if (vertical)
18263 vert.append(vertical);
18265}
18266
18267/*! \overload
18268
18269 This method allows to set up multiple axes to react to horizontal and vertical dragging. The drag
18270 orientation that the respective axis will react to is deduced from its orientation (\ref
18271 QCPAxis::orientation).
18272
18273 In the unusual case that you wish to e.g. drag a vertically oriented axis with a horizontal drag
18274 motion, use the overload taking two separate lists for horizontal and vertical dragging.
18275*/
18277{
18279 foreach (QCPAxis *ax, axes)
18280 {
18281 if (ax->orientation() == Qt::Horizontal)
18282 horz.append(ax);
18283 else
18284 vert.append(ax);
18285 }
18287}
18288
18289/*! \overload
18290
18291 This method allows to set multiple axes up to react to horizontal and vertical dragging, and
18292 define specifically which axis reacts to which drag orientation (irrespective of the axis
18293 orientation).
18294*/
18296{
18297 mRangeDragHorzAxis.clear();
18298 foreach (QCPAxis *ax, horizontal)
18299 {
18301 if (!axPointer.isNull())
18302 mRangeDragHorzAxis.append(axPointer);
18303 else
18304 qDebug() << Q_FUNC_INFO << "invalid axis passed in horizontal list:" << reinterpret_cast<quintptr>(ax);
18305 }
18306 mRangeDragVertAxis.clear();
18307 foreach (QCPAxis *ax, vertical)
18308 {
18310 if (!axPointer.isNull())
18311 mRangeDragVertAxis.append(axPointer);
18312 else
18313 qDebug() << Q_FUNC_INFO << "invalid axis passed in vertical list:" << reinterpret_cast<quintptr>(ax);
18314 }
18315}
18316
18317/*!
18318 Sets the axes whose range will be zoomed when \ref setRangeZoom enables mouse wheel zooming on
18319 the QCustomPlot widget. Pass \c nullptr if no axis shall be zoomed in the respective orientation.
18320
18321 The two axes can be zoomed with different strengths, when different factors are passed to \ref
18322 setRangeZoomFactor(double horizontalFactor, double verticalFactor).
18323
18324 Use the overload taking a list of axes, if multiple axes (more than one per orientation) shall
18325 react to zooming interactions.
18326
18327 \see setRangeDragAxes
18328*/
18330{
18332 if (horizontal)
18333 horz.append(horizontal);
18334 if (vertical)
18335 vert.append(vertical);
18337}
18338
18339/*! \overload
18340
18341 This method allows to set up multiple axes to react to horizontal and vertical range zooming. The
18342 zoom orientation that the respective axis will react to is deduced from its orientation (\ref
18343 QCPAxis::orientation).
18344
18345 In the unusual case that you wish to e.g. zoom a vertically oriented axis with a horizontal zoom
18346 interaction, use the overload taking two separate lists for horizontal and vertical zooming.
18347*/
18349{
18351 foreach (QCPAxis *ax, axes)
18352 {
18353 if (ax->orientation() == Qt::Horizontal)
18354 horz.append(ax);
18355 else
18356 vert.append(ax);
18357 }
18359}
18360
18361/*! \overload
18362
18363 This method allows to set multiple axes up to react to horizontal and vertical zooming, and
18364 define specifically which axis reacts to which zoom orientation (irrespective of the axis
18365 orientation).
18366*/
18368{
18369 mRangeZoomHorzAxis.clear();
18370 foreach (QCPAxis *ax, horizontal)
18371 {
18373 if (!axPointer.isNull())
18374 mRangeZoomHorzAxis.append(axPointer);
18375 else
18376 qDebug() << Q_FUNC_INFO << "invalid axis passed in horizontal list:" << reinterpret_cast<quintptr>(ax);
18377 }
18378 mRangeZoomVertAxis.clear();
18379 foreach (QCPAxis *ax, vertical)
18380 {
18382 if (!axPointer.isNull())
18383 mRangeZoomVertAxis.append(axPointer);
18384 else
18385 qDebug() << Q_FUNC_INFO << "invalid axis passed in vertical list:" << reinterpret_cast<quintptr>(ax);
18386 }
18387}
18388
18389/*!
18390 Sets how strong one rotation step of the mouse wheel zooms, when range zoom was activated with
18391 \ref setRangeZoom. The two parameters \a horizontalFactor and \a verticalFactor provide a way to
18392 let the horizontal axis zoom at different rates than the vertical axis. Which axis is horizontal
18393 and which is vertical, can be set with \ref setRangeZoomAxes.
18394
18395 When the zoom factor is greater than one, scrolling the mouse wheel backwards (towards the user)
18396 will zoom in (make the currently visible range smaller). For zoom factors smaller than one, the
18397 same scrolling direction will zoom out.
18398*/
18400{
18401 mRangeZoomFactorHorz = horizontalFactor;
18402 mRangeZoomFactorVert = verticalFactor;
18403}
18404
18405/*! \overload
18406
18407 Sets both the horizontal and vertical zoom \a factor.
18408*/
18410{
18411 mRangeZoomFactorHorz = factor;
18412 mRangeZoomFactorVert = factor;
18413}
18414
18415/*! \internal
18416
18417 Draws the background of this axis rect. It may consist of a background fill (a QBrush) and a
18418 pixmap.
18419
18420 If a brush was given via \ref setBackground(const QBrush &brush), this function first draws an
18421 according filling inside the axis rect with the provided \a painter.
18422
18423 Then, if a pixmap was provided via \ref setBackground, this function buffers the scaled version
18424 depending on \ref setBackgroundScaled and \ref setBackgroundScaledMode and then draws it inside
18425 the axis rect with the provided \a painter. The scaled version is buffered in
18426 mScaledBackgroundPixmap to prevent expensive rescaling at every redraw. It is only updated, when
18427 the axis rect has changed in a way that requires a rescale of the background pixmap (this is
18428 dependent on the \ref setBackgroundScaledMode), or when a differend axis background pixmap was
18429 set.
18430
18431 \see setBackground, setBackgroundScaled, setBackgroundScaledMode
18432*/
18434{
18435 // draw background fill:
18436 if (mBackgroundBrush != Qt::NoBrush)
18437 painter->fillRect(mRect, mBackgroundBrush);
18438
18439 // draw background pixmap (on top of fill, if brush specified):
18440 if (!mBackgroundPixmap.isNull())
18441 {
18442 if (mBackgroundScaled)
18443 {
18444 // check whether mScaledBackground needs to be updated:
18445 QSize scaledSize(mBackgroundPixmap.size());
18446 scaledSize.scale(mRect.size(), mBackgroundScaledMode);
18447 if (mScaledBackgroundPixmap.size() != scaledSize)
18448 mScaledBackgroundPixmap = mBackgroundPixmap.scaled(mRect.size(), mBackgroundScaledMode, Qt::SmoothTransformation);
18449 painter->drawPixmap(mRect.topLeft()+QPoint(0, -1), mScaledBackgroundPixmap, QRect(0, 0, mRect.width(), mRect.height()) & mScaledBackgroundPixmap.rect());
18450 } else
18451 {
18452 painter->drawPixmap(mRect.topLeft()+QPoint(0, -1), mBackgroundPixmap, QRect(0, 0, mRect.width(), mRect.height()));
18453 }
18454 }
18455}
18456
18457/*! \internal
18458
18459 This function makes sure multiple axes on the side specified with \a type don't collide, but are
18460 distributed according to their respective space requirement (QCPAxis::calculateMargin).
18461
18462 It does this by setting an appropriate offset (\ref QCPAxis::setOffset) on all axes except the
18463 one with index zero.
18464
18465 This function is called by \ref calculateAutoMargin.
18466*/
18468{
18469 const QList<QCPAxis*> axesList = mAxes.value(type);
18470 if (axesList.isEmpty())
18471 return;
18472
18473 bool isFirstVisible = !axesList.first()->visible(); // if the first axis is visible, the second axis (which is where the loop starts) isn't the first visible axis, so initialize with false
18474 for (int i=1; i<axesList.size(); ++i)
18475 {
18476 int offset = axesList.at(i-1)->offset() + axesList.at(i-1)->calculateMargin();
18477 if (axesList.at(i)->visible()) // only add inner tick length to offset if this axis is visible and it's not the first visible one (might happen if true first axis is invisible)
18478 {
18479 if (!isFirstVisible)
18480 offset += axesList.at(i)->tickLengthIn();
18481 isFirstVisible = false;
18482 }
18483 axesList.at(i)->setOffset(offset);
18484 }
18485}
18486
18487/* inherits documentation from base class */
18489{
18490 if (!mAutoMargins.testFlag(side))
18491 qDebug() << Q_FUNC_INFO << "Called with side that isn't specified as auto margin";
18492
18494
18495 // note: only need to look at the last (outer most) axis to determine the total margin, due to updateAxisOffset call
18497 if (!axesList.isEmpty())
18498 return axesList.last()->offset() + axesList.last()->calculateMargin();
18499 else
18500 return 0;
18501}
18502
18503/*! \internal
18504
18505 Reacts to a change in layout to potentially set the convenience axis pointers \ref
18506 QCustomPlot::xAxis, \ref QCustomPlot::yAxis, etc. of the parent QCustomPlot to the respective
18507 axes of this axis rect. This is only done if the respective convenience pointer is currently zero
18508 and if there is no QCPAxisRect at position (0, 0) of the plot layout.
18509
18510 This automation makes it simpler to replace the main axis rect with a newly created one, without
18511 the need to manually reset the convenience pointers.
18512*/
18514{
18515 if (mParentPlot && mParentPlot->axisRectCount() > 0 && mParentPlot->axisRect(0) == this)
18516 {
18517 if (axisCount(QCPAxis::atBottom) > 0 && !mParentPlot->xAxis)
18518 mParentPlot->xAxis = axis(QCPAxis::atBottom);
18519 if (axisCount(QCPAxis::atLeft) > 0 && !mParentPlot->yAxis)
18520 mParentPlot->yAxis = axis(QCPAxis::atLeft);
18521 if (axisCount(QCPAxis::atTop) > 0 && !mParentPlot->xAxis2)
18522 mParentPlot->xAxis2 = axis(QCPAxis::atTop);
18523 if (axisCount(QCPAxis::atRight) > 0 && !mParentPlot->yAxis2)
18524 mParentPlot->yAxis2 = axis(QCPAxis::atRight);
18525 }
18526}
18527
18528/*! \internal
18529
18530 Event handler for when a mouse button is pressed on the axis rect. If the left mouse button is
18531 pressed, the range dragging interaction is initialized (the actual range manipulation happens in
18532 the \ref mouseMoveEvent).
18533
18534 The mDragging flag is set to true and some anchor points are set that are needed to determine the
18535 distance the mouse was dragged in the mouse move/release events later.
18536
18537 \see mouseMoveEvent, mouseReleaseEvent
18538*/
18540{
18541 Q_UNUSED(details)
18542 if (event->buttons() & Qt::LeftButton)
18543 {
18544 mDragging = true;
18545 // initialize antialiasing backup in case we start dragging:
18546 if (mParentPlot->noAntialiasingOnDrag())
18547 {
18548 mAADragBackup = mParentPlot->antialiasedElements();
18549 mNotAADragBackup = mParentPlot->notAntialiasedElements();
18550 }
18551 // Mouse range dragging interaction:
18552 if (mParentPlot->interactions().testFlag(QCP::iRangeDrag))
18553 {
18554 mDragStartHorzRange.clear();
18555 foreach (QPointer<QCPAxis> axis, mRangeDragHorzAxis)
18556 mDragStartHorzRange.append(axis.isNull() ? QCPRange() : axis->range());
18557 mDragStartVertRange.clear();
18558 foreach (QPointer<QCPAxis> axis, mRangeDragVertAxis)
18559 mDragStartVertRange.append(axis.isNull() ? QCPRange() : axis->range());
18560 }
18561 }
18562}
18563
18564/*! \internal
18565
18566 Event handler for when the mouse is moved on the axis rect. If range dragging was activated in a
18567 preceding \ref mousePressEvent, the range is moved accordingly.
18568
18569 \see mousePressEvent, mouseReleaseEvent
18570*/
18572{
18573 Q_UNUSED(startPos)
18574 // Mouse range dragging interaction:
18575 if (mDragging && mParentPlot->interactions().testFlag(QCP::iRangeDrag))
18576 {
18577
18578 if (mRangeDrag.testFlag(Qt::Horizontal))
18579 {
18580 for (int i=0; i<mRangeDragHorzAxis.size(); ++i)
18581 {
18582 QCPAxis *ax = mRangeDragHorzAxis.at(i).data();
18583 if (!ax)
18584 continue;
18585 if (i >= mDragStartHorzRange.size())
18586 break;
18587 if (ax->mScaleType == QCPAxis::stLinear)
18588 {
18589 double diff = ax->pixelToCoord(startPos.x()) - ax->pixelToCoord(event->pos().x());
18590 ax->setRange(mDragStartHorzRange.at(i).lower+diff, mDragStartHorzRange.at(i).upper+diff);
18591 } else if (ax->mScaleType == QCPAxis::stLogarithmic)
18592 {
18593 double diff = ax->pixelToCoord(startPos.x()) / ax->pixelToCoord(event->pos().x());
18594 ax->setRange(mDragStartHorzRange.at(i).lower*diff, mDragStartHorzRange.at(i).upper*diff);
18595 }
18596 }
18597 }
18598
18599 if (mRangeDrag.testFlag(Qt::Vertical))
18600 {
18601 for (int i=0; i<mRangeDragVertAxis.size(); ++i)
18602 {
18603 QCPAxis *ax = mRangeDragVertAxis.at(i).data();
18604 if (!ax)
18605 continue;
18606 if (i >= mDragStartVertRange.size())
18607 break;
18608 if (ax->mScaleType == QCPAxis::stLinear)
18609 {
18610 double diff = ax->pixelToCoord(startPos.y()) - ax->pixelToCoord(event->pos().y());
18611 ax->setRange(mDragStartVertRange.at(i).lower+diff, mDragStartVertRange.at(i).upper+diff);
18612 } else if (ax->mScaleType == QCPAxis::stLogarithmic)
18613 {
18614 double diff = ax->pixelToCoord(startPos.y()) / ax->pixelToCoord(event->pos().y());
18615 ax->setRange(mDragStartVertRange.at(i).lower*diff, mDragStartVertRange.at(i).upper*diff);
18616 }
18617 }
18618 }
18619
18620 if (mRangeDrag != 0) // if either vertical or horizontal drag was enabled, do a replot
18621 {
18622 if (mParentPlot->noAntialiasingOnDrag())
18624 mParentPlot->replot(QCustomPlot::rpQueuedReplot);
18625 }
18626
18627 }
18628}
18629
18630/* inherits documentation from base class */
18632{
18634 Q_UNUSED(startPos)
18635 mDragging = false;
18636 if (mParentPlot->noAntialiasingOnDrag())
18637 {
18638 mParentPlot->setAntialiasedElements(mAADragBackup);
18639 mParentPlot->setNotAntialiasedElements(mNotAADragBackup);
18640 }
18641}
18642
18643/*! \internal
18644
18645 Event handler for mouse wheel events. If rangeZoom is Qt::Horizontal, Qt::Vertical or both, the
18646 ranges of the axes defined as rangeZoomHorzAxis and rangeZoomVertAxis are scaled. The center of
18647 the scaling operation is the current cursor position inside the axis rect. The scaling factor is
18648 dependent on the mouse wheel delta (which direction the wheel was rotated) to provide a natural
18649 zooming feel. The Strength of the zoom can be controlled via \ref setRangeZoomFactor.
18650
18651 Note, that event->angleDelta() is usually +/-120 for single rotation steps. However, if the mouse
18652 wheel is turned rapidly, many steps may bunch up to one event, so the delta may then be multiples
18653 of 120. This is taken into account here, by calculating \a wheelSteps and using it as exponent of
18654 the range zoom factor. This takes care of the wheel direction automatically, by inverting the
18655 factor, when the wheel step is negative (f^-1 = 1/f).
18656*/
18658{
18659#if QT_VERSION < QT_VERSION_CHECK(5, 0, 0)
18660 const double delta = event->delta();
18661#else
18662 const double delta = event->angleDelta().y();
18663#endif
18664
18665#if QT_VERSION < QT_VERSION_CHECK(5, 14, 0)
18666 const QPointF pos = event->pos();
18667#else
18668 const QPointF pos = event->position();
18669#endif
18670
18671 // Mouse range zooming interaction:
18672 if (mParentPlot->interactions().testFlag(QCP::iRangeZoom))
18673 {
18674 if (mRangeZoom != 0)
18675 {
18676 double factor;
18677 double wheelSteps = delta/120.0; // a single step delta is +/-120 usually
18678 if (mRangeZoom.testFlag(Qt::Horizontal))
18679 {
18680 factor = qPow(mRangeZoomFactorHorz, wheelSteps);
18681 foreach (QPointer<QCPAxis> axis, mRangeZoomHorzAxis)
18682 {
18683 if (!axis.isNull())
18684 axis->scaleRange(factor, axis->pixelToCoord(pos.x()));
18685 }
18686 }
18687 if (mRangeZoom.testFlag(Qt::Vertical))
18688 {
18689 factor = qPow(mRangeZoomFactorVert, wheelSteps);
18690 foreach (QPointer<QCPAxis> axis, mRangeZoomVertAxis)
18691 {
18692 if (!axis.isNull())
18693 axis->scaleRange(factor, axis->pixelToCoord(pos.y()));
18694 }
18695 }
18696 mParentPlot->replot();
18697 }
18698 }
18699}
18700/* end of 'src/layoutelements/layoutelement-axisrect.cpp' */
18701
18702
18703/* including file 'src/layoutelements/layoutelement-legend.cpp' */
18704/* modified 2021-03-29T02:30:44, size 31762 */
18705
18706////////////////////////////////////////////////////////////////////////////////////////////////////
18707//////////////////// QCPAbstractLegendItem
18708////////////////////////////////////////////////////////////////////////////////////////////////////
18709
18710/*! \class QCPAbstractLegendItem
18711 \brief The abstract base class for all entries in a QCPLegend.
18712
18713 It defines a very basic interface for entries in a QCPLegend. For representing plottables in the
18714 legend, the subclass \ref QCPPlottableLegendItem is more suitable.
18715
18716 Only derive directly from this class when you need absolute freedom (e.g. a custom legend entry
18717 that's not even associated with a plottable).
18718
18719 You must implement the following pure virtual functions:
18720 \li \ref draw (from QCPLayerable)
18721
18722 You inherit the following members you may use:
18723 <table>
18724 <tr>
18725 <td>QCPLegend *\b mParentLegend</td>
18726 <td>A pointer to the parent QCPLegend.</td>
18727 </tr><tr>
18728 <td>QFont \b mFont</td>
18729 <td>The generic font of the item. You should use this font for all or at least the most prominent text of the item.</td>
18730 </tr>
18731 </table>
18732*/
18733
18734/* start of documentation of signals */
18735
18736/*! \fn void QCPAbstractLegendItem::selectionChanged(bool selected)
18737
18738 This signal is emitted when the selection state of this legend item has changed, either by user
18739 interaction or by a direct call to \ref setSelected.
18740*/
18741
18742/* end of documentation of signals */
18743
18744/*!
18745 Constructs a QCPAbstractLegendItem and associates it with the QCPLegend \a parent. This does not
18746 cause the item to be added to \a parent, so \ref QCPLegend::addItem must be called separately.
18747*/
18749 QCPLayoutElement(parent->parentPlot()),
18750 mParentLegend(parent),
18751 mFont(parent->font()),
18752 mTextColor(parent->textColor()),
18753 mSelectedFont(parent->selectedFont()),
18754 mSelectedTextColor(parent->selectedTextColor()),
18755 mSelectable(true),
18756 mSelected(false)
18757{
18758 setLayer(QLatin1String("legend"));
18759 setMargins(QMargins(0, 0, 0, 0));
18760}
18761
18762/*!
18763 Sets the default font of this specific legend item to \a font.
18764
18765 \see setTextColor, QCPLegend::setFont
18766*/
18768{
18769 mFont = font;
18770}
18771
18772/*!
18773 Sets the default text color of this specific legend item to \a color.
18774
18775 \see setFont, QCPLegend::setTextColor
18776*/
18778{
18779 mTextColor = color;
18780}
18781
18782/*!
18783 When this legend item is selected, \a font is used to draw generic text, instead of the normal
18784 font set with \ref setFont.
18785
18786 \see setFont, QCPLegend::setSelectedFont
18787*/
18789{
18790 mSelectedFont = font;
18791}
18792
18793/*!
18794 When this legend item is selected, \a color is used to draw generic text, instead of the normal
18795 color set with \ref setTextColor.
18796
18797 \see setTextColor, QCPLegend::setSelectedTextColor
18798*/
18800{
18801 mSelectedTextColor = color;
18802}
18803
18804/*!
18805 Sets whether this specific legend item is selectable.
18806
18807 \see setSelectedParts, QCustomPlot::setInteractions
18808*/
18810{
18811 if (mSelectable != selectable)
18812 {
18813 mSelectable = selectable;
18814 emit selectableChanged(mSelectable);
18815 }
18816}
18817
18818/*!
18819 Sets whether this specific legend item is selected.
18820
18821 It is possible to set the selection state of this item by calling this function directly, even if
18822 setSelectable is set to false.
18823
18824 \see setSelectableParts, QCustomPlot::setInteractions
18825*/
18827{
18828 if (mSelected != selected)
18829 {
18830 mSelected = selected;
18831 emit selectionChanged(mSelected);
18832 }
18833}
18834
18835/* inherits documentation from base class */
18837{
18838 Q_UNUSED(details)
18839 if (!mParentPlot) return -1;
18840 if (onlySelectable && (!mSelectable || !mParentLegend->selectableParts().testFlag(QCPLegend::spItems)))
18841 return -1;
18842
18843 if (mRect.contains(pos.toPoint()))
18844 return mParentPlot->selectionTolerance()*0.99;
18845 else
18846 return -1;
18847}
18848
18849/* inherits documentation from base class */
18851{
18852 applyAntialiasingHint(painter, mAntialiased, QCP::aeLegendItems);
18853}
18854
18855/* inherits documentation from base class */
18857{
18858 return mOuterRect;
18859}
18860
18861/* inherits documentation from base class */
18863{
18865 Q_UNUSED(details)
18866 if (mSelectable && mParentLegend->selectableParts().testFlag(QCPLegend::spItems))
18867 {
18868 bool selBefore = mSelected;
18869 setSelected(additive ? !mSelected : true);
18871 *selectionStateChanged = mSelected != selBefore;
18872 }
18873}
18874
18875/* inherits documentation from base class */
18877{
18878 if (mSelectable && mParentLegend->selectableParts().testFlag(QCPLegend::spItems))
18879 {
18880 bool selBefore = mSelected;
18881 setSelected(false);
18883 *selectionStateChanged = mSelected != selBefore;
18884 }
18885}
18886
18887////////////////////////////////////////////////////////////////////////////////////////////////////
18888//////////////////// QCPPlottableLegendItem
18889////////////////////////////////////////////////////////////////////////////////////////////////////
18890
18891/*! \class QCPPlottableLegendItem
18892 \brief A legend item representing a plottable with an icon and the plottable name.
18893
18894 This is the standard legend item for plottables. It displays an icon of the plottable next to the
18895 plottable name. The icon is drawn by the respective plottable itself (\ref
18896 QCPAbstractPlottable::drawLegendIcon), and tries to give an intuitive symbol for the plottable.
18897 For example, the QCPGraph draws a centered horizontal line and/or a single scatter point in the
18898 middle.
18899
18900 Legend items of this type are always associated with one plottable (retrievable via the
18901 plottable() function and settable with the constructor). You may change the font of the plottable
18902 name with \ref setFont. Icon padding and border pen is taken from the parent QCPLegend, see \ref
18903 QCPLegend::setIconBorderPen and \ref QCPLegend::setIconTextPadding.
18904
18905 The function \ref QCPAbstractPlottable::addToLegend/\ref QCPAbstractPlottable::removeFromLegend
18906 creates/removes legend items of this type.
18907
18908 Since QCPLegend is based on QCPLayoutGrid, a legend item itself is just a subclass of
18909 QCPLayoutElement. While it could be added to a legend (or any other layout) via the normal layout
18910 interface, QCPLegend has specialized functions for handling legend items conveniently, see the
18911 documentation of \ref QCPLegend.
18912*/
18913
18914/*!
18915 Creates a new legend item associated with \a plottable.
18916
18917 Once it's created, it can be added to the legend via \ref QCPLegend::addItem.
18918
18919 A more convenient way of adding/removing a plottable to/from the legend is via the functions \ref
18920 QCPAbstractPlottable::addToLegend and \ref QCPAbstractPlottable::removeFromLegend.
18921*/
18923 QCPAbstractLegendItem(parent),
18924 mPlottable(plottable)
18925{
18926 setAntialiased(false);
18927}
18928
18929/*! \internal
18930
18931 Returns the pen that shall be used to draw the icon border, taking into account the selection
18932 state of this item.
18933*/
18935{
18936 return mSelected ? mParentLegend->selectedIconBorderPen() : mParentLegend->iconBorderPen();
18937}
18938
18939/*! \internal
18940
18941 Returns the text color that shall be used to draw text, taking into account the selection state
18942 of this item.
18943*/
18945{
18946 return mSelected ? mSelectedTextColor : mTextColor;
18947}
18948
18949/*! \internal
18950
18951 Returns the font that shall be used to draw text, taking into account the selection state of this
18952 item.
18953*/
18955{
18956 return mSelected ? mSelectedFont : mFont;
18957}
18958
18959/*! \internal
18960
18961 Draws the item with \a painter. The size and position of the drawn legend item is defined by the
18962 parent layout (typically a \ref QCPLegend) and the \ref minimumOuterSizeHint and \ref
18963 maximumOuterSizeHint of this legend item.
18964*/
18966{
18967 if (!mPlottable) return;
18968 painter->setFont(getFont());
18969 painter->setPen(QPen(getTextColor()));
18970 QSize iconSize = mParentLegend->iconSize();
18971 QRect textRect = painter->fontMetrics().boundingRect(0, 0, 0, iconSize.height(), Qt::TextDontClip, mPlottable->name());
18972 QRect iconRect(mRect.topLeft(), iconSize);
18973 int textHeight = qMax(textRect.height(), iconSize.height()); // if text has smaller height than icon, center text vertically in icon height, else align tops
18974 painter->drawText(mRect.x()+iconSize.width()+mParentLegend->iconTextPadding(), mRect.y(), textRect.width(), textHeight, Qt::TextDontClip, mPlottable->name());
18975 // draw icon:
18976 painter->save();
18977 painter->setClipRect(iconRect, Qt::IntersectClip);
18978 mPlottable->drawLegendIcon(painter, iconRect);
18979 painter->restore();
18980 // draw icon border:
18981 if (getIconBorderPen().style() != Qt::NoPen)
18982 {
18983 painter->setPen(getIconBorderPen());
18984 painter->setBrush(Qt::NoBrush);
18985 int halfPen = qCeil(painter->pen().widthF()*0.5)+1;
18986 painter->setClipRect(mOuterRect.adjusted(-halfPen, -halfPen, halfPen, halfPen)); // extend default clip rect so thicker pens (especially during selection) are not clipped
18987 painter->drawRect(iconRect);
18988 }
18989}
18990
18991/*! \internal
18992
18993 Calculates and returns the size of this item. This includes the icon, the text and the padding in
18994 between.
18995
18996 \seebaseclassmethod
18997*/
18999{
19000 if (!mPlottable) return {};
19001 QSize result(0, 0);
19003 QFontMetrics fontMetrics(getFont());
19004 QSize iconSize = mParentLegend->iconSize();
19005 textRect = fontMetrics.boundingRect(0, 0, 0, iconSize.height(), Qt::TextDontClip, mPlottable->name());
19006 result.setWidth(iconSize.width() + mParentLegend->iconTextPadding() + textRect.width());
19007 result.setHeight(qMax(textRect.height(), iconSize.height()));
19008 result.rwidth() += mMargins.left()+mMargins.right();
19009 result.rheight() += mMargins.top()+mMargins.bottom();
19010 return result;
19011}
19012
19013
19014////////////////////////////////////////////////////////////////////////////////////////////////////
19015//////////////////// QCPLegend
19016////////////////////////////////////////////////////////////////////////////////////////////////////
19017
19018/*! \class QCPLegend
19019 \brief Manages a legend inside a QCustomPlot.
19020
19021 A legend is a small box somewhere in the plot which lists plottables with their name and icon.
19022
19023 A legend is populated with legend items by calling \ref QCPAbstractPlottable::addToLegend on the
19024 plottable, for which a legend item shall be created. In the case of the main legend (\ref
19025 QCustomPlot::legend), simply adding plottables to the plot while \ref
19026 QCustomPlot::setAutoAddPlottableToLegend is set to true (the default) creates corresponding
19027 legend items. The legend item associated with a certain plottable can be removed with \ref
19028 QCPAbstractPlottable::removeFromLegend. However, QCPLegend also offers an interface to add and
19029 manipulate legend items directly: \ref item, \ref itemWithPlottable, \ref itemCount, \ref
19030 addItem, \ref removeItem, etc.
19031
19032 Since \ref QCPLegend derives from \ref QCPLayoutGrid, it can be placed in any position a \ref
19033 QCPLayoutElement may be positioned. The legend items are themselves \ref QCPLayoutElement
19034 "QCPLayoutElements" which are placed in the grid layout of the legend. \ref QCPLegend only adds
19035 an interface specialized for handling child elements of type \ref QCPAbstractLegendItem, as
19036 mentioned above. In principle, any other layout elements may also be added to a legend via the
19037 normal \ref QCPLayoutGrid interface. See the special page about \link thelayoutsystem The Layout
19038 System\endlink for examples on how to add other elements to the legend and move it outside the axis
19039 rect.
19040
19041 Use the methods \ref setFillOrder and \ref setWrap inherited from \ref QCPLayoutGrid to control
19042 in which order (column first or row first) the legend is filled up when calling \ref addItem, and
19043 at which column or row wrapping occurs. The default fill order for legends is \ref foRowsFirst.
19044
19045 By default, every QCustomPlot has one legend (\ref QCustomPlot::legend) which is placed in the
19046 inset layout of the main axis rect (\ref QCPAxisRect::insetLayout). To move the legend to another
19047 position inside the axis rect, use the methods of the \ref QCPLayoutInset. To move the legend
19048 outside of the axis rect, place it anywhere else with the \ref QCPLayout/\ref QCPLayoutElement
19049 interface.
19050*/
19051
19052/* start of documentation of signals */
19053
19054/*! \fn void QCPLegend::selectionChanged(QCPLegend::SelectableParts selection);
19055
19056 This signal is emitted when the selection state of this legend has changed.
19057
19058 \see setSelectedParts, setSelectableParts
19059*/
19060
19061/* end of documentation of signals */
19062
19063/*!
19064 Constructs a new QCPLegend instance with default values.
19065
19066 Note that by default, QCustomPlot already contains a legend ready to be used as \ref
19067 QCustomPlot::legend
19068*/
19070 mIconTextPadding{}
19071{
19073 setWrap(0);
19074
19075 setRowSpacing(3);
19077 setMargins(QMargins(7, 5, 7, 4));
19078 setAntialiased(false);
19079 setIconSize(32, 18);
19080
19082
19085
19094}
19095
19096QCPLegend::~QCPLegend()
19097{
19098 clearItems();
19099 if (qobject_cast<QCustomPlot*>(mParentPlot)) // make sure this isn't called from QObject dtor when QCustomPlot is already destructed (happens when the legend is not in any layout and thus QObject-child of QCustomPlot)
19100 mParentPlot->legendRemoved(this);
19101}
19102
19103/* no doc for getter, see setSelectedParts */
19104QCPLegend::SelectableParts QCPLegend::selectedParts() const
19105{
19106 // check whether any legend elements selected, if yes, add spItems to return value
19107 bool hasSelectedItems = false;
19108 for (int i=0; i<itemCount(); ++i)
19109 {
19110 if (item(i) && item(i)->selected())
19111 {
19112 hasSelectedItems = true;
19113 break;
19114 }
19115 }
19116 if (hasSelectedItems)
19117 return mSelectedParts | spItems;
19118 else
19119 return mSelectedParts & ~spItems;
19120}
19121
19122/*!
19123 Sets the pen, the border of the entire legend is drawn with.
19124*/
19126{
19127 mBorderPen = pen;
19128}
19129
19130/*!
19131 Sets the brush of the legend background.
19132*/
19133void QCPLegend::setBrush(const QBrush &brush)
19134{
19135 mBrush = brush;
19136}
19137
19138/*!
19139 Sets the default font of legend text. Legend items that draw text (e.g. the name of a graph) will
19140 use this font by default. However, a different font can be specified on a per-item-basis by
19141 accessing the specific legend item.
19142
19143 This function will also set \a font on all already existing legend items.
19144
19145 \see QCPAbstractLegendItem::setFont
19146*/
19147void QCPLegend::setFont(const QFont &font)
19148{
19149 mFont = font;
19150 for (int i=0; i<itemCount(); ++i)
19151 {
19152 if (item(i))
19153 item(i)->setFont(mFont);
19154 }
19155}
19156
19157/*!
19158 Sets the default color of legend text. Legend items that draw text (e.g. the name of a graph)
19159 will use this color by default. However, a different colors can be specified on a per-item-basis
19160 by accessing the specific legend item.
19161
19162 This function will also set \a color on all already existing legend items.
19163
19164 \see QCPAbstractLegendItem::setTextColor
19165*/
19167{
19168 mTextColor = color;
19169 for (int i=0; i<itemCount(); ++i)
19170 {
19171 if (item(i))
19172 item(i)->setTextColor(color);
19173 }
19174}
19175
19176/*!
19177 Sets the size of legend icons. Legend items that draw an icon (e.g. a visual
19178 representation of the graph) will use this size by default.
19179*/
19181{
19182 mIconSize = size;
19183}
19184
19185/*! \overload
19186*/
19187void QCPLegend::setIconSize(int width, int height)
19188{
19189 mIconSize.setWidth(width);
19190 mIconSize.setHeight(height);
19191}
19192
19193/*!
19194 Sets the horizontal space in pixels between the legend icon and the text next to it.
19195 Legend items that draw an icon (e.g. a visual representation of the graph) and text (e.g. the
19196 name of the graph) will use this space by default.
19197*/
19199{
19200 mIconTextPadding = padding;
19201}
19202
19203/*!
19204 Sets the pen used to draw a border around each legend icon. Legend items that draw an
19205 icon (e.g. a visual representation of the graph) will use this pen by default.
19206
19207 If no border is wanted, set this to \a Qt::NoPen.
19208*/
19210{
19211 mIconBorderPen = pen;
19212}
19213
19214/*!
19215 Sets whether the user can (de-)select the parts in \a selectable by clicking on the QCustomPlot surface.
19216 (When \ref QCustomPlot::setInteractions contains \ref QCP::iSelectLegend.)
19217
19218 However, even when \a selectable is set to a value not allowing the selection of a specific part,
19219 it is still possible to set the selection of this part manually, by calling \ref setSelectedParts
19220 directly.
19221
19222 \see SelectablePart, setSelectedParts
19223*/
19225{
19226 if (mSelectableParts != selectable)
19227 {
19228 mSelectableParts = selectable;
19229 emit selectableChanged(mSelectableParts);
19230 }
19231}
19232
19233/*!
19234 Sets the selected state of the respective legend parts described by \ref SelectablePart. When a part
19235 is selected, it uses a different pen/font and brush. If some legend items are selected and \a selected
19236 doesn't contain \ref spItems, those items become deselected.
19237
19238 The entire selection mechanism is handled automatically when \ref QCustomPlot::setInteractions
19239 contains iSelectLegend. You only need to call this function when you wish to change the selection
19240 state manually.
19241
19242 This function can change the selection state of a part even when \ref setSelectableParts was set to a
19243 value that actually excludes the part.
19244
19245 emits the \ref selectionChanged signal when \a selected is different from the previous selection state.
19246
19247 Note that it doesn't make sense to set the selected state \ref spItems here when it wasn't set
19248 before, because there's no way to specify which exact items to newly select. Do this by calling
19249 \ref QCPAbstractLegendItem::setSelected directly on the legend item you wish to select.
19250
19251 \see SelectablePart, setSelectableParts, selectTest, setSelectedBorderPen, setSelectedIconBorderPen, setSelectedBrush,
19252 setSelectedFont
19253*/
19255{
19256 SelectableParts newSelected = selected;
19257 mSelectedParts = this->selectedParts(); // update mSelectedParts in case item selection changed
19258
19259 if (mSelectedParts != newSelected)
19260 {
19261 if (!mSelectedParts.testFlag(spItems) && newSelected.testFlag(spItems)) // attempt to set spItems flag (can't do that)
19262 {
19263 qDebug() << Q_FUNC_INFO << "spItems flag can not be set, it can only be unset with this function";
19264 newSelected &= ~spItems;
19265 }
19266 if (mSelectedParts.testFlag(spItems) && !newSelected.testFlag(spItems)) // spItems flag was unset, so clear item selection
19267 {
19268 for (int i=0; i<itemCount(); ++i)
19269 {
19270 if (item(i))
19271 item(i)->setSelected(false);
19272 }
19273 }
19274 mSelectedParts = newSelected;
19275 emit selectionChanged(mSelectedParts);
19276 }
19277}
19278
19279/*!
19280 When the legend box is selected, this pen is used to draw the border instead of the normal pen
19281 set via \ref setBorderPen.
19282
19283 \see setSelectedParts, setSelectableParts, setSelectedBrush
19284*/
19286{
19287 mSelectedBorderPen = pen;
19288}
19289
19290/*!
19291 Sets the pen legend items will use to draw their icon borders, when they are selected.
19292
19293 \see setSelectedParts, setSelectableParts, setSelectedFont
19294*/
19296{
19297 mSelectedIconBorderPen = pen;
19298}
19299
19300/*!
19301 When the legend box is selected, this brush is used to draw the legend background instead of the normal brush
19302 set via \ref setBrush.
19303
19304 \see setSelectedParts, setSelectableParts, setSelectedBorderPen
19305*/
19307{
19308 mSelectedBrush = brush;
19309}
19310
19311/*!
19312 Sets the default font that is used by legend items when they are selected.
19313
19314 This function will also set \a font on all already existing legend items.
19315
19316 \see setFont, QCPAbstractLegendItem::setSelectedFont
19317*/
19319{
19320 mSelectedFont = font;
19321 for (int i=0; i<itemCount(); ++i)
19322 {
19323 if (item(i))
19324 item(i)->setSelectedFont(font);
19325 }
19326}
19327
19328/*!
19329 Sets the default text color that is used by legend items when they are selected.
19330
19331 This function will also set \a color on all already existing legend items.
19332
19333 \see setTextColor, QCPAbstractLegendItem::setSelectedTextColor
19334*/
19336{
19337 mSelectedTextColor = color;
19338 for (int i=0; i<itemCount(); ++i)
19339 {
19340 if (item(i))
19341 item(i)->setSelectedTextColor(color);
19342 }
19343}
19344
19345/*!
19346 Returns the item with index \a i. If non-legend items were added to the legend, and the element
19347 at the specified cell index is not a QCPAbstractLegendItem, returns \c nullptr.
19348
19349 Note that the linear index depends on the current fill order (\ref setFillOrder).
19350
19351 \see itemCount, addItem, itemWithPlottable
19352*/
19354{
19356}
19357
19358/*!
19359 Returns the QCPPlottableLegendItem which is associated with \a plottable (e.g. a \ref QCPGraph*).
19360 If such an item isn't in the legend, returns \c nullptr.
19361
19362 \see hasItemWithPlottable
19363*/
19365{
19366 for (int i=0; i<itemCount(); ++i)
19367 {
19369 {
19370 if (pli->plottable() == plottable)
19371 return pli;
19372 }
19373 }
19374 return nullptr;
19375}
19376
19377/*!
19378 Returns the number of items currently in the legend. It is identical to the base class
19379 QCPLayoutGrid::elementCount(), and unlike the other "item" interface methods of QCPLegend,
19380 doesn't only address elements which can be cast to QCPAbstractLegendItem.
19381
19382 Note that if empty cells are in the legend (e.g. by calling methods of the \ref QCPLayoutGrid
19383 base class which allows creating empty cells), they are included in the returned count.
19384
19385 \see item
19386*/
19388{
19389 return elementCount();
19390}
19391
19392/*!
19393 Returns whether the legend contains \a item.
19394
19395 \see hasItemWithPlottable
19396*/
19398{
19399 for (int i=0; i<itemCount(); ++i)
19400 {
19401 if (item == this->item(i))
19402 return true;
19403 }
19404 return false;
19405}
19406
19407/*!
19408 Returns whether the legend contains a QCPPlottableLegendItem which is associated with \a plottable (e.g. a \ref QCPGraph*).
19409 If such an item isn't in the legend, returns false.
19410
19411 \see itemWithPlottable
19412*/
19414{
19415 return itemWithPlottable(plottable);
19416}
19417
19418/*!
19419 Adds \a item to the legend, if it's not present already. The element is arranged according to the
19420 current fill order (\ref setFillOrder) and wrapping (\ref setWrap).
19421
19422 Returns true on sucess, i.e. if the item wasn't in the list already and has been successfuly added.
19423
19424 The legend takes ownership of the item.
19425
19426 \see removeItem, item, hasItem
19427*/
19429{
19430 return addElement(item);
19431}
19432
19433/*! \overload
19434
19435 Removes the item with the specified \a index from the legend and deletes it.
19436
19437 After successful removal, the legend is reordered according to the current fill order (\ref
19438 setFillOrder) and wrapping (\ref setWrap), so no empty cell remains where the removed \a item
19439 was. If you don't want this, rather use the raw element interface of \ref QCPLayoutGrid.
19440
19441 Returns true, if successful. Unlike \ref QCPLayoutGrid::removeAt, this method only removes
19442 elements derived from \ref QCPAbstractLegendItem.
19443
19444 \see itemCount, clearItems
19445*/
19447{
19448 if (QCPAbstractLegendItem *ali = item(index))
19449 {
19450 bool success = remove(ali);
19451 if (success)
19452 setFillOrder(fillOrder(), true); // gets rid of empty cell by reordering
19453 return success;
19454 } else
19455 return false;
19456}
19457
19458/*! \overload
19459
19460 Removes \a item from the legend and deletes it.
19461
19462 After successful removal, the legend is reordered according to the current fill order (\ref
19463 setFillOrder) and wrapping (\ref setWrap), so no empty cell remains where the removed \a item
19464 was. If you don't want this, rather use the raw element interface of \ref QCPLayoutGrid.
19465
19466 Returns true, if successful.
19467
19468 \see clearItems
19469*/
19471{
19472 bool success = remove(item);
19473 if (success)
19474 setFillOrder(fillOrder(), true); // gets rid of empty cell by reordering
19475 return success;
19476}
19477
19478/*!
19479 Removes all items from the legend.
19480*/
19482{
19483 for (int i=elementCount()-1; i>=0; --i)
19484 {
19485 if (item(i))
19486 removeAt(i); // don't use removeItem() because it would unnecessarily reorder the whole legend for each item
19487 }
19488 setFillOrder(fillOrder(), true); // get rid of empty cells by reordering once after all items are removed
19489}
19490
19491/*!
19492 Returns the legend items that are currently selected. If no items are selected,
19493 the list is empty.
19494
19495 \see QCPAbstractLegendItem::setSelected, setSelectable
19496*/
19498{
19500 for (int i=0; i<itemCount(); ++i)
19501 {
19502 if (QCPAbstractLegendItem *ali = item(i))
19503 {
19504 if (ali->selected())
19505 result.append(ali);
19506 }
19507 }
19508 return result;
19509}
19510
19511/*! \internal
19512
19513 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
19514 before drawing main legend elements.
19515
19516 This is the antialiasing state the painter passed to the \ref draw method is in by default.
19517
19518 This function takes into account the local setting of the antialiasing flag as well as the
19519 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
19520 QCustomPlot::setNotAntialiasedElements.
19521
19522 \seebaseclassmethod
19523
19524 \see setAntialiased
19525*/
19527{
19528 applyAntialiasingHint(painter, mAntialiased, QCP::aeLegend);
19529}
19530
19531/*! \internal
19532
19533 Returns the pen used to paint the border of the legend, taking into account the selection state
19534 of the legend box.
19535*/
19537{
19538 return mSelectedParts.testFlag(spLegendBox) ? mSelectedBorderPen : mBorderPen;
19539}
19540
19541/*! \internal
19542
19543 Returns the brush used to paint the background of the legend, taking into account the selection
19544 state of the legend box.
19545*/
19547{
19548 return mSelectedParts.testFlag(spLegendBox) ? mSelectedBrush : mBrush;
19549}
19550
19551/*! \internal
19552
19553 Draws the legend box with the provided \a painter. The individual legend items are layerables
19554 themselves, thus are drawn independently.
19555*/
19557{
19558 // draw background rect:
19559 painter->setBrush(getBrush());
19560 painter->setPen(getBorderPen());
19561 painter->drawRect(mOuterRect);
19562}
19563
19564/* inherits documentation from base class */
19565double QCPLegend::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
19566{
19567 if (!mParentPlot) return -1;
19568 if (onlySelectable && !mSelectableParts.testFlag(spLegendBox))
19569 return -1;
19570
19571 if (mOuterRect.contains(pos.toPoint()))
19572 {
19573 if (details) details->setValue(spLegendBox);
19574 return mParentPlot->selectionTolerance()*0.99;
19575 }
19576 return -1;
19577}
19578
19579/* inherits documentation from base class */
19581{
19583 mSelectedParts = selectedParts(); // in case item selection has changed
19584 if (details.value<SelectablePart>() == spLegendBox && mSelectableParts.testFlag(spLegendBox))
19585 {
19586 SelectableParts selBefore = mSelectedParts;
19587 setSelectedParts(additive ? mSelectedParts^spLegendBox : mSelectedParts|spLegendBox); // no need to unset spItems in !additive case, because they will be deselected by QCustomPlot (they're normal QCPLayerables with own deselectEvent)
19589 *selectionStateChanged = mSelectedParts != selBefore;
19590 }
19591}
19592
19593/* inherits documentation from base class */
19595{
19596 mSelectedParts = selectedParts(); // in case item selection has changed
19597 if (mSelectableParts.testFlag(spLegendBox))
19598 {
19599 SelectableParts selBefore = mSelectedParts;
19600 setSelectedParts(selectedParts() & ~spLegendBox);
19602 *selectionStateChanged = mSelectedParts != selBefore;
19603 }
19604}
19605
19606/* inherits documentation from base class */
19611
19612/* inherits documentation from base class */
19617
19618/* inherits documentation from base class */
19620{
19621 if (parentPlot && !parentPlot->legend)
19622 parentPlot->legend = this;
19623}
19624/* end of 'src/layoutelements/layoutelement-legend.cpp' */
19625
19626
19627/* including file 'src/layoutelements/layoutelement-textelement.cpp' */
19628/* modified 2021-03-29T02:30:44, size 12925 */
19629
19630////////////////////////////////////////////////////////////////////////////////////////////////////
19631//////////////////// QCPTextElement
19632////////////////////////////////////////////////////////////////////////////////////////////////////
19633
19634/*! \class QCPTextElement
19635 \brief A layout element displaying a text
19636
19637 The text may be specified with \ref setText, the formatting can be controlled with \ref setFont,
19638 \ref setTextColor, and \ref setTextFlags.
19639
19640 A text element can be added as follows:
19641 \snippet documentation/doc-code-snippets/mainwindow.cpp qcptextelement-creation
19642*/
19643
19644/* start documentation of signals */
19645
19646/*! \fn void QCPTextElement::selectionChanged(bool selected)
19647
19648 This signal is emitted when the selection state has changed to \a selected, either by user
19649 interaction or by a direct call to \ref setSelected.
19650
19651 \see setSelected, setSelectable
19652*/
19653
19654/*! \fn void QCPTextElement::clicked(QMouseEvent *event)
19655
19656 This signal is emitted when the text element is clicked.
19657
19658 \see doubleClicked, selectTest
19659*/
19660
19661/*! \fn void QCPTextElement::doubleClicked(QMouseEvent *event)
19662
19663 This signal is emitted when the text element is double clicked.
19664
19665 \see clicked, selectTest
19666*/
19667
19668/* end documentation of signals */
19669
19670/*! \overload
19671
19672 Creates a new QCPTextElement instance and sets default values. The initial text is empty (\ref
19673 setText).
19674*/
19676 QCPLayoutElement(parentPlot),
19677 mText(),
19678 mTextFlags(Qt::AlignCenter),
19679 mFont(QFont(QLatin1String("sans serif"), 12)), // will be taken from parentPlot if available, see below
19680 mTextColor(Qt::black),
19681 mSelectedFont(QFont(QLatin1String("sans serif"), 12)), // will be taken from parentPlot if available, see below
19682 mSelectedTextColor(Qt::blue),
19683 mSelectable(false),
19684 mSelected(false)
19685{
19686 if (parentPlot)
19687 {
19688 mFont = parentPlot->font();
19689 mSelectedFont = parentPlot->font();
19690 }
19691 setMargins(QMargins(2, 2, 2, 2));
19692}
19693
19694/*! \overload
19695
19696 Creates a new QCPTextElement instance and sets default values.
19697
19698 The initial text is set to \a text.
19699*/
19701 QCPLayoutElement(parentPlot),
19702 mText(text),
19703 mTextFlags(Qt::AlignCenter),
19704 mFont(QFont(QLatin1String("sans serif"), 12)), // will be taken from parentPlot if available, see below
19705 mTextColor(Qt::black),
19706 mSelectedFont(QFont(QLatin1String("sans serif"), 12)), // will be taken from parentPlot if available, see below
19707 mSelectedTextColor(Qt::blue),
19708 mSelectable(false),
19709 mSelected(false)
19710{
19711 if (parentPlot)
19712 {
19713 mFont = parentPlot->font();
19714 mSelectedFont = parentPlot->font();
19715 }
19716 setMargins(QMargins(2, 2, 2, 2));
19717}
19718
19719/*! \overload
19720
19721 Creates a new QCPTextElement instance and sets default values.
19722
19723 The initial text is set to \a text with \a pointSize.
19724*/
19725QCPTextElement::QCPTextElement(QCustomPlot *parentPlot, const QString &text, double pointSize) :
19726 QCPLayoutElement(parentPlot),
19727 mText(text),
19728 mTextFlags(Qt::AlignCenter),
19729 mFont(QFont(QLatin1String("sans serif"), int(pointSize))), // will be taken from parentPlot if available, see below
19730 mTextColor(Qt::black),
19731 mSelectedFont(QFont(QLatin1String("sans serif"), int(pointSize))), // will be taken from parentPlot if available, see below
19732 mSelectedTextColor(Qt::blue),
19733 mSelectable(false),
19734 mSelected(false)
19735{
19736 mFont.setPointSizeF(pointSize); // set here again as floating point, because constructor above only takes integer
19737 if (parentPlot)
19738 {
19739 mFont = parentPlot->font();
19740 mFont.setPointSizeF(pointSize);
19741 mSelectedFont = parentPlot->font();
19742 mSelectedFont.setPointSizeF(pointSize);
19743 }
19744 setMargins(QMargins(2, 2, 2, 2));
19745}
19746
19747/*! \overload
19748
19749 Creates a new QCPTextElement instance and sets default values.
19750
19751 The initial text is set to \a text with \a pointSize and the specified \a fontFamily.
19752*/
19753QCPTextElement::QCPTextElement(QCustomPlot *parentPlot, const QString &text, const QString &fontFamily, double pointSize) :
19754 QCPLayoutElement(parentPlot),
19755 mText(text),
19756 mTextFlags(Qt::AlignCenter),
19757 mFont(QFont(fontFamily, int(pointSize))),
19758 mTextColor(Qt::black),
19759 mSelectedFont(QFont(fontFamily, int(pointSize))),
19760 mSelectedTextColor(Qt::blue),
19761 mSelectable(false),
19762 mSelected(false)
19763{
19764 mFont.setPointSizeF(pointSize); // set here again as floating point, because constructor above only takes integer
19765 setMargins(QMargins(2, 2, 2, 2));
19766}
19767
19768/*! \overload
19769
19770 Creates a new QCPTextElement instance and sets default values.
19771
19772 The initial text is set to \a text with the specified \a font.
19773*/
19774QCPTextElement::QCPTextElement(QCustomPlot *parentPlot, const QString &text, const QFont &font) :
19775 QCPLayoutElement(parentPlot),
19776 mText(text),
19777 mTextFlags(Qt::AlignCenter),
19778 mFont(font),
19779 mTextColor(Qt::black),
19780 mSelectedFont(font),
19781 mSelectedTextColor(Qt::blue),
19782 mSelectable(false),
19783 mSelected(false)
19784{
19785 setMargins(QMargins(2, 2, 2, 2));
19786}
19787
19788/*!
19789 Sets the text that will be displayed to \a text. Multiple lines can be created by insertion of "\n".
19790
19791 \see setFont, setTextColor, setTextFlags
19792*/
19794{
19795 mText = text;
19796}
19797
19798/*!
19799 Sets options for text alignment and wrapping behaviour. \a flags is a bitwise OR-combination of
19800 \c Qt::AlignmentFlag and \c Qt::TextFlag enums.
19801
19802 Possible enums are:
19803 - Qt::AlignLeft
19804 - Qt::AlignRight
19805 - Qt::AlignHCenter
19806 - Qt::AlignJustify
19807 - Qt::AlignTop
19808 - Qt::AlignBottom
19809 - Qt::AlignVCenter
19810 - Qt::AlignCenter
19811 - Qt::TextDontClip
19812 - Qt::TextSingleLine
19813 - Qt::TextExpandTabs
19814 - Qt::TextShowMnemonic
19815 - Qt::TextWordWrap
19816 - Qt::TextIncludeTrailingSpaces
19817*/
19819{
19820 mTextFlags = flags;
19821}
19822
19823/*!
19824 Sets the \a font of the text.
19825
19826 \see setTextColor, setSelectedFont
19827*/
19829{
19830 mFont = font;
19831}
19832
19833/*!
19834 Sets the \a color of the text.
19835
19836 \see setFont, setSelectedTextColor
19837*/
19839{
19840 mTextColor = color;
19841}
19842
19843/*!
19844 Sets the \a font of the text that will be used if the text element is selected (\ref setSelected).
19845
19846 \see setFont
19847*/
19849{
19850 mSelectedFont = font;
19851}
19852
19853/*!
19854 Sets the \a color of the text that will be used if the text element is selected (\ref setSelected).
19855
19856 \see setTextColor
19857*/
19859{
19860 mSelectedTextColor = color;
19861}
19862
19863/*!
19864 Sets whether the user may select this text element.
19865
19866 Note that even when \a selectable is set to <tt>false</tt>, the selection state may be changed
19867 programmatically via \ref setSelected.
19868*/
19870{
19871 if (mSelectable != selectable)
19872 {
19873 mSelectable = selectable;
19874 emit selectableChanged(mSelectable);
19875 }
19876}
19877
19878/*!
19879 Sets the selection state of this text element to \a selected. If the selection has changed, \ref
19880 selectionChanged is emitted.
19881
19882 Note that this function can change the selection state independently of the current \ref
19883 setSelectable state.
19884*/
19886{
19887 if (mSelected != selected)
19888 {
19889 mSelected = selected;
19890 emit selectionChanged(mSelected);
19891 }
19892}
19893
19894/* inherits documentation from base class */
19896{
19897 applyAntialiasingHint(painter, mAntialiased, QCP::aeOther);
19898}
19899
19900/* inherits documentation from base class */
19902{
19903 painter->setFont(mainFont());
19904 painter->setPen(QPen(mainTextColor()));
19905 painter->drawText(mRect, mTextFlags, mText, &mTextBoundingRect);
19906}
19907
19908/* inherits documentation from base class */
19910{
19911 QFontMetrics metrics(mFont);
19912 QSize result(metrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip, mText).size());
19913 result.rwidth() += mMargins.left()+mMargins.right();
19914 result.rheight() += mMargins.top()+mMargins.bottom();
19915 return result;
19916}
19917
19918/* inherits documentation from base class */
19920{
19921 QFontMetrics metrics(mFont);
19922 QSize result(metrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip, mText).size());
19923 result.setWidth(QWIDGETSIZE_MAX);
19924 result.rheight() += mMargins.top()+mMargins.bottom();
19925 return result;
19926}
19927
19928/* inherits documentation from base class */
19930{
19932 Q_UNUSED(details)
19933 if (mSelectable)
19934 {
19935 bool selBefore = mSelected;
19936 setSelected(additive ? !mSelected : true);
19938 *selectionStateChanged = mSelected != selBefore;
19939 }
19940}
19941
19942/* inherits documentation from base class */
19944{
19945 if (mSelectable)
19946 {
19947 bool selBefore = mSelected;
19948 setSelected(false);
19950 *selectionStateChanged = mSelected != selBefore;
19951 }
19952}
19953
19954/*!
19955 Returns 0.99*selectionTolerance (see \ref QCustomPlot::setSelectionTolerance) when \a pos is
19956 within the bounding box of the text element's text. Note that this bounding box is updated in the
19957 draw call.
19958
19959 If \a pos is outside the text's bounding box or if \a onlySelectable is true and this text
19960 element is not selectable (\ref setSelectable), returns -1.
19961
19962 \seebaseclassmethod
19963*/
19964double QCPTextElement::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
19965{
19966 Q_UNUSED(details)
19967 if (onlySelectable && !mSelectable)
19968 return -1;
19969
19970 if (mTextBoundingRect.contains(pos.toPoint()))
19971 return mParentPlot->selectionTolerance()*0.99;
19972 else
19973 return -1;
19974}
19975
19976/*!
19977 Accepts the mouse event in order to emit the according click signal in the \ref
19978 mouseReleaseEvent.
19979
19980 \seebaseclassmethod
19981*/
19983{
19984 Q_UNUSED(details)
19985 event->accept();
19986}
19987
19988/*!
19989 Emits the \ref clicked signal if the cursor hasn't moved by more than a few pixels since the \ref
19990 mousePressEvent.
19991
19992 \seebaseclassmethod
19993*/
19995{
19996 if ((QPointF(event->pos())-startPos).manhattanLength() <= 3)
19998}
19999
20000/*!
20001 Emits the \ref doubleClicked signal.
20002
20003 \seebaseclassmethod
20004*/
20006{
20007 Q_UNUSED(details)
20009}
20010
20011/*! \internal
20012
20013 Returns the main font to be used. This is mSelectedFont if \ref setSelected is set to
20014 <tt>true</tt>, else mFont is returned.
20015*/
20017{
20018 return mSelected ? mSelectedFont : mFont;
20019}
20020
20021/*! \internal
20022
20023 Returns the main color to be used. This is mSelectedTextColor if \ref setSelected is set to
20024 <tt>true</tt>, else mTextColor is returned.
20025*/
20027{
20028 return mSelected ? mSelectedTextColor : mTextColor;
20029}
20030/* end of 'src/layoutelements/layoutelement-textelement.cpp' */
20031
20032
20033/* including file 'src/layoutelements/layoutelement-colorscale.cpp' */
20034/* modified 2021-03-29T02:30:44, size 26531 */
20035
20036
20037////////////////////////////////////////////////////////////////////////////////////////////////////
20038//////////////////// QCPColorScale
20039////////////////////////////////////////////////////////////////////////////////////////////////////
20040
20041/*! \class QCPColorScale
20042 \brief A color scale for use with color coding data such as QCPColorMap
20043
20044 This layout element can be placed on the plot to correlate a color gradient with data values. It
20045 is usually used in combination with one or multiple \ref QCPColorMap "QCPColorMaps".
20046
20047 \image html QCPColorScale.png
20048
20049 The color scale can be either horizontal or vertical, as shown in the image above. The
20050 orientation and the side where the numbers appear is controlled with \ref setType.
20051
20052 Use \ref QCPColorMap::setColorScale to connect a color map with a color scale. Once they are
20053 connected, they share their gradient, data range and data scale type (\ref setGradient, \ref
20054 setDataRange, \ref setDataScaleType). Multiple color maps may be associated with a single color
20055 scale, to make them all synchronize these properties.
20056
20057 To have finer control over the number display and axis behaviour, you can directly access the
20058 \ref axis. See the documentation of QCPAxis for details about configuring axes. For example, if
20059 you want to change the number of automatically generated ticks, call
20060 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolorscale-tickcount
20061
20062 Placing a color scale next to the main axis rect works like with any other layout element:
20063 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolorscale-creation
20064 In this case we have placed it to the right of the default axis rect, so it wasn't necessary to
20065 call \ref setType, since \ref QCPAxis::atRight is already the default. The text next to the color
20066 scale can be set with \ref setLabel.
20067
20068 For optimum appearance (like in the image above), it may be desirable to line up the axis rect and
20069 the borders of the color scale. Use a \ref QCPMarginGroup to achieve this:
20070 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolorscale-margingroup
20071
20072 Color scales are initialized with a non-zero minimum top and bottom margin (\ref
20073 setMinimumMargins), because vertical color scales are most common and the minimum top/bottom
20074 margin makes sure it keeps some distance to the top/bottom widget border. So if you change to a
20075 horizontal color scale by setting \ref setType to \ref QCPAxis::atBottom or \ref QCPAxis::atTop, you
20076 might want to also change the minimum margins accordingly, e.g. <tt>setMinimumMargins(QMargins(6, 0, 6, 0))</tt>.
20077*/
20078
20079/* start documentation of inline functions */
20080
20081/*! \fn QCPAxis *QCPColorScale::axis() const
20082
20083 Returns the internal \ref QCPAxis instance of this color scale. You can access it to alter the
20084 appearance and behaviour of the axis. \ref QCPColorScale duplicates some properties in its
20085 interface for convenience. Those are \ref setDataRange (\ref QCPAxis::setRange), \ref
20086 setDataScaleType (\ref QCPAxis::setScaleType), and the method \ref setLabel (\ref
20087 QCPAxis::setLabel). As they each are connected, it does not matter whether you use the method on
20088 the QCPColorScale or on its QCPAxis.
20089
20090 If the type of the color scale is changed with \ref setType, the axis returned by this method
20091 will change, too, to either the left, right, bottom or top axis, depending on which type was set.
20092*/
20093
20094/* end documentation of signals */
20095/* start documentation of signals */
20096
20097/*! \fn void QCPColorScale::dataRangeChanged(const QCPRange &newRange);
20098
20099 This signal is emitted when the data range changes.
20100
20101 \see setDataRange
20102*/
20103
20104/*! \fn void QCPColorScale::dataScaleTypeChanged(QCPAxis::ScaleType scaleType);
20105
20106 This signal is emitted when the data scale type changes.
20107
20108 \see setDataScaleType
20109*/
20110
20111/*! \fn void QCPColorScale::gradientChanged(const QCPColorGradient &newGradient);
20112
20113 This signal is emitted when the gradient changes.
20114
20115 \see setGradient
20116*/
20117
20118/* end documentation of signals */
20119
20120/*!
20121 Constructs a new QCPColorScale.
20122*/
20124 QCPLayoutElement(parentPlot),
20125 mType(QCPAxis::atTop), // set to atTop such that setType(QCPAxis::atRight) below doesn't skip work because it thinks it's already atRight
20126 mDataScaleType(QCPAxis::stLinear),
20127 mGradient(QCPColorGradient::gpCold),
20128 mBarWidth(20),
20130{
20131 setMinimumMargins(QMargins(0, 6, 0, 6)); // for default right color scale types, keep some room at bottom and top (important if no margin group is used)
20133 setDataRange(QCPRange(0, 6));
20134}
20135
20136QCPColorScale::~QCPColorScale()
20137{
20138 delete mAxisRect;
20139}
20140
20141/* undocumented getter */
20142QString QCPColorScale::label() const
20143{
20144 if (!mColorAxis)
20145 {
20146 qDebug() << Q_FUNC_INFO << "internal color axis undefined";
20147 return QString();
20148 }
20149
20150 return mColorAxis.data()->label();
20151}
20152
20153/* undocumented getter */
20154bool QCPColorScale::rangeDrag() const
20155{
20156 if (!mAxisRect)
20157 {
20158 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20159 return false;
20160 }
20161
20162 return mAxisRect.data()->rangeDrag().testFlag(QCPAxis::orientation(mType)) &&
20163 mAxisRect.data()->rangeDragAxis(QCPAxis::orientation(mType)) &&
20164 mAxisRect.data()->rangeDragAxis(QCPAxis::orientation(mType))->orientation() == QCPAxis::orientation(mType);
20165}
20166
20167/* undocumented getter */
20168bool QCPColorScale::rangeZoom() const
20169{
20170 if (!mAxisRect)
20171 {
20172 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20173 return false;
20174 }
20175
20176 return mAxisRect.data()->rangeZoom().testFlag(QCPAxis::orientation(mType)) &&
20177 mAxisRect.data()->rangeZoomAxis(QCPAxis::orientation(mType)) &&
20178 mAxisRect.data()->rangeZoomAxis(QCPAxis::orientation(mType))->orientation() == QCPAxis::orientation(mType);
20179}
20180
20181/*!
20182 Sets at which side of the color scale the axis is placed, and thus also its orientation.
20183
20184 Note that after setting \a type to a different value, the axis returned by \ref axis() will
20185 be a different one. The new axis will adopt the following properties from the previous axis: The
20186 range, scale type, label and ticker (the latter will be shared and not copied).
20187*/
20189{
20190 if (!mAxisRect)
20191 {
20192 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20193 return;
20194 }
20195 if (mType != type)
20196 {
20197 mType = type;
20198 QCPRange rangeTransfer(0, 6);
20201 // transfer/revert some settings on old axis if it exists:
20202 bool doTransfer = !mColorAxis.isNull();
20203 if (doTransfer)
20204 {
20205 rangeTransfer = mColorAxis.data()->range();
20206 labelTransfer = mColorAxis.data()->label();
20207 tickerTransfer = mColorAxis.data()->ticker();
20208 mColorAxis.data()->setLabel(QString());
20209 disconnect(mColorAxis.data(), SIGNAL(rangeChanged(QCPRange)), this, SLOT(setDataRange(QCPRange)));
20210 disconnect(mColorAxis.data(), SIGNAL(scaleTypeChanged(QCPAxis::ScaleType)), this, SLOT(setDataScaleType(QCPAxis::ScaleType)));
20211 }
20214 {
20215 mAxisRect.data()->axis(atype)->setTicks(atype == mType);
20216 mAxisRect.data()->axis(atype)->setTickLabels(atype== mType);
20217 }
20218 // set new mColorAxis pointer:
20219 mColorAxis = mAxisRect.data()->axis(mType);
20220 // transfer settings to new axis:
20221 if (doTransfer)
20222 {
20223 mColorAxis.data()->setRange(rangeTransfer); // range transfer necessary if axis changes from vertical to horizontal or vice versa (axes with same orientation are synchronized via signals)
20224 mColorAxis.data()->setLabel(labelTransfer);
20225 mColorAxis.data()->setTicker(tickerTransfer);
20226 }
20227 connect(mColorAxis.data(), SIGNAL(rangeChanged(QCPRange)), this, SLOT(setDataRange(QCPRange)));
20228 connect(mColorAxis.data(), SIGNAL(scaleTypeChanged(QCPAxis::ScaleType)), this, SLOT(setDataScaleType(QCPAxis::ScaleType)));
20229 mAxisRect.data()->setRangeDragAxes(QList<QCPAxis*>() << mColorAxis.data());
20230 }
20231}
20232
20233/*!
20234 Sets the range spanned by the color gradient and that is shown by the axis in the color scale.
20235
20236 It is equivalent to calling QCPColorMap::setDataRange on any of the connected color maps. It is
20237 also equivalent to directly accessing the \ref axis and setting its range with \ref
20238 QCPAxis::setRange.
20239
20240 \see setDataScaleType, setGradient, rescaleDataRange
20241*/
20243{
20244 if (mDataRange.lower != dataRange.lower || mDataRange.upper != dataRange.upper)
20245 {
20246 mDataRange = dataRange;
20247 if (mColorAxis)
20248 mColorAxis.data()->setRange(mDataRange);
20249 emit dataRangeChanged(mDataRange);
20250 }
20251}
20252
20253/*!
20254 Sets the scale type of the color scale, i.e. whether values are associated with colors linearly
20255 or logarithmically.
20256
20257 It is equivalent to calling QCPColorMap::setDataScaleType on any of the connected color maps. It is
20258 also equivalent to directly accessing the \ref axis and setting its scale type with \ref
20259 QCPAxis::setScaleType.
20260
20261 Note that this method controls the coordinate transformation. For logarithmic scales, you will
20262 likely also want to use a logarithmic tick spacing and labeling, which can be achieved by setting
20263 the color scale's \ref axis ticker to an instance of \ref QCPAxisTickerLog :
20264
20265 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpaxisticker-log-colorscale
20266
20267 See the documentation of \ref QCPAxisTickerLog about the details of logarithmic axis tick
20268 creation.
20269
20270 \see setDataRange, setGradient
20271*/
20273{
20274 if (mDataScaleType != scaleType)
20275 {
20276 mDataScaleType = scaleType;
20277 if (mColorAxis)
20278 mColorAxis.data()->setScaleType(mDataScaleType);
20279 if (mDataScaleType == QCPAxis::stLogarithmic)
20280 setDataRange(mDataRange.sanitizedForLogScale());
20281 emit dataScaleTypeChanged(mDataScaleType);
20282 }
20283}
20284
20285/*!
20286 Sets the color gradient that will be used to represent data values.
20287
20288 It is equivalent to calling QCPColorMap::setGradient on any of the connected color maps.
20289
20290 \see setDataRange, setDataScaleType
20291*/
20293{
20294 if (mGradient != gradient)
20295 {
20296 mGradient = gradient;
20297 if (mAxisRect)
20298 mAxisRect.data()->mGradientImageInvalidated = true;
20299 emit gradientChanged(mGradient);
20300 }
20301}
20302
20303/*!
20304 Sets the axis label of the color scale. This is equivalent to calling \ref QCPAxis::setLabel on
20305 the internal \ref axis.
20306*/
20308{
20309 if (!mColorAxis)
20310 {
20311 qDebug() << Q_FUNC_INFO << "internal color axis undefined";
20312 return;
20313 }
20314
20315 mColorAxis.data()->setLabel(str);
20316}
20317
20318/*!
20319 Sets the width (or height, for horizontal color scales) the bar where the gradient is displayed
20320 will have.
20321*/
20323{
20324 mBarWidth = width;
20325}
20326
20327/*!
20328 Sets whether the user can drag the data range (\ref setDataRange).
20329
20330 Note that \ref QCP::iRangeDrag must be in the QCustomPlot's interactions (\ref
20331 QCustomPlot::setInteractions) to allow range dragging.
20332*/
20334{
20335 if (!mAxisRect)
20336 {
20337 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20338 return;
20339 }
20340
20341 if (enabled)
20342 {
20343 mAxisRect.data()->setRangeDrag(QCPAxis::orientation(mType));
20344 } else
20345 {
20346#if QT_VERSION < QT_VERSION_CHECK(5, 2, 0)
20347 mAxisRect.data()->setRangeDrag(nullptr);
20348#else
20349 mAxisRect.data()->setRangeDrag({});
20350#endif
20351 }
20352}
20353
20354/*!
20355 Sets whether the user can zoom the data range (\ref setDataRange) by scrolling the mouse wheel.
20356
20357 Note that \ref QCP::iRangeZoom must be in the QCustomPlot's interactions (\ref
20358 QCustomPlot::setInteractions) to allow range dragging.
20359*/
20361{
20362 if (!mAxisRect)
20363 {
20364 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20365 return;
20366 }
20367
20368 if (enabled)
20369 {
20370 mAxisRect.data()->setRangeZoom(QCPAxis::orientation(mType));
20371 } else
20372 {
20373#if QT_VERSION < QT_VERSION_CHECK(5, 2, 0)
20374 mAxisRect.data()->setRangeDrag(nullptr);
20375#else
20376 mAxisRect.data()->setRangeZoom({});
20377#endif
20378 }
20379}
20380
20381/*!
20382 Returns a list of all the color maps associated with this color scale.
20383*/
20385{
20386 QList<QCPColorMap*> result;
20387 for (int i=0; i<mParentPlot->plottableCount(); ++i)
20388 {
20389 if (QCPColorMap *cm = qobject_cast<QCPColorMap*>(mParentPlot->plottable(i)))
20390 if (cm->colorScale() == this)
20391 result.append(cm);
20392 }
20393 return result;
20394}
20395
20396/*!
20397 Changes the data range such that all color maps associated with this color scale are fully mapped
20398 to the gradient in the data dimension.
20399
20400 \see setDataRange
20401*/
20403{
20406 bool haveRange = false;
20408 if (mDataScaleType == QCPAxis::stLogarithmic)
20409 sign = (mDataRange.upper < 0 ? QCP::sdNegative : QCP::sdPositive);
20410 foreach (QCPColorMap *map, maps)
20411 {
20412 if (!map->realVisibility() && onlyVisibleMaps)
20413 continue;
20414 QCPRange mapRange;
20415 if (map->colorScale() == this)
20416 {
20417 bool currentFoundRange = true;
20418 mapRange = map->data()->dataBounds();
20419 if (sign == QCP::sdPositive)
20420 {
20421 if (mapRange.lower <= 0 && mapRange.upper > 0)
20422 mapRange.lower = mapRange.upper*1e-3;
20423 else if (mapRange.lower <= 0 && mapRange.upper <= 0)
20424 currentFoundRange = false;
20425 } else if (sign == QCP::sdNegative)
20426 {
20427 if (mapRange.upper >= 0 && mapRange.lower < 0)
20428 mapRange.upper = mapRange.lower*1e-3;
20429 else if (mapRange.upper >= 0 && mapRange.lower >= 0)
20430 currentFoundRange = false;
20431 }
20433 {
20434 if (!haveRange)
20435 newRange = mapRange;
20436 else
20437 newRange.expand(mapRange);
20438 haveRange = true;
20439 }
20440 }
20441 }
20442 if (haveRange)
20443 {
20444 if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this dimension), shift current range to at least center the data
20445 {
20446 double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
20447 if (mDataScaleType == QCPAxis::stLinear)
20448 {
20449 newRange.lower = center-mDataRange.size()/2.0;
20450 newRange.upper = center+mDataRange.size()/2.0;
20451 } else // mScaleType == stLogarithmic
20452 {
20453 newRange.lower = center/qSqrt(mDataRange.upper/mDataRange.lower);
20454 newRange.upper = center*qSqrt(mDataRange.upper/mDataRange.lower);
20455 }
20456 }
20458 }
20459}
20460
20461/* inherits documentation from base class */
20463{
20465 if (!mAxisRect)
20466 {
20467 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20468 return;
20469 }
20470
20471 mAxisRect.data()->update(phase);
20472
20473 switch (phase)
20474 {
20475 case upMargins:
20476 {
20477 if (mType == QCPAxis::atBottom || mType == QCPAxis::atTop)
20478 {
20479 setMaximumSize(QWIDGETSIZE_MAX, mBarWidth+mAxisRect.data()->margins().top()+mAxisRect.data()->margins().bottom());
20480 setMinimumSize(0, mBarWidth+mAxisRect.data()->margins().top()+mAxisRect.data()->margins().bottom());
20481 } else
20482 {
20483 setMaximumSize(mBarWidth+mAxisRect.data()->margins().left()+mAxisRect.data()->margins().right(), QWIDGETSIZE_MAX);
20484 setMinimumSize(mBarWidth+mAxisRect.data()->margins().left()+mAxisRect.data()->margins().right(), 0);
20485 }
20486 break;
20487 }
20488 case upLayout:
20489 {
20490 mAxisRect.data()->setOuterRect(rect());
20491 break;
20492 }
20493 default: break;
20494 }
20495}
20496
20497/* inherits documentation from base class */
20499{
20500 painter->setAntialiasing(false);
20501}
20502
20503/* inherits documentation from base class */
20505{
20506 if (!mAxisRect)
20507 {
20508 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20509 return;
20510 }
20511 mAxisRect.data()->mousePressEvent(event, details);
20512}
20513
20514/* inherits documentation from base class */
20516{
20517 if (!mAxisRect)
20518 {
20519 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20520 return;
20521 }
20522 mAxisRect.data()->mouseMoveEvent(event, startPos);
20523}
20524
20525/* inherits documentation from base class */
20527{
20528 if (!mAxisRect)
20529 {
20530 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20531 return;
20532 }
20533 mAxisRect.data()->mouseReleaseEvent(event, startPos);
20534}
20535
20536/* inherits documentation from base class */
20538{
20539 if (!mAxisRect)
20540 {
20541 qDebug() << Q_FUNC_INFO << "internal axis rect was deleted";
20542 return;
20543 }
20544 mAxisRect.data()->wheelEvent(event);
20545}
20546
20547////////////////////////////////////////////////////////////////////////////////////////////////////
20548//////////////////// QCPColorScaleAxisRectPrivate
20549////////////////////////////////////////////////////////////////////////////////////////////////////
20550
20551/*! \class QCPColorScaleAxisRectPrivate
20552
20553 \internal
20554 \brief An axis rect subclass for use in a QCPColorScale
20555
20556 This is a private class and not part of the public QCustomPlot interface.
20557
20558 It provides the axis rect functionality for the QCPColorScale class.
20559*/
20560
20561
20562/*!
20563 Creates a new instance, as a child of \a parentColorScale.
20564*/
20566 QCPAxisRect(parentColorScale->parentPlot(), true),
20567 mParentColorScale(parentColorScale),
20568 mGradientImageInvalidated(true)
20569{
20571 setMinimumMargins(QMargins(0, 0, 0, 0));
20573 foreach (QCPAxis::AxisType type, allAxisTypes)
20574 {
20575 axis(type)->setVisible(true);
20576 axis(type)->grid()->setVisible(false);
20577 axis(type)->setPadding(0);
20580 }
20581
20590
20591 // make layer transfers of color scale transfer to axis rect and axes
20592 // the axes must be set after axis rect, such that they appear above color gradient drawn by axis rect:
20594 foreach (QCPAxis::AxisType type, allAxisTypes)
20596}
20597
20598/*! \internal
20599
20600 Updates the color gradient image if necessary, by calling \ref updateGradientImage, then draws
20601 it. Then the axes are drawn by calling the \ref QCPAxisRect::draw base class implementation.
20602
20603 \seebaseclassmethod
20604*/
20606{
20607 if (mGradientImageInvalidated)
20609
20610 bool mirrorHorz = false;
20611 bool mirrorVert = false;
20612 if (mParentColorScale->mColorAxis)
20613 {
20614 mirrorHorz = mParentColorScale->mColorAxis.data()->rangeReversed() && (mParentColorScale->type() == QCPAxis::atBottom || mParentColorScale->type() == QCPAxis::atTop);
20615 mirrorVert = mParentColorScale->mColorAxis.data()->rangeReversed() && (mParentColorScale->type() == QCPAxis::atLeft || mParentColorScale->type() == QCPAxis::atRight);
20616 }
20617
20618 painter->drawImage(rect().adjusted(0, -1, 0, -1), mGradientImage.mirrored(mirrorHorz, mirrorVert));
20619 QCPAxisRect::draw(painter);
20620}
20621
20622/*! \internal
20623
20624 Uses the current gradient of the parent \ref QCPColorScale (specified in the constructor) to
20625 generate a gradient image. This gradient image will be used in the \ref draw method.
20626*/
20628{
20629 if (rect().isEmpty())
20630 return;
20631
20633 int n = mParentColorScale->mGradient.levelCount();
20634 int w, h;
20635 QVector<double> data(n);
20636 for (int i=0; i<n; ++i)
20637 data[i] = i;
20638 if (mParentColorScale->mType == QCPAxis::atBottom || mParentColorScale->mType == QCPAxis::atTop)
20639 {
20640 w = n;
20641 h = rect().height();
20642 mGradientImage = QImage(w, h, format);
20644 for (int y=0; y<h; ++y)
20645 pixels.append(reinterpret_cast<QRgb*>(mGradientImage.scanLine(y)));
20646 mParentColorScale->mGradient.colorize(data.constData(), QCPRange(0, n-1), pixels.first(), n);
20647 for (int y=1; y<h; ++y)
20648 memcpy(pixels.at(y), pixels.first(), size_t(n)*sizeof(QRgb));
20649 } else
20650 {
20651 w = rect().width();
20652 h = n;
20653 mGradientImage = QImage(w, h, format);
20654 for (int y=0; y<h; ++y)
20655 {
20656 QRgb *pixels = reinterpret_cast<QRgb*>(mGradientImage.scanLine(y));
20657 const QRgb lineColor = mParentColorScale->mGradient.color(data[h-1-y], QCPRange(0, n-1));
20658 for (int x=0; x<w; ++x)
20659 pixels[x] = lineColor;
20660 }
20661 }
20662 mGradientImageInvalidated = false;
20663}
20664
20665/*! \internal
20666
20667 This slot is connected to the selectionChanged signals of the four axes in the constructor. It
20668 synchronizes the selection state of the axes.
20669*/
20671{
20672 // axis bases of four axes shall always (de-)selected synchronously:
20674 foreach (QCPAxis::AxisType type, allAxisTypes)
20675 {
20677 if (senderAxis->axisType() == type)
20678 continue;
20679
20680 if (axis(type)->selectableParts().testFlag(QCPAxis::spAxis))
20681 {
20682 if (selectedParts.testFlag(QCPAxis::spAxis))
20683 axis(type)->setSelectedParts(axis(type)->selectedParts() | QCPAxis::spAxis);
20684 else
20685 axis(type)->setSelectedParts(axis(type)->selectedParts() & ~QCPAxis::spAxis);
20686 }
20687 }
20688}
20689
20690/*! \internal
20691
20692 This slot is connected to the selectableChanged signals of the four axes in the constructor. It
20693 synchronizes the selectability of the axes.
20694*/
20696{
20697 // synchronize axis base selectability:
20699 foreach (QCPAxis::AxisType type, allAxisTypes)
20700 {
20702 if (senderAxis->axisType() == type)
20703 continue;
20704
20705 if (axis(type)->selectableParts().testFlag(QCPAxis::spAxis))
20706 {
20707 if (selectableParts.testFlag(QCPAxis::spAxis))
20708 axis(type)->setSelectableParts(axis(type)->selectableParts() | QCPAxis::spAxis);
20709 else
20710 axis(type)->setSelectableParts(axis(type)->selectableParts() & ~QCPAxis::spAxis);
20711 }
20712 }
20713}
20714/* end of 'src/layoutelements/layoutelement-colorscale.cpp' */
20715
20716
20717/* including file 'src/plottables/plottable-graph.cpp' */
20718/* modified 2021-03-29T02:30:44, size 74518 */
20719
20720////////////////////////////////////////////////////////////////////////////////////////////////////
20721//////////////////// QCPGraphData
20722////////////////////////////////////////////////////////////////////////////////////////////////////
20723
20724/*! \class QCPGraphData
20725 \brief Holds the data of one single data point for QCPGraph.
20726
20727 The stored data is:
20728 \li \a key: coordinate on the key axis of this data point (this is the \a mainKey and the \a sortKey)
20729 \li \a value: coordinate on the value axis of this data point (this is the \a mainValue)
20730
20731 The container for storing multiple data points is \ref QCPGraphDataContainer. It is a typedef for
20732 \ref QCPDataContainer with \ref QCPGraphData as the DataType template parameter. See the
20733 documentation there for an explanation regarding the data type's generic methods.
20734
20735 \see QCPGraphDataContainer
20736*/
20737
20738/* start documentation of inline functions */
20739
20740/*! \fn double QCPGraphData::sortKey() const
20741
20742 Returns the \a key member of this data point.
20743
20744 For a general explanation of what this method is good for in the context of the data container,
20745 see the documentation of \ref QCPDataContainer.
20746*/
20747
20748/*! \fn static QCPGraphData QCPGraphData::fromSortKey(double sortKey)
20749
20750 Returns a data point with the specified \a sortKey. All other members are set to zero.
20751
20752 For a general explanation of what this method is good for in the context of the data container,
20753 see the documentation of \ref QCPDataContainer.
20754*/
20755
20756/*! \fn static static bool QCPGraphData::sortKeyIsMainKey()
20757
20758 Since the member \a key is both the data point key coordinate and the data ordering parameter,
20759 this method returns true.
20760
20761 For a general explanation of what this method is good for in the context of the data container,
20762 see the documentation of \ref QCPDataContainer.
20763*/
20764
20765/*! \fn double QCPGraphData::mainKey() const
20766
20767 Returns the \a key member of this data point.
20768
20769 For a general explanation of what this method is good for in the context of the data container,
20770 see the documentation of \ref QCPDataContainer.
20771*/
20772
20773/*! \fn double QCPGraphData::mainValue() const
20774
20775 Returns the \a value member of this data point.
20776
20777 For a general explanation of what this method is good for in the context of the data container,
20778 see the documentation of \ref QCPDataContainer.
20779*/
20780
20781/*! \fn QCPRange QCPGraphData::valueRange() const
20782
20783 Returns a QCPRange with both lower and upper boundary set to \a value of this data point.
20784
20785 For a general explanation of what this method is good for in the context of the data container,
20786 see the documentation of \ref QCPDataContainer.
20787*/
20788
20789/* end documentation of inline functions */
20790
20791/*!
20792 Constructs a data point with key and value set to zero.
20793*/
20795 key(0),
20796 value(0)
20797{
20798}
20799
20800/*!
20801 Constructs a data point with the specified \a key and \a value.
20802*/
20803QCPGraphData::QCPGraphData(double key, double value) :
20804 key(key),
20805 value(value)
20806{
20807}
20808
20809
20810////////////////////////////////////////////////////////////////////////////////////////////////////
20811//////////////////// QCPGraph
20812////////////////////////////////////////////////////////////////////////////////////////////////////
20813
20814/*! \class QCPGraph
20815 \brief A plottable representing a graph in a plot.
20816
20817 \image html QCPGraph.png
20818
20819 Usually you create new graphs by calling QCustomPlot::addGraph. The resulting instance can be
20820 accessed via QCustomPlot::graph.
20821
20822 To plot data, assign it with the \ref setData or \ref addData functions. Alternatively, you can
20823 also access and modify the data via the \ref data method, which returns a pointer to the internal
20824 \ref QCPGraphDataContainer.
20825
20826 Graphs are used to display single-valued data. Single-valued means that there should only be one
20827 data point per unique key coordinate. In other words, the graph can't have \a loops. If you do
20828 want to plot non-single-valued curves, rather use the QCPCurve plottable.
20829
20830 Gaps in the graph line can be created by adding data points with NaN as value
20831 (<tt>qQNaN()</tt> or <tt>std::numeric_limits<double>::quiet_NaN()</tt>) in between the two data points that shall be
20832 separated.
20833
20834 \section qcpgraph-appearance Changing the appearance
20835
20836 The appearance of the graph is mainly determined by the line style, scatter style, brush and pen
20837 of the graph (\ref setLineStyle, \ref setScatterStyle, \ref setBrush, \ref setPen).
20838
20839 \subsection filling Filling under or between graphs
20840
20841 QCPGraph knows two types of fills: Normal graph fills towards the zero-value-line parallel to
20842 the key axis of the graph, and fills between two graphs, called channel fills. To enable a fill,
20843 just set a brush with \ref setBrush which is neither Qt::NoBrush nor fully transparent.
20844
20845 By default, a normal fill towards the zero-value-line will be drawn. To set up a channel fill
20846 between this graph and another one, call \ref setChannelFillGraph with the other graph as
20847 parameter.
20848
20849 \see QCustomPlot::addGraph, QCustomPlot::graph
20850*/
20851
20852/* start of documentation of inline functions */
20853
20854/*! \fn QSharedPointer<QCPGraphDataContainer> QCPGraph::data() const
20855
20856 Returns a shared pointer to the internal data storage of type \ref QCPGraphDataContainer. You may
20857 use it to directly manipulate the data, which may be more convenient and faster than using the
20858 regular \ref setData or \ref addData methods.
20859*/
20860
20861/* end of documentation of inline functions */
20862
20863/*!
20864 Constructs a graph which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
20865 axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
20866 the same orientation. If either of these restrictions is violated, a corresponding message is
20867 printed to the debug output (qDebug), the construction is not aborted, though.
20868
20869 The created QCPGraph is automatically registered with the QCustomPlot instance inferred from \a
20870 keyAxis. This QCustomPlot instance takes ownership of the QCPGraph, so do not delete it manually
20871 but use QCustomPlot::removePlottable() instead.
20872
20873 To directly create a graph inside a plot, you can also use the simpler QCustomPlot::addGraph function.
20874*/
20875QCPGraph::QCPGraph(QCPAxis *keyAxis, QCPAxis *valueAxis) :
20876 QCPAbstractPlottable1D<QCPGraphData>(keyAxis, valueAxis),
20877 mLineStyle{},
20878 mScatterSkip{},
20879 mAdaptiveSampling{}
20880{
20881 // special handling for QCPGraphs to maintain the simple graph interface:
20882 mParentPlot->registerGraph(this);
20883
20884 setPen(QPen(Qt::blue, 0));
20886
20888 setScatterSkip(0);
20889 setChannelFillGraph(nullptr);
20890 setAdaptiveSampling(true);
20891}
20892
20893QCPGraph::~QCPGraph()
20894{
20895}
20896
20897/*! \overload
20898
20899 Replaces the current data container with the provided \a data container.
20900
20901 Since a QSharedPointer is used, multiple QCPGraphs may share the same data container safely.
20902 Modifying the data in the container will then affect all graphs that share the container. Sharing
20903 can be achieved by simply exchanging the data containers wrapped in shared pointers:
20904 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpgraph-datasharing-1
20905
20906 If you do not wish to share containers, but create a copy from an existing container, rather use
20907 the \ref QCPDataContainer<DataType>::set method on the graph's data container directly:
20908 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpgraph-datasharing-2
20909
20910 \see addData
20911*/
20913{
20914 mDataContainer = data;
20915}
20916
20917/*! \overload
20918
20919 Replaces the current data with the provided points in \a keys and \a values. The provided
20920 vectors should have equal length. Else, the number of added points will be the size of the
20921 smallest vector.
20922
20923 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
20924 can set \a alreadySorted to true, to improve performance by saving a sorting run.
20925
20926 \see addData
20927*/
20929{
20930 mDataContainer->clear();
20931 addData(keys, values, alreadySorted);
20932}
20933
20934/*!
20935 Sets how the single data points are connected in the plot. For scatter-only plots, set \a ls to
20936 \ref lsNone and \ref setScatterStyle to the desired scatter style.
20937
20938 \see setScatterStyle
20939*/
20941{
20942 mLineStyle = ls;
20943}
20944
20945/*!
20946 Sets the visual appearance of single data points in the plot. If set to \ref QCPScatterStyle::ssNone, no scatter points
20947 are drawn (e.g. for line-only-plots with appropriate line style).
20948
20949 \see QCPScatterStyle, setLineStyle
20950*/
20952{
20953 mScatterStyle = style;
20954}
20955
20956/*!
20957 If scatters are displayed (scatter style not \ref QCPScatterStyle::ssNone), \a skip number of
20958 scatter points are skipped/not drawn after every drawn scatter point.
20959
20960 This can be used to make the data appear sparser while for example still having a smooth line,
20961 and to improve performance for very high density plots.
20962
20963 If \a skip is set to 0 (default), all scatter points are drawn.
20964
20965 \see setScatterStyle
20966*/
20968{
20969 mScatterSkip = qMax(0, skip);
20970}
20971
20972/*!
20973 Sets the target graph for filling the area between this graph and \a targetGraph with the current
20974 brush (\ref setBrush).
20975
20976 When \a targetGraph is set to 0, a normal graph fill to the zero-value-line will be shown. To
20977 disable any filling, set the brush to Qt::NoBrush.
20978
20979 \see setBrush
20980*/
20982{
20983 // prevent setting channel target to this graph itself:
20984 if (targetGraph == this)
20985 {
20986 qDebug() << Q_FUNC_INFO << "targetGraph is this graph itself";
20987 mChannelFillGraph = nullptr;
20988 return;
20989 }
20990 // prevent setting channel target to a graph not in the plot:
20991 if (targetGraph && targetGraph->mParentPlot != mParentPlot)
20992 {
20993 qDebug() << Q_FUNC_INFO << "targetGraph not in same plot";
20994 mChannelFillGraph = nullptr;
20995 return;
20996 }
20997
20998 mChannelFillGraph = targetGraph;
20999}
21000
21001/*!
21002 Sets whether adaptive sampling shall be used when plotting this graph. QCustomPlot's adaptive
21003 sampling technique can drastically improve the replot performance for graphs with a larger number
21004 of points (e.g. above 10,000), without notably changing the appearance of the graph.
21005
21006 By default, adaptive sampling is enabled. Even if enabled, QCustomPlot decides whether adaptive
21007 sampling shall actually be used on a per-graph basis. So leaving adaptive sampling enabled has no
21008 disadvantage in almost all cases.
21009
21010 \image html adaptive-sampling-line.png "A line plot of 500,000 points without and with adaptive sampling"
21011
21012 As can be seen, line plots experience no visual degradation from adaptive sampling. Outliers are
21013 reproduced reliably, as well as the overall shape of the data set. The replot time reduces
21014 dramatically though. This allows QCustomPlot to display large amounts of data in realtime.
21015
21016 \image html adaptive-sampling-scatter.png "A scatter plot of 100,000 points without and with adaptive sampling"
21017
21018 Care must be taken when using high-density scatter plots in combination with adaptive sampling.
21019 The adaptive sampling algorithm treats scatter plots more carefully than line plots which still
21020 gives a significant reduction of replot times, but not quite as much as for line plots. This is
21021 because scatter plots inherently need more data points to be preserved in order to still resemble
21022 the original, non-adaptive-sampling plot. As shown above, the results still aren't quite
21023 identical, as banding occurs for the outer data points. This is in fact intentional, such that
21024 the boundaries of the data cloud stay visible to the viewer. How strong the banding appears,
21025 depends on the point density, i.e. the number of points in the plot.
21026
21027 For some situations with scatter plots it might thus be desirable to manually turn adaptive
21028 sampling off. For example, when saving the plot to disk. This can be achieved by setting \a
21029 enabled to false before issuing a command like \ref QCustomPlot::savePng, and setting \a enabled
21030 back to true afterwards.
21031*/
21033{
21034 mAdaptiveSampling = enabled;
21035}
21036
21037/*! \overload
21038
21039 Adds the provided points in \a keys and \a values to the current data. The provided vectors
21040 should have equal length. Else, the number of added points will be the size of the smallest
21041 vector.
21042
21043 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
21044 can set \a alreadySorted to true, to improve performance by saving a sorting run.
21045
21046 Alternatively, you can also access and modify the data directly via the \ref data method, which
21047 returns a pointer to the internal data container.
21048*/
21050{
21051 if (keys.size() != values.size())
21052 qDebug() << Q_FUNC_INFO << "keys and values have different sizes:" << keys.size() << values.size();
21053 const int n = qMin(keys.size(), values.size());
21057 int i = 0;
21058 while (it != itEnd)
21059 {
21060 it->key = keys[i];
21061 it->value = values[i];
21062 ++it;
21063 ++i;
21064 }
21065 mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
21066}
21067
21068/*! \overload
21069
21070 Adds the provided data point as \a key and \a value to the current data.
21071
21072 Alternatively, you can also access and modify the data directly via the \ref data method, which
21073 returns a pointer to the internal data container.
21074*/
21075void QCPGraph::addData(double key, double value)
21076{
21077 mDataContainer->add(QCPGraphData(key, value));
21078}
21079
21080/*!
21081 Implements a selectTest specific to this plottable's point geometry.
21082
21083 If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
21084 point to \a pos.
21085
21086 \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
21087*/
21088double QCPGraph::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
21089{
21090 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
21091 return -1;
21092 if (!mKeyAxis || !mValueAxis)
21093 return -1;
21094
21095 if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()) || mParentPlot->interactions().testFlag(QCP::iSelectPlottablesBeyondAxisRect))
21096 {
21097 QCPGraphDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
21098 double result = pointDistance(pos, closestDataPoint);
21099 if (details)
21100 {
21101 int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
21102 details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
21103 }
21104 return result;
21105 } else
21106 return -1;
21107}
21108
21109/* inherits documentation from base class */
21111{
21112 return mDataContainer->keyRange(foundRange, inSignDomain);
21113}
21114
21115/* inherits documentation from base class */
21117{
21118 return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
21119}
21120
21121/* inherits documentation from base class */
21123{
21124 if (!mKeyAxis || !mValueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
21125 if (mKeyAxis.data()->range().size() <= 0 || mDataContainer->isEmpty()) return;
21126 if (mLineStyle == lsNone && mScatterStyle.isNone()) return;
21127
21128 QVector<QPointF> lines, scatters; // line and (if necessary) scatter pixel coordinates will be stored here while iterating over segments
21129
21130 // loop over and draw segments of unselected/selected data:
21134 for (int i=0; i<allSegments.size(); ++i)
21135 {
21136 bool isSelectedSegment = i >= unselectedSegments.size();
21137 // get line pixel points appropriate to line style:
21138 QCPDataRange lineDataRange = isSelectedSegment ? allSegments.at(i) : allSegments.at(i).adjusted(-1, 1); // unselected segments extend lines to bordering selected data point (safe to exceed total data bounds in first/last segment, getLines takes care)
21139 getLines(&lines, lineDataRange);
21140
21141 // check data validity if flag set:
21142#ifdef QCUSTOMPLOT_CHECK_DATA
21143 QCPGraphDataContainer::const_iterator it;
21144 for (it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
21145 {
21146 if (QCP::isInvalidData(it->key, it->value))
21147 qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "invalid." << "Plottable name:" << name();
21148 }
21149#endif
21150
21151 // draw fill of graph:
21152 if (isSelectedSegment && mSelectionDecorator)
21153 mSelectionDecorator->applyBrush(painter);
21154 else
21155 painter->setBrush(mBrush);
21156 painter->setPen(Qt::NoPen);
21157 drawFill(painter, &lines);
21158
21159 // draw line:
21160 if (mLineStyle != lsNone)
21161 {
21162 if (isSelectedSegment && mSelectionDecorator)
21163 mSelectionDecorator->applyPen(painter);
21164 else
21165 painter->setPen(mPen);
21166 painter->setBrush(Qt::NoBrush);
21167 if (mLineStyle == lsImpulse)
21168 drawImpulsePlot(painter, lines);
21169 else
21170 drawLinePlot(painter, lines); // also step plots can be drawn as a line plot
21171 }
21172
21173 // draw scatters:
21174 QCPScatterStyle finalScatterStyle = mScatterStyle;
21175 if (isSelectedSegment && mSelectionDecorator)
21176 finalScatterStyle = mSelectionDecorator->getFinalScatterStyle(mScatterStyle);
21177 if (!finalScatterStyle.isNone())
21178 {
21181 }
21182 }
21183
21184 // draw other selection decoration that isn't just line/scatter pens and brushes:
21185 if (mSelectionDecorator)
21186 mSelectionDecorator->drawDecoration(painter, selection());
21187}
21188
21189/* inherits documentation from base class */
21190void QCPGraph::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
21191{
21192 // draw fill:
21193 if (mBrush.style() != Qt::NoBrush)
21194 {
21196 painter->fillRect(QRectF(rect.left(), rect.top()+rect.height()/2.0, rect.width(), rect.height()/3.0), mBrush);
21197 }
21198 // draw line vertically centered:
21199 if (mLineStyle != lsNone)
21200 {
21202 painter->setPen(mPen);
21203 painter->drawLine(QLineF(rect.left(), rect.top()+rect.height()/2.0, rect.right()+5, rect.top()+rect.height()/2.0)); // +5 on x2 else last segment is missing from dashed/dotted pens
21204 }
21205 // draw scatter symbol:
21206 if (!mScatterStyle.isNone())
21207 {
21209 // scale scatter pixmap if it's too large to fit in legend icon rect:
21210 if (mScatterStyle.shape() == QCPScatterStyle::ssPixmap && (mScatterStyle.pixmap().size().width() > rect.width() || mScatterStyle.pixmap().size().height() > rect.height()))
21211 {
21212 QCPScatterStyle scaledStyle(mScatterStyle);
21213 scaledStyle.setPixmap(scaledStyle.pixmap().scaled(rect.size().toSize(), Qt::KeepAspectRatio, Qt::SmoothTransformation));
21214 scaledStyle.applyTo(painter, mPen);
21215 scaledStyle.drawShape(painter, QRectF(rect).center());
21216 } else
21217 {
21218 mScatterStyle.applyTo(painter, mPen);
21219 mScatterStyle.drawShape(painter, QRectF(rect).center());
21220 }
21221 }
21222}
21223
21224/*! \internal
21225
21226 This method retrieves an optimized set of data points via \ref getOptimizedLineData, and branches
21227 out to the line style specific functions such as \ref dataToLines, \ref dataToStepLeftLines, etc.
21228 according to the line style of the graph.
21229
21230 \a lines will be filled with points in pixel coordinates, that can be drawn with the according
21231 draw functions like \ref drawLinePlot and \ref drawImpulsePlot. The points returned in \a lines
21232 aren't necessarily the original data points. For example, step line styles require additional
21233 points to form the steps when drawn. If the line style of the graph is \ref lsNone, the \a
21234 lines vector will be empty.
21235
21236 \a dataRange specifies the beginning and ending data indices that will be taken into account for
21237 conversion. In this function, the specified range may exceed the total data bounds without harm:
21238 a correspondingly trimmed data range will be used. This takes the burden off the user of this
21239 function to check for valid indices in \a dataRange, e.g. when extending ranges coming from \ref
21240 getDataSegments.
21241
21242 \see getScatters
21243*/
21244void QCPGraph::getLines(QVector<QPointF> *lines, const QCPDataRange &dataRange) const
21245{
21246 if (!lines) return;
21247 QCPGraphDataContainer::const_iterator begin, end;
21248 getVisibleDataBounds(begin, end, dataRange);
21249 if (begin == end)
21250 {
21251 lines->clear();
21252 return;
21253 }
21254
21256 if (mLineStyle != lsNone)
21257 getOptimizedLineData(&lineData, begin, end);
21258
21259 if (mKeyAxis->rangeReversed() != (mKeyAxis->orientation() == Qt::Vertical)) // make sure key pixels are sorted ascending in lineData (significantly simplifies following processing)
21260 std::reverse(lineData.begin(), lineData.end());
21261
21262 switch (mLineStyle)
21263 {
21264 case lsNone: lines->clear(); break;
21265 case lsLine: *lines = dataToLines(lineData); break;
21266 case lsStepLeft: *lines = dataToStepLeftLines(lineData); break;
21267 case lsStepRight: *lines = dataToStepRightLines(lineData); break;
21268 case lsStepCenter: *lines = dataToStepCenterLines(lineData); break;
21269 case lsImpulse: *lines = dataToImpulseLines(lineData); break;
21270 }
21271}
21272
21273/*! \internal
21274
21275 This method retrieves an optimized set of data points via \ref getOptimizedScatterData and then
21276 converts them to pixel coordinates. The resulting points are returned in \a scatters, and can be
21277 passed to \ref drawScatterPlot.
21278
21279 \a dataRange specifies the beginning and ending data indices that will be taken into account for
21280 conversion. In this function, the specified range may exceed the total data bounds without harm:
21281 a correspondingly trimmed data range will be used. This takes the burden off the user of this
21282 function to check for valid indices in \a dataRange, e.g. when extending ranges coming from \ref
21283 getDataSegments.
21284*/
21286{
21287 if (!scatters) return;
21288 QCPAxis *keyAxis = mKeyAxis.data();
21289 QCPAxis *valueAxis = mValueAxis.data();
21290 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; scatters->clear(); return; }
21291
21292 QCPGraphDataContainer::const_iterator begin, end;
21293 getVisibleDataBounds(begin, end, dataRange);
21294 if (begin == end)
21295 {
21296 scatters->clear();
21297 return;
21298 }
21299
21301 getOptimizedScatterData(&data, begin, end);
21302
21303 if (mKeyAxis->rangeReversed() != (mKeyAxis->orientation() == Qt::Vertical)) // make sure key pixels are sorted ascending in data (significantly simplifies following processing)
21304 std::reverse(data.begin(), data.end());
21305
21306 scatters->resize(data.size());
21307 if (keyAxis->orientation() == Qt::Vertical)
21308 {
21309 for (int i=0; i<data.size(); ++i)
21310 {
21311 if (!qIsNaN(data.at(i).value))
21312 {
21313 (*scatters)[i].setX(valueAxis->coordToPixel(data.at(i).value));
21314 (*scatters)[i].setY(keyAxis->coordToPixel(data.at(i).key));
21315 }
21316 }
21317 } else
21318 {
21319 for (int i=0; i<data.size(); ++i)
21320 {
21321 if (!qIsNaN(data.at(i).value))
21322 {
21323 (*scatters)[i].setX(keyAxis->coordToPixel(data.at(i).key));
21324 (*scatters)[i].setY(valueAxis->coordToPixel(data.at(i).value));
21325 }
21326 }
21327 }
21328}
21329
21330/*! \internal
21331
21332 Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
21333 coordinate points which are suitable for drawing the line style \ref lsLine.
21334
21335 The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
21336 getLines if the line style is set accordingly.
21337
21338 \see dataToStepLeftLines, dataToStepRightLines, dataToStepCenterLines, dataToImpulseLines, getLines, drawLinePlot
21339*/
21341{
21342 QVector<QPointF> result;
21343 QCPAxis *keyAxis = mKeyAxis.data();
21344 QCPAxis *valueAxis = mValueAxis.data();
21345 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }
21346
21347 result.resize(data.size());
21348
21349 // transform data points to pixels:
21350 if (keyAxis->orientation() == Qt::Vertical)
21351 {
21352 for (int i=0; i<data.size(); ++i)
21353 {
21354 result[i].setX(valueAxis->coordToPixel(data.at(i).value));
21355 result[i].setY(keyAxis->coordToPixel(data.at(i).key));
21356 }
21357 } else // key axis is horizontal
21358 {
21359 for (int i=0; i<data.size(); ++i)
21360 {
21361 result[i].setX(keyAxis->coordToPixel(data.at(i).key));
21362 result[i].setY(valueAxis->coordToPixel(data.at(i).value));
21363 }
21364 }
21365 return result;
21366}
21367
21368/*! \internal
21369
21370 Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
21371 coordinate points which are suitable for drawing the line style \ref lsStepLeft.
21372
21373 The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
21374 getLines if the line style is set accordingly.
21375
21376 \see dataToLines, dataToStepRightLines, dataToStepCenterLines, dataToImpulseLines, getLines, drawLinePlot
21377*/
21379{
21380 QVector<QPointF> result;
21381 QCPAxis *keyAxis = mKeyAxis.data();
21382 QCPAxis *valueAxis = mValueAxis.data();
21383 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }
21384
21385 result.resize(data.size()*2);
21386
21387 // calculate steps from data and transform to pixel coordinates:
21388 if (keyAxis->orientation() == Qt::Vertical)
21389 {
21390 double lastValue = valueAxis->coordToPixel(data.first().value);
21391 for (int i=0; i<data.size(); ++i)
21392 {
21393 const double key = keyAxis->coordToPixel(data.at(i).key);
21394 result[i*2+0].setX(lastValue);
21395 result[i*2+0].setY(key);
21396 lastValue = valueAxis->coordToPixel(data.at(i).value);
21397 result[i*2+1].setX(lastValue);
21398 result[i*2+1].setY(key);
21399 }
21400 } else // key axis is horizontal
21401 {
21402 double lastValue = valueAxis->coordToPixel(data.first().value);
21403 for (int i=0; i<data.size(); ++i)
21404 {
21405 const double key = keyAxis->coordToPixel(data.at(i).key);
21406 result[i*2+0].setX(key);
21407 result[i*2+0].setY(lastValue);
21408 lastValue = valueAxis->coordToPixel(data.at(i).value);
21409 result[i*2+1].setX(key);
21410 result[i*2+1].setY(lastValue);
21411 }
21412 }
21413 return result;
21414}
21415
21416/*! \internal
21417
21418 Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
21419 coordinate points which are suitable for drawing the line style \ref lsStepRight.
21420
21421 The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
21422 getLines if the line style is set accordingly.
21423
21424 \see dataToLines, dataToStepLeftLines, dataToStepCenterLines, dataToImpulseLines, getLines, drawLinePlot
21425*/
21427{
21428 QVector<QPointF> result;
21429 QCPAxis *keyAxis = mKeyAxis.data();
21430 QCPAxis *valueAxis = mValueAxis.data();
21431 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }
21432
21433 result.resize(data.size()*2);
21434
21435 // calculate steps from data and transform to pixel coordinates:
21436 if (keyAxis->orientation() == Qt::Vertical)
21437 {
21438 double lastKey = keyAxis->coordToPixel(data.first().key);
21439 for (int i=0; i<data.size(); ++i)
21440 {
21441 const double value = valueAxis->coordToPixel(data.at(i).value);
21442 result[i*2+0].setX(value);
21443 result[i*2+0].setY(lastKey);
21444 lastKey = keyAxis->coordToPixel(data.at(i).key);
21445 result[i*2+1].setX(value);
21446 result[i*2+1].setY(lastKey);
21447 }
21448 } else // key axis is horizontal
21449 {
21450 double lastKey = keyAxis->coordToPixel(data.first().key);
21451 for (int i=0; i<data.size(); ++i)
21452 {
21453 const double value = valueAxis->coordToPixel(data.at(i).value);
21454 result[i*2+0].setX(lastKey);
21455 result[i*2+0].setY(value);
21456 lastKey = keyAxis->coordToPixel(data.at(i).key);
21457 result[i*2+1].setX(lastKey);
21458 result[i*2+1].setY(value);
21459 }
21460 }
21461 return result;
21462}
21463
21464/*! \internal
21465
21466 Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
21467 coordinate points which are suitable for drawing the line style \ref lsStepCenter.
21468
21469 The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
21470 getLines if the line style is set accordingly.
21471
21472 \see dataToLines, dataToStepLeftLines, dataToStepRightLines, dataToImpulseLines, getLines, drawLinePlot
21473*/
21475{
21476 QVector<QPointF> result;
21477 QCPAxis *keyAxis = mKeyAxis.data();
21478 QCPAxis *valueAxis = mValueAxis.data();
21479 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }
21480
21481 result.resize(data.size()*2);
21482
21483 // calculate steps from data and transform to pixel coordinates:
21484 if (keyAxis->orientation() == Qt::Vertical)
21485 {
21486 double lastKey = keyAxis->coordToPixel(data.first().key);
21487 double lastValue = valueAxis->coordToPixel(data.first().value);
21488 result[0].setX(lastValue);
21489 result[0].setY(lastKey);
21490 for (int i=1; i<data.size(); ++i)
21491 {
21492 const double key = (keyAxis->coordToPixel(data.at(i).key)+lastKey)*0.5;
21493 result[i*2-1].setX(lastValue);
21494 result[i*2-1].setY(key);
21495 lastValue = valueAxis->coordToPixel(data.at(i).value);
21496 lastKey = keyAxis->coordToPixel(data.at(i).key);
21497 result[i*2+0].setX(lastValue);
21498 result[i*2+0].setY(key);
21499 }
21500 result[data.size()*2-1].setX(lastValue);
21501 result[data.size()*2-1].setY(lastKey);
21502 } else // key axis is horizontal
21503 {
21504 double lastKey = keyAxis->coordToPixel(data.first().key);
21505 double lastValue = valueAxis->coordToPixel(data.first().value);
21506 result[0].setX(lastKey);
21507 result[0].setY(lastValue);
21508 for (int i=1; i<data.size(); ++i)
21509 {
21510 const double key = (keyAxis->coordToPixel(data.at(i).key)+lastKey)*0.5;
21511 result[i*2-1].setX(key);
21512 result[i*2-1].setY(lastValue);
21513 lastValue = valueAxis->coordToPixel(data.at(i).value);
21514 lastKey = keyAxis->coordToPixel(data.at(i).key);
21515 result[i*2+0].setX(key);
21516 result[i*2+0].setY(lastValue);
21517 }
21518 result[data.size()*2-1].setX(lastKey);
21519 result[data.size()*2-1].setY(lastValue);
21520 }
21521 return result;
21522}
21523
21524/*! \internal
21525
21526 Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
21527 coordinate points which are suitable for drawing the line style \ref lsImpulse.
21528
21529 The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
21530 getLines if the line style is set accordingly.
21531
21532 \see dataToLines, dataToStepLeftLines, dataToStepRightLines, dataToStepCenterLines, getLines, drawImpulsePlot
21533*/
21535{
21536 QVector<QPointF> result;
21537 QCPAxis *keyAxis = mKeyAxis.data();
21538 QCPAxis *valueAxis = mValueAxis.data();
21539 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }
21540
21541 result.resize(data.size()*2);
21542
21543 // transform data points to pixels:
21544 if (keyAxis->orientation() == Qt::Vertical)
21545 {
21546 for (int i=0; i<data.size(); ++i)
21547 {
21548 const double key = keyAxis->coordToPixel(data.at(i).key);
21549 result[i*2+0].setX(valueAxis->coordToPixel(0));
21550 result[i*2+0].setY(key);
21551 result[i*2+1].setX(valueAxis->coordToPixel(data.at(i).value));
21552 result[i*2+1].setY(key);
21553 }
21554 } else // key axis is horizontal
21555 {
21556 for (int i=0; i<data.size(); ++i)
21557 {
21558 const double key = keyAxis->coordToPixel(data.at(i).key);
21559 result[i*2+0].setX(key);
21560 result[i*2+0].setY(valueAxis->coordToPixel(0));
21561 result[i*2+1].setX(key);
21562 result[i*2+1].setY(valueAxis->coordToPixel(data.at(i).value));
21563 }
21564 }
21565 return result;
21566}
21567
21568/*! \internal
21569
21570 Draws the fill of the graph using the specified \a painter, with the currently set brush.
21571
21572 Depending on whether a normal fill or a channel fill (\ref setChannelFillGraph) is needed, \ref
21573 getFillPolygon or \ref getChannelFillPolygon are used to find the according fill polygons.
21574
21575 In order to handle NaN Data points correctly (the fill needs to be split into disjoint areas),
21576 this method first determines a list of non-NaN segments with \ref getNonNanSegments, on which to
21577 operate. In the channel fill case, \ref getOverlappingSegments is used to consolidate the non-NaN
21578 segments of the two involved graphs, before passing the overlapping pairs to \ref
21579 getChannelFillPolygon.
21580
21581 Pass the points of this graph's line as \a lines, in pixel coordinates.
21582
21583 \see drawLinePlot, drawImpulsePlot, drawScatterPlot
21584*/
21586{
21587 if (mLineStyle == lsImpulse) return; // fill doesn't make sense for impulse plot
21588 if (painter->brush().style() == Qt::NoBrush || painter->brush().color().alpha() == 0) return;
21589
21591 const QVector<QCPDataRange> segments = getNonNanSegments(lines, keyAxis()->orientation());
21592 if (!mChannelFillGraph)
21593 {
21594 // draw base fill under graph, fill goes all the way to the zero-value-line:
21595 foreach (QCPDataRange segment, segments)
21596 painter->drawPolygon(getFillPolygon(lines, segment));
21597 } else
21598 {
21599 // draw fill between this graph and mChannelFillGraph:
21601 mChannelFillGraph->getLines(&otherLines, QCPDataRange(0, mChannelFillGraph->dataCount()));
21602 if (!otherLines.isEmpty())
21603 {
21604 QVector<QCPDataRange> otherSegments = getNonNanSegments(&otherLines, mChannelFillGraph->keyAxis()->orientation());
21606 for (int i=0; i<segmentPairs.size(); ++i)
21607 painter->drawPolygon(getChannelFillPolygon(lines, segmentPairs.at(i).first, &otherLines, segmentPairs.at(i).second));
21608 }
21609 }
21610}
21611
21612/*! \internal
21613
21614 Draws scatter symbols at every point passed in \a scatters, given in pixel coordinates. The
21615 scatters will be drawn with \a painter and have the appearance as specified in \a style.
21616
21617 \see drawLinePlot, drawImpulsePlot
21618*/
21620{
21622 style.applyTo(painter, mPen);
21623 foreach (const QPointF &scatter, scatters)
21624 style.drawShape(painter, scatter.x(), scatter.y());
21625}
21626
21627/*! \internal
21628
21629 Draws lines between the points in \a lines, given in pixel coordinates.
21630
21631 \see drawScatterPlot, drawImpulsePlot, QCPAbstractPlottable1D::drawPolyline
21632*/
21633void QCPGraph::drawLinePlot(QCPPainter *painter, const QVector<QPointF> &lines) const
21634{
21635 if (painter->pen().style() != Qt::NoPen && painter->pen().color().alpha() != 0)
21636 {
21638 drawPolyline(painter, lines);
21639 }
21640}
21641
21642/*! \internal
21643
21644 Draws impulses from the provided data, i.e. it connects all line pairs in \a lines, given in
21645 pixel coordinates. The \a lines necessary for impulses are generated by \ref dataToImpulseLines
21646 from the regular graph data points.
21647
21648 \see drawLinePlot, drawScatterPlot
21649*/
21651{
21652 if (painter->pen().style() != Qt::NoPen && painter->pen().color().alpha() != 0)
21653 {
21655 QPen oldPen = painter->pen();
21656 QPen newPen = painter->pen();
21657 newPen.setCapStyle(Qt::FlatCap); // so impulse line doesn't reach beyond zero-line
21658 painter->setPen(newPen);
21659 painter->drawLines(lines);
21660 painter->setPen(oldPen);
21661 }
21662}
21663
21664/*! \internal
21665
21666 Returns via \a lineData the data points that need to be visualized for this graph when plotting
21667 graph lines, taking into consideration the currently visible axis ranges and, if \ref
21668 setAdaptiveSampling is enabled, local point densities. The considered data can be restricted
21669 further by \a begin and \a end, e.g. to only plot a certain segment of the data (see \ref
21670 getDataSegments).
21671
21672 This method is used by \ref getLines to retrieve the basic working set of data.
21673
21674 \see getOptimizedScatterData
21675*/
21676void QCPGraph::getOptimizedLineData(QVector<QCPGraphData> *lineData, const QCPGraphDataContainer::const_iterator &begin, const QCPGraphDataContainer::const_iterator &end) const
21677{
21678 if (!lineData) return;
21679 QCPAxis *keyAxis = mKeyAxis.data();
21680 QCPAxis *valueAxis = mValueAxis.data();
21681 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
21682 if (begin == end) return;
21683
21684 int dataCount = int(end-begin);
21685 int maxCount = (std::numeric_limits<int>::max)();
21686 if (mAdaptiveSampling)
21687 {
21688 double keyPixelSpan = qAbs(keyAxis->coordToPixel(begin->key)-keyAxis->coordToPixel((end-1)->key));
21689 if (2*keyPixelSpan+2 < static_cast<double>((std::numeric_limits<int>::max)()))
21690 maxCount = int(2*keyPixelSpan+2);
21691 }
21692
21693 if (mAdaptiveSampling && dataCount >= maxCount) // use adaptive sampling only if there are at least two points per pixel on average
21694 {
21695 QCPGraphDataContainer::const_iterator it = begin;
21696 double minValue = it->value;
21697 double maxValue = it->value;
21698 QCPGraphDataContainer::const_iterator currentIntervalFirstPoint = it;
21699 int reversedFactor = keyAxis->pixelOrientation(); // is used to calculate keyEpsilon pixel into the correct direction
21700 int reversedRound = reversedFactor==-1 ? 1 : 0; // is used to switch between floor (normal) and ceil (reversed) rounding of currentIntervalStartKey
21701 double currentIntervalStartKey = keyAxis->pixelToCoord(int(keyAxis->coordToPixel(begin->key)+reversedRound));
21703 double keyEpsilon = qAbs(currentIntervalStartKey-keyAxis->pixelToCoord(keyAxis->coordToPixel(currentIntervalStartKey)+1.0*reversedFactor)); // interval of one pixel on screen when mapped to plot key coordinates
21704 bool keyEpsilonVariable = keyAxis->scaleType() == QCPAxis::stLogarithmic; // indicates whether keyEpsilon needs to be updated after every interval (for log axes)
21705 int intervalDataCount = 1;
21706 ++it; // advance iterator to second data point because adaptive sampling works in 1 point retrospect
21707 while (it != end)
21708 {
21709 if (it->key < currentIntervalStartKey+keyEpsilon) // data point is still within same pixel, so skip it and expand value span of this cluster if necessary
21710 {
21711 if (it->value < minValue)
21712 minValue = it->value;
21713 else if (it->value > maxValue)
21714 maxValue = it->value;
21716 } else // new pixel interval started
21717 {
21718 if (intervalDataCount >= 2) // last pixel had multiple data points, consolidate them to a cluster
21719 {
21720 if (lastIntervalEndKey < currentIntervalStartKey-keyEpsilon) // last point is further away, so first point of this cluster must be at a real data point
21724 if (it->key > currentIntervalStartKey+keyEpsilon*2) // new pixel started further away from previous cluster, so make sure the last point of the cluster is at a real data point
21725 lineData->append(QCPGraphData(currentIntervalStartKey+keyEpsilon*0.8, (it-1)->value));
21726 } else
21728 lastIntervalEndKey = (it-1)->key;
21729 minValue = it->value;
21730 maxValue = it->value;
21732 currentIntervalStartKey = keyAxis->pixelToCoord(int(keyAxis->coordToPixel(it->key)+reversedRound));
21736 }
21737 ++it;
21738 }
21739 // handle last interval:
21740 if (intervalDataCount >= 2) // last pixel had multiple data points, consolidate them to a cluster
21741 {
21742 if (lastIntervalEndKey < currentIntervalStartKey-keyEpsilon) // last point wasn't a cluster, so first point of this cluster must be at a real data point
21746 } else
21748
21749 } else // don't use adaptive sampling algorithm, transfer points one-to-one from the data container into the output
21750 {
21751 lineData->resize(dataCount);
21752 std::copy(begin, end, lineData->begin());
21753 }
21754}
21755
21756/*! \internal
21757
21758 Returns via \a scatterData the data points that need to be visualized for this graph when
21759 plotting scatter points, taking into consideration the currently visible axis ranges and, if \ref
21760 setAdaptiveSampling is enabled, local point densities. The considered data can be restricted
21761 further by \a begin and \a end, e.g. to only plot a certain segment of the data (see \ref
21762 getDataSegments).
21763
21764 This method is used by \ref getScatters to retrieve the basic working set of data.
21765
21766 \see getOptimizedLineData
21767*/
21768void QCPGraph::getOptimizedScatterData(QVector<QCPGraphData> *scatterData, QCPGraphDataContainer::const_iterator begin, QCPGraphDataContainer::const_iterator end) const
21769{
21770 if (!scatterData) return;
21771 QCPAxis *keyAxis = mKeyAxis.data();
21772 QCPAxis *valueAxis = mValueAxis.data();
21773 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
21774
21775 const int scatterModulo = mScatterSkip+1;
21776 const bool doScatterSkip = mScatterSkip > 0;
21777 int beginIndex = int(begin-mDataContainer->constBegin());
21778 int endIndex = int(end-mDataContainer->constBegin());
21779 while (doScatterSkip && begin != end && beginIndex % scatterModulo != 0) // advance begin iterator to first non-skipped scatter
21780 {
21781 ++beginIndex;
21782 ++begin;
21783 }
21784 if (begin == end) return;
21785 int dataCount = int(end-begin);
21786 int maxCount = (std::numeric_limits<int>::max)();
21787 if (mAdaptiveSampling)
21788 {
21789 int keyPixelSpan = int(qAbs(keyAxis->coordToPixel(begin->key)-keyAxis->coordToPixel((end-1)->key)));
21790 maxCount = 2*keyPixelSpan+2;
21791 }
21792
21793 if (mAdaptiveSampling && dataCount >= maxCount) // use adaptive sampling only if there are at least two points per pixel on average
21794 {
21795 double valueMaxRange = valueAxis->range().upper;
21796 double valueMinRange = valueAxis->range().lower;
21797 QCPGraphDataContainer::const_iterator it = begin;
21798 int itIndex = int(beginIndex);
21799 double minValue = it->value;
21800 double maxValue = it->value;
21801 QCPGraphDataContainer::const_iterator minValueIt = it;
21802 QCPGraphDataContainer::const_iterator maxValueIt = it;
21803 QCPGraphDataContainer::const_iterator currentIntervalStart = it;
21804 int reversedFactor = keyAxis->pixelOrientation(); // is used to calculate keyEpsilon pixel into the correct direction
21805 int reversedRound = reversedFactor==-1 ? 1 : 0; // is used to switch between floor (normal) and ceil (reversed) rounding of currentIntervalStartKey
21806 double currentIntervalStartKey = keyAxis->pixelToCoord(int(keyAxis->coordToPixel(begin->key)+reversedRound));
21807 double keyEpsilon = qAbs(currentIntervalStartKey-keyAxis->pixelToCoord(keyAxis->coordToPixel(currentIntervalStartKey)+1.0*reversedFactor)); // interval of one pixel on screen when mapped to plot key coordinates
21808 bool keyEpsilonVariable = keyAxis->scaleType() == QCPAxis::stLogarithmic; // indicates whether keyEpsilon needs to be updated after every interval (for log axes)
21809 int intervalDataCount = 1;
21810 // advance iterator to second (non-skipped) data point because adaptive sampling works in 1 point retrospect:
21811 if (!doScatterSkip)
21812 ++it;
21813 else
21814 {
21816 if (itIndex < endIndex) // make sure we didn't jump over end
21817 it += scatterModulo;
21818 else
21819 {
21820 it = end;
21821 itIndex = endIndex;
21822 }
21823 }
21824 // main loop over data points:
21825 while (it != end)
21826 {
21827 if (it->key < currentIntervalStartKey+keyEpsilon) // data point is still within same pixel, so skip it and expand value span of this pixel if necessary
21828 {
21829 if (it->value < minValue && it->value > valueMinRange && it->value < valueMaxRange)
21830 {
21831 minValue = it->value;
21832 minValueIt = it;
21833 } else if (it->value > maxValue && it->value > valueMinRange && it->value < valueMaxRange)
21834 {
21835 maxValue = it->value;
21836 maxValueIt = it;
21837 }
21839 } else // new pixel started
21840 {
21841 if (intervalDataCount >= 2) // last pixel had multiple data points, consolidate them
21842 {
21843 // determine value pixel span and add as many points in interval to maintain certain vertical data density (this is specific to scatter plot):
21844 double valuePixelSpan = qAbs(valueAxis->coordToPixel(minValue)-valueAxis->coordToPixel(maxValue));
21845 int dataModulo = qMax(1, qRound(intervalDataCount/(valuePixelSpan/4.0))); // approximately every 4 value pixels one data point on average
21846 QCPGraphDataContainer::const_iterator intervalIt = currentIntervalStart;
21847 int c = 0;
21848 while (intervalIt != it)
21849 {
21850 if ((c % dataModulo == 0 || intervalIt == minValueIt || intervalIt == maxValueIt) && intervalIt->value > valueMinRange && intervalIt->value < valueMaxRange)
21851 scatterData->append(*intervalIt);
21852 ++c;
21853 if (!doScatterSkip)
21854 ++intervalIt;
21855 else
21856 intervalIt += scatterModulo; // since we know indices of "currentIntervalStart", "intervalIt" and "it" are multiples of scatterModulo, we can't accidentally jump over "it" here
21857 }
21860 minValue = it->value;
21861 maxValue = it->value;
21863 currentIntervalStartKey = keyAxis->pixelToCoord(int(keyAxis->coordToPixel(it->key)+reversedRound));
21867 }
21868 // advance to next data point:
21869 if (!doScatterSkip)
21870 ++it;
21871 else
21872 {
21874 if (itIndex < endIndex) // make sure we didn't jump over end
21875 it += scatterModulo;
21876 else
21877 {
21878 it = end;
21879 itIndex = endIndex;
21880 }
21881 }
21882 }
21883 // handle last interval:
21884 if (intervalDataCount >= 2) // last pixel had multiple data points, consolidate them
21885 {
21886 // determine value pixel span and add as many points in interval to maintain certain vertical data density (this is specific to scatter plot):
21887 double valuePixelSpan = qAbs(valueAxis->coordToPixel(minValue)-valueAxis->coordToPixel(maxValue));
21888 int dataModulo = qMax(1, qRound(intervalDataCount/(valuePixelSpan/4.0))); // approximately every 4 value pixels one data point on average
21889 QCPGraphDataContainer::const_iterator intervalIt = currentIntervalStart;
21890 int intervalItIndex = int(intervalIt-mDataContainer->constBegin());
21891 int c = 0;
21892 while (intervalIt != it)
21893 {
21894 if ((c % dataModulo == 0 || intervalIt == minValueIt || intervalIt == maxValueIt) && intervalIt->value > valueMinRange && intervalIt->value < valueMaxRange)
21895 scatterData->append(*intervalIt);
21896 ++c;
21897 if (!doScatterSkip)
21898 ++intervalIt;
21899 else // here we can't guarantee that adding scatterModulo doesn't exceed "it" (because "it" is equal to "end" here, and "end" isn't scatterModulo-aligned), so check via index comparison:
21900 {
21904 else
21905 {
21906 intervalIt = it;
21908 }
21909 }
21910 }
21913
21914 } else // don't use adaptive sampling algorithm, transfer points one-to-one from the data container into the output
21915 {
21916 QCPGraphDataContainer::const_iterator it = begin;
21917 int itIndex = beginIndex;
21918 scatterData->reserve(dataCount);
21919 while (it != end)
21920 {
21921 scatterData->append(*it);
21922 // advance to next data point:
21923 if (!doScatterSkip)
21924 ++it;
21925 else
21926 {
21928 if (itIndex < endIndex)
21929 it += scatterModulo;
21930 else
21931 {
21932 it = end;
21933 itIndex = endIndex;
21934 }
21935 }
21936 }
21937 }
21938}
21939
21940/*!
21941 This method outputs the currently visible data range via \a begin and \a end. The returned range
21942 will also never exceed \a rangeRestriction.
21943
21944 This method takes into account that the drawing of data lines at the axis rect border always
21945 requires the points just outside the visible axis range. So \a begin and \a end may actually
21946 indicate a range that contains one additional data point to the left and right of the visible
21947 axis range.
21948*/
21949void QCPGraph::getVisibleDataBounds(QCPGraphDataContainer::const_iterator &begin, QCPGraphDataContainer::const_iterator &end, const QCPDataRange &rangeRestriction) const
21950{
21951 if (rangeRestriction.isEmpty())
21952 {
21953 end = mDataContainer->constEnd();
21954 begin = end;
21955 } else
21956 {
21957 QCPAxis *keyAxis = mKeyAxis.data();
21958 QCPAxis *valueAxis = mValueAxis.data();
21959 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
21960 // get visible data range:
21961 begin = mDataContainer->findBegin(keyAxis->range().lower);
21962 end = mDataContainer->findEnd(keyAxis->range().upper);
21963 // limit lower/upperEnd to rangeRestriction:
21964 mDataContainer->limitIteratorsToDataRange(begin, end, rangeRestriction); // this also ensures rangeRestriction outside data bounds doesn't break anything
21965 }
21966}
21967
21968/*! \internal
21969
21970 This method goes through the passed points in \a lineData and returns a list of the segments
21971 which don't contain NaN data points.
21972
21973 \a keyOrientation defines whether the \a x or \a y member of the passed QPointF is used to check
21974 for NaN. If \a keyOrientation is \c Qt::Horizontal, the \a y member is checked, if it is \c
21975 Qt::Vertical, the \a x member is checked.
21976
21977 \see getOverlappingSegments, drawFill
21978*/
21980{
21981 QVector<QCPDataRange> result;
21982 const int n = lineData->size();
21983
21985 int i = 0;
21986
21988 {
21989 while (i < n)
21990 {
21991 while (i < n && qIsNaN(lineData->at(i).y())) // seek next non-NaN data point
21992 ++i;
21993 if (i == n)
21994 break;
21995 currentSegment.setBegin(i++);
21996 while (i < n && !qIsNaN(lineData->at(i).y())) // seek next NaN data point or end of data
21997 ++i;
21998 currentSegment.setEnd(i++);
21999 result.append(currentSegment);
22000 }
22001 } else // keyOrientation == Qt::Vertical
22002 {
22003 while (i < n)
22004 {
22005 while (i < n && qIsNaN(lineData->at(i).x())) // seek next non-NaN data point
22006 ++i;
22007 if (i == n)
22008 break;
22009 currentSegment.setBegin(i++);
22010 while (i < n && !qIsNaN(lineData->at(i).x())) // seek next NaN data point or end of data
22011 ++i;
22012 currentSegment.setEnd(i++);
22013 result.append(currentSegment);
22014 }
22015 }
22016 return result;
22017}
22018
22019/*! \internal
22020
22021 This method takes two segment lists (e.g. created by \ref getNonNanSegments) \a thisSegments and
22022 \a otherSegments, and their associated point data \a thisData and \a otherData.
22023
22024 It returns all pairs of segments (the first from \a thisSegments, the second from \a
22025 otherSegments), which overlap in plot coordinates.
22026
22027 This method is useful in the case of a channel fill between two graphs, when only those non-NaN
22028 segments which actually overlap in their key coordinate shall be considered for drawing a channel
22029 fill polygon.
22030
22031 It is assumed that the passed segments in \a thisSegments are ordered ascending by index, and
22032 that the segments don't overlap themselves. The same is assumed for the segments in \a
22033 otherSegments. This is fulfilled when the segments are obtained via \ref getNonNanSegments.
22034
22035 \see getNonNanSegments, segmentsIntersect, drawFill, getChannelFillPolygon
22036*/
22038{
22040 if (thisData->isEmpty() || otherData->isEmpty() || thisSegments.isEmpty() || otherSegments.isEmpty())
22041 return result;
22042
22043 int thisIndex = 0;
22044 int otherIndex = 0;
22045 const bool verticalKey = mKeyAxis->orientation() == Qt::Vertical;
22046 while (thisIndex < thisSegments.size() && otherIndex < otherSegments.size())
22047 {
22048 if (thisSegments.at(thisIndex).size() < 2) // segments with fewer than two points won't have a fill anyhow
22049 {
22050 ++thisIndex;
22051 continue;
22052 }
22053 if (otherSegments.at(otherIndex).size() < 2) // segments with fewer than two points won't have a fill anyhow
22054 {
22055 ++otherIndex;
22056 continue;
22057 }
22059 if (!verticalKey)
22060 {
22061 thisLower = thisData->at(thisSegments.at(thisIndex).begin()).x();
22062 thisUpper = thisData->at(thisSegments.at(thisIndex).end()-1).x();
22063 otherLower = otherData->at(otherSegments.at(otherIndex).begin()).x();
22064 otherUpper = otherData->at(otherSegments.at(otherIndex).end()-1).x();
22065 } else
22066 {
22067 thisLower = thisData->at(thisSegments.at(thisIndex).begin()).y();
22068 thisUpper = thisData->at(thisSegments.at(thisIndex).end()-1).y();
22069 otherLower = otherData->at(otherSegments.at(otherIndex).begin()).y();
22070 otherUpper = otherData->at(otherSegments.at(otherIndex).end()-1).y();
22071 }
22072
22073 int bPrecedence;
22076
22077 if (bPrecedence <= 0) // otherSegment doesn't reach as far as thisSegment, so continue with next otherSegment, keeping current thisSegment
22078 ++otherIndex;
22079 else // otherSegment reaches further than thisSegment, so continue with next thisSegment, keeping current otherSegment
22080 ++thisIndex;
22081 }
22082
22083 return result;
22084}
22085
22086/*! \internal
22087
22088 Returns whether the segments defined by the coordinates (aLower, aUpper) and (bLower, bUpper)
22089 have overlap.
22090
22091 The output parameter \a bPrecedence indicates whether the \a b segment reaches farther than the
22092 \a a segment or not. If \a bPrecedence returns 1, segment \a b reaches the farthest to higher
22093 coordinates (i.e. bUpper > aUpper). If it returns -1, segment \a a reaches the farthest. Only if
22094 both segment's upper bounds are identical, 0 is returned as \a bPrecedence.
22095
22096 It is assumed that the lower bounds always have smaller or equal values than the upper bounds.
22097
22098 \see getOverlappingSegments
22099*/
22100bool QCPGraph::segmentsIntersect(double aLower, double aUpper, double bLower, double bUpper, int &bPrecedence) const
22101{
22102 bPrecedence = 0;
22103 if (aLower > bUpper)
22104 {
22105 bPrecedence = -1;
22106 return false;
22107 } else if (bLower > aUpper)
22108 {
22109 bPrecedence = 1;
22110 return false;
22111 } else
22112 {
22113 if (aUpper > bUpper)
22114 bPrecedence = -1;
22115 else if (aUpper < bUpper)
22116 bPrecedence = 1;
22117
22118 return true;
22119 }
22120}
22121
22122/*! \internal
22123
22124 Returns the point which closes the fill polygon on the zero-value-line parallel to the key axis.
22125 The logarithmic axis scale case is a bit special, since the zero-value-line in pixel coordinates
22126 is in positive or negative infinity. So this case is handled separately by just closing the fill
22127 polygon on the axis which lies in the direction towards the zero value.
22128
22129 \a matchingDataPoint will provide the key (in pixels) of the returned point. Depending on whether
22130 the key axis of this graph is horizontal or vertical, \a matchingDataPoint will provide the x or
22131 y value of the returned point, respectively.
22132*/
22134{
22135 QCPAxis *keyAxis = mKeyAxis.data();
22136 QCPAxis *valueAxis = mValueAxis.data();
22137 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return {}; }
22138
22139 QPointF result;
22140 if (valueAxis->scaleType() == QCPAxis::stLinear)
22141 {
22142 if (keyAxis->orientation() == Qt::Horizontal)
22143 {
22144 result.setX(matchingDataPoint.x());
22145 result.setY(valueAxis->coordToPixel(0));
22146 } else // keyAxis->orientation() == Qt::Vertical
22147 {
22148 result.setX(valueAxis->coordToPixel(0));
22149 result.setY(matchingDataPoint.y());
22150 }
22151 } else // valueAxis->mScaleType == QCPAxis::stLogarithmic
22152 {
22153 // In logarithmic scaling we can't just draw to value 0 so we just fill all the way
22154 // to the axis which is in the direction towards 0
22155 if (keyAxis->orientation() == Qt::Vertical)
22156 {
22157 if ((valueAxis->range().upper < 0 && !valueAxis->rangeReversed()) ||
22158 (valueAxis->range().upper > 0 && valueAxis->rangeReversed())) // if range is negative, zero is on opposite side of key axis
22159 result.setX(keyAxis->axisRect()->right());
22160 else
22161 result.setX(keyAxis->axisRect()->left());
22162 result.setY(matchingDataPoint.y());
22163 } else if (keyAxis->axisType() == QCPAxis::atTop || keyAxis->axisType() == QCPAxis::atBottom)
22164 {
22165 result.setX(matchingDataPoint.x());
22166 if ((valueAxis->range().upper < 0 && !valueAxis->rangeReversed()) ||
22167 (valueAxis->range().upper > 0 && valueAxis->rangeReversed())) // if range is negative, zero is on opposite side of key axis
22168 result.setY(keyAxis->axisRect()->top());
22169 else
22170 result.setY(keyAxis->axisRect()->bottom());
22171 }
22172 }
22173 return result;
22174}
22175
22176/*! \internal
22177
22178 Returns the polygon needed for drawing normal fills between this graph and the key axis.
22179
22180 Pass the graph's data points (in pixel coordinates) as \a lineData, and specify the \a segment
22181 which shall be used for the fill. The collection of \a lineData points described by \a segment
22182 must not contain NaN data points (see \ref getNonNanSegments).
22183
22184 The returned fill polygon will be closed at the key axis (the zero-value line) for linear value
22185 axes. For logarithmic value axes the polygon will reach just beyond the corresponding axis rect
22186 side (see \ref getFillBasePoint).
22187
22188 For increased performance (due to implicit sharing), keep the returned QPolygonF const.
22189
22190 \see drawFill, getNonNanSegments
22191*/
22193{
22194 if (segment.size() < 2)
22195 return QPolygonF();
22196 QPolygonF result(segment.size()+2);
22197
22198 result[0] = getFillBasePoint(lineData->at(segment.begin()));
22199 std::copy(lineData->constBegin()+segment.begin(), lineData->constBegin()+segment.end(), result.begin()+1);
22200 result[result.size()-1] = getFillBasePoint(lineData->at(segment.end()-1));
22201
22202 return result;
22203}
22204
22205/*! \internal
22206
22207 Returns the polygon needed for drawing (partial) channel fills between this graph and the graph
22208 specified by \ref setChannelFillGraph.
22209
22210 The data points of this graph are passed as pixel coordinates via \a thisData, the data of the
22211 other graph as \a otherData. The returned polygon will be calculated for the specified data
22212 segments \a thisSegment and \a otherSegment, pertaining to the respective \a thisData and \a
22213 otherData, respectively.
22214
22215 The passed \a thisSegment and \a otherSegment should correspond to the segment pairs returned by
22216 \ref getOverlappingSegments, to make sure only segments that actually have key coordinate overlap
22217 need to be processed here.
22218
22219 For increased performance due to implicit sharing, keep the returned QPolygonF const.
22220
22221 \see drawFill, getOverlappingSegments, getNonNanSegments
22222*/
22224{
22225 if (!mChannelFillGraph)
22226 return QPolygonF();
22227
22228 QCPAxis *keyAxis = mKeyAxis.data();
22229 QCPAxis *valueAxis = mValueAxis.data();
22230 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return QPolygonF(); }
22231 if (!mChannelFillGraph.data()->mKeyAxis) { qDebug() << Q_FUNC_INFO << "channel fill target key axis invalid"; return QPolygonF(); }
22232
22233 if (mChannelFillGraph.data()->mKeyAxis.data()->orientation() != keyAxis->orientation())
22234 return QPolygonF(); // don't have same axis orientation, can't fill that (Note: if keyAxis fits, valueAxis will fit too, because it's always orthogonal to keyAxis)
22235
22236 if (thisData->isEmpty()) return QPolygonF();
22239 std::copy(thisData->constBegin()+thisSegment.begin(), thisData->constBegin()+thisSegment.end(), thisSegmentData.begin());
22240 std::copy(otherData->constBegin()+otherSegment.begin(), otherData->constBegin()+otherSegment.end(), otherSegmentData.begin());
22241 // pointers to be able to swap them, depending which data range needs cropping:
22244
22245 // crop both vectors to ranges in which the keys overlap (which coord is key, depends on axisType):
22246 if (keyAxis->orientation() == Qt::Horizontal)
22247 {
22248 // x is key
22249 // crop lower bound:
22250 if (staticData->first().x() < croppedData->first().x()) // other one must be cropped
22252 const int lowBound = findIndexBelowX(croppedData, staticData->first().x());
22253 if (lowBound == -1) return QPolygonF(); // key ranges have no overlap
22254 croppedData->remove(0, lowBound);
22255 // set lowest point of cropped data to fit exactly key position of first static data point via linear interpolation:
22256 if (croppedData->size() < 2) return QPolygonF(); // need at least two points for interpolation
22257 double slope;
22258 if (!qFuzzyCompare(croppedData->at(1).x(), croppedData->at(0).x()))
22259 slope = (croppedData->at(1).y()-croppedData->at(0).y())/(croppedData->at(1).x()-croppedData->at(0).x());
22260 else
22261 slope = 0;
22262 (*croppedData)[0].setY(croppedData->at(0).y()+slope*(staticData->first().x()-croppedData->at(0).x()));
22263 (*croppedData)[0].setX(staticData->first().x());
22264
22265 // crop upper bound:
22266 if (staticData->last().x() > croppedData->last().x()) // other one must be cropped
22268 int highBound = findIndexAboveX(croppedData, staticData->last().x());
22269 if (highBound == -1) return QPolygonF(); // key ranges have no overlap
22270 croppedData->remove(highBound+1, croppedData->size()-(highBound+1));
22271 // set highest point of cropped data to fit exactly key position of last static data point via linear interpolation:
22272 if (croppedData->size() < 2) return QPolygonF(); // need at least two points for interpolation
22273 const int li = croppedData->size()-1; // last index
22274 if (!qFuzzyCompare(croppedData->at(li).x(), croppedData->at(li-1).x()))
22275 slope = (croppedData->at(li).y()-croppedData->at(li-1).y())/(croppedData->at(li).x()-croppedData->at(li-1).x());
22276 else
22277 slope = 0;
22278 (*croppedData)[li].setY(croppedData->at(li-1).y()+slope*(staticData->last().x()-croppedData->at(li-1).x()));
22279 (*croppedData)[li].setX(staticData->last().x());
22280 } else // mKeyAxis->orientation() == Qt::Vertical
22281 {
22282 // y is key
22283 // crop lower bound:
22284 if (staticData->first().y() < croppedData->first().y()) // other one must be cropped
22286 int lowBound = findIndexBelowY(croppedData, staticData->first().y());
22287 if (lowBound == -1) return QPolygonF(); // key ranges have no overlap
22288 croppedData->remove(0, lowBound);
22289 // set lowest point of cropped data to fit exactly key position of first static data point via linear interpolation:
22290 if (croppedData->size() < 2) return QPolygonF(); // need at least two points for interpolation
22291 double slope;
22292 if (!qFuzzyCompare(croppedData->at(1).y(), croppedData->at(0).y())) // avoid division by zero in step plots
22293 slope = (croppedData->at(1).x()-croppedData->at(0).x())/(croppedData->at(1).y()-croppedData->at(0).y());
22294 else
22295 slope = 0;
22296 (*croppedData)[0].setX(croppedData->at(0).x()+slope*(staticData->first().y()-croppedData->at(0).y()));
22297 (*croppedData)[0].setY(staticData->first().y());
22298
22299 // crop upper bound:
22300 if (staticData->last().y() > croppedData->last().y()) // other one must be cropped
22302 int highBound = findIndexAboveY(croppedData, staticData->last().y());
22303 if (highBound == -1) return QPolygonF(); // key ranges have no overlap
22304 croppedData->remove(highBound+1, croppedData->size()-(highBound+1));
22305 // set highest point of cropped data to fit exactly key position of last static data point via linear interpolation:
22306 if (croppedData->size() < 2) return QPolygonF(); // need at least two points for interpolation
22307 int li = croppedData->size()-1; // last index
22308 if (!qFuzzyCompare(croppedData->at(li).y(), croppedData->at(li-1).y())) // avoid division by zero in step plots
22309 slope = (croppedData->at(li).x()-croppedData->at(li-1).x())/(croppedData->at(li).y()-croppedData->at(li-1).y());
22310 else
22311 slope = 0;
22312 (*croppedData)[li].setX(croppedData->at(li-1).x()+slope*(staticData->last().y()-croppedData->at(li-1).y()));
22313 (*croppedData)[li].setY(staticData->last().y());
22314 }
22315
22316 // return joined:
22317 for (int i=otherSegmentData.size()-1; i>=0; --i) // insert reversed, otherwise the polygon will be twisted
22319 return QPolygonF(thisSegmentData);
22320}
22321
22322/*! \internal
22323
22324 Finds the smallest index of \a data, whose points x value is just above \a x. Assumes x values in
22325 \a data points are ordered ascending, as is ensured by \ref getLines/\ref getScatters if the key
22326 axis is horizontal.
22327
22328 Used to calculate the channel fill polygon, see \ref getChannelFillPolygon.
22329*/
22330int QCPGraph::findIndexAboveX(const QVector<QPointF> *data, double x) const
22331{
22332 for (int i=data->size()-1; i>=0; --i)
22333 {
22334 if (data->at(i).x() < x)
22335 {
22336 if (i<data->size()-1)
22337 return i+1;
22338 else
22339 return data->size()-1;
22340 }
22341 }
22342 return -1;
22343}
22344
22345/*! \internal
22346
22347 Finds the highest index of \a data, whose points x value is just below \a x. Assumes x values in
22348 \a data points are ordered ascending, as is ensured by \ref getLines/\ref getScatters if the key
22349 axis is horizontal.
22350
22351 Used to calculate the channel fill polygon, see \ref getChannelFillPolygon.
22352*/
22353int QCPGraph::findIndexBelowX(const QVector<QPointF> *data, double x) const
22354{
22355 for (int i=0; i<data->size(); ++i)
22356 {
22357 if (data->at(i).x() > x)
22358 {
22359 if (i>0)
22360 return i-1;
22361 else
22362 return 0;
22363 }
22364 }
22365 return -1;
22366}
22367
22368/*! \internal
22369
22370 Finds the smallest index of \a data, whose points y value is just above \a y. Assumes y values in
22371 \a data points are ordered ascending, as is ensured by \ref getLines/\ref getScatters if the key
22372 axis is vertical.
22373
22374 Used to calculate the channel fill polygon, see \ref getChannelFillPolygon.
22375*/
22376int QCPGraph::findIndexAboveY(const QVector<QPointF> *data, double y) const
22377{
22378 for (int i=data->size()-1; i>=0; --i)
22379 {
22380 if (data->at(i).y() < y)
22381 {
22382 if (i<data->size()-1)
22383 return i+1;
22384 else
22385 return data->size()-1;
22386 }
22387 }
22388 return -1;
22389}
22390
22391/*! \internal
22392
22393 Calculates the minimum distance in pixels the graph's representation has from the given \a
22394 pixelPoint. This is used to determine whether the graph was clicked or not, e.g. in \ref
22395 selectTest. The closest data point to \a pixelPoint is returned in \a closestData. Note that if
22396 the graph has a line representation, the returned distance may be smaller than the distance to
22397 the \a closestData point, since the distance to the graph line is also taken into account.
22398
22399 If either the graph has no data or if the line style is \ref lsNone and the scatter style's shape
22400 is \ref QCPScatterStyle::ssNone (i.e. there is no visual representation of the graph), returns -1.0.
22401*/
22402double QCPGraph::pointDistance(const QPointF &pixelPoint, QCPGraphDataContainer::const_iterator &closestData) const
22403{
22404 closestData = mDataContainer->constEnd();
22405 if (mDataContainer->isEmpty())
22406 return -1.0;
22407 if (mLineStyle == lsNone && mScatterStyle.isNone())
22408 return -1.0;
22409
22410 // calculate minimum distances to graph data points and find closestData iterator:
22411 double minDistSqr = (std::numeric_limits<double>::max)();
22412 // determine which key range comes into question, taking selection tolerance around pos into account:
22413 double posKeyMin, posKeyMax, dummy;
22414 pixelsToCoords(pixelPoint-QPointF(mParentPlot->selectionTolerance(), mParentPlot->selectionTolerance()), posKeyMin, dummy);
22415 pixelsToCoords(pixelPoint+QPointF(mParentPlot->selectionTolerance(), mParentPlot->selectionTolerance()), posKeyMax, dummy);
22416 if (posKeyMin > posKeyMax)
22418 // iterate over found data points and then choose the one with the shortest distance to pos:
22419 QCPGraphDataContainer::const_iterator begin = mDataContainer->findBegin(posKeyMin, true);
22420 QCPGraphDataContainer::const_iterator end = mDataContainer->findEnd(posKeyMax, true);
22421 for (QCPGraphDataContainer::const_iterator it=begin; it!=end; ++it)
22422 {
22423 const double currentDistSqr = QCPVector2D(coordsToPixels(it->key, it->value)-pixelPoint).lengthSquared();
22425 {
22427 closestData = it;
22428 }
22429 }
22430
22431 // calculate distance to graph line if there is one (if so, will probably be smaller than distance to closest data point):
22432 if (mLineStyle != lsNone)
22433 {
22434 // line displayed, calculate distance to line segments:
22436 getLines(&lineData, QCPDataRange(0, dataCount())); // don't limit data range further since with sharp data spikes, line segments may be closer to test point than segments with closer key coordinate
22438 const int step = mLineStyle==lsImpulse ? 2 : 1; // impulse plot differs from other line styles in that the lineData points are only pairwise connected
22439 for (int i=0; i<lineData.size()-1; i+=step)
22440 {
22441 const double currentDistSqr = p.distanceSquaredToLine(lineData.at(i), lineData.at(i+1));
22444 }
22445 }
22446
22447 return qSqrt(minDistSqr);
22448}
22449
22450/*! \internal
22451
22452 Finds the highest index of \a data, whose points y value is just below \a y. Assumes y values in
22453 \a data points are ordered ascending, as is ensured by \ref getLines/\ref getScatters if the key
22454 axis is vertical.
22455
22456 Used to calculate the channel fill polygon, see \ref getChannelFillPolygon.
22457*/
22458int QCPGraph::findIndexBelowY(const QVector<QPointF> *data, double y) const
22459{
22460 for (int i=0; i<data->size(); ++i)
22461 {
22462 if (data->at(i).y() > y)
22463 {
22464 if (i>0)
22465 return i-1;
22466 else
22467 return 0;
22468 }
22469 }
22470 return -1;
22471}
22472/* end of 'src/plottables/plottable-graph.cpp' */
22473
22474
22475/* including file 'src/plottables/plottable-curve.cpp' */
22476/* modified 2021-03-29T02:30:44, size 63851 */
22477
22478////////////////////////////////////////////////////////////////////////////////////////////////////
22479//////////////////// QCPCurveData
22480////////////////////////////////////////////////////////////////////////////////////////////////////
22481
22482/*! \class QCPCurveData
22483 \brief Holds the data of one single data point for QCPCurve.
22484
22485 The stored data is:
22486 \li \a t: the free ordering parameter of this curve point, like in the mathematical vector <em>(x(t), y(t))</em>. (This is the \a sortKey)
22487 \li \a key: coordinate on the key axis of this curve point (this is the \a mainKey)
22488 \li \a value: coordinate on the value axis of this curve point (this is the \a mainValue)
22489
22490 The container for storing multiple data points is \ref QCPCurveDataContainer. It is a typedef for
22491 \ref QCPDataContainer with \ref QCPCurveData as the DataType template parameter. See the
22492 documentation there for an explanation regarding the data type's generic methods.
22493
22494 \see QCPCurveDataContainer
22495*/
22496
22497/* start documentation of inline functions */
22498
22499/*! \fn double QCPCurveData::sortKey() const
22500
22501 Returns the \a t member of this data point.
22502
22503 For a general explanation of what this method is good for in the context of the data container,
22504 see the documentation of \ref QCPDataContainer.
22505*/
22506
22507/*! \fn static QCPCurveData QCPCurveData::fromSortKey(double sortKey)
22508
22509 Returns a data point with the specified \a sortKey (assigned to the data point's \a t member).
22510 All other members are set to zero.
22511
22512 For a general explanation of what this method is good for in the context of the data container,
22513 see the documentation of \ref QCPDataContainer.
22514*/
22515
22516/*! \fn static static bool QCPCurveData::sortKeyIsMainKey()
22517
22518 Since the member \a key is the data point key coordinate and the member \a t is the data ordering
22519 parameter, this method returns false.
22520
22521 For a general explanation of what this method is good for in the context of the data container,
22522 see the documentation of \ref QCPDataContainer.
22523*/
22524
22525/*! \fn double QCPCurveData::mainKey() const
22526
22527 Returns the \a key member of this data point.
22528
22529 For a general explanation of what this method is good for in the context of the data container,
22530 see the documentation of \ref QCPDataContainer.
22531*/
22532
22533/*! \fn double QCPCurveData::mainValue() const
22534
22535 Returns the \a value member of this data point.
22536
22537 For a general explanation of what this method is good for in the context of the data container,
22538 see the documentation of \ref QCPDataContainer.
22539*/
22540
22541/*! \fn QCPRange QCPCurveData::valueRange() const
22542
22543 Returns a QCPRange with both lower and upper boundary set to \a value of this data point.
22544
22545 For a general explanation of what this method is good for in the context of the data container,
22546 see the documentation of \ref QCPDataContainer.
22547*/
22548
22549/* end documentation of inline functions */
22550
22551/*!
22552 Constructs a curve data point with t, key and value set to zero.
22553*/
22555 t(0),
22556 key(0),
22557 value(0)
22558{
22559}
22560
22561/*!
22562 Constructs a curve data point with the specified \a t, \a key and \a value.
22563*/
22564QCPCurveData::QCPCurveData(double t, double key, double value) :
22565 t(t),
22566 key(key),
22567 value(value)
22568{
22569}
22570
22571
22572////////////////////////////////////////////////////////////////////////////////////////////////////
22573//////////////////// QCPCurve
22574////////////////////////////////////////////////////////////////////////////////////////////////////
22575
22576/*! \class QCPCurve
22577 \brief A plottable representing a parametric curve in a plot.
22578
22579 \image html QCPCurve.png
22580
22581 Unlike QCPGraph, plottables of this type may have multiple points with the same key coordinate,
22582 so their visual representation can have \a loops. This is realized by introducing a third
22583 coordinate \a t, which defines the order of the points described by the other two coordinates \a
22584 x and \a y.
22585
22586 To plot data, assign it with the \ref setData or \ref addData functions. Alternatively, you can
22587 also access and modify the curve's data via the \ref data method, which returns a pointer to the
22588 internal \ref QCPCurveDataContainer.
22589
22590 Gaps in the curve can be created by adding data points with NaN as key and value
22591 (<tt>qQNaN()</tt> or <tt>std::numeric_limits<double>::quiet_NaN()</tt>) in between the two data points that shall be
22592 separated.
22593
22594 \section qcpcurve-appearance Changing the appearance
22595
22596 The appearance of the curve is determined by the pen and the brush (\ref setPen, \ref setBrush).
22597
22598 \section qcpcurve-usage Usage
22599
22600 Like all data representing objects in QCustomPlot, the QCPCurve is a plottable
22601 (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
22602 (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)
22603
22604 Usually, you first create an instance:
22605 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcurve-creation-1
22606 which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot instance takes
22607 ownership of the plottable, so do not delete it manually but use QCustomPlot::removePlottable() instead.
22608 The newly created plottable can be modified, e.g.:
22609 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcurve-creation-2
22610*/
22611
22612/* start of documentation of inline functions */
22613
22614/*! \fn QSharedPointer<QCPCurveDataContainer> QCPCurve::data() const
22615
22616 Returns a shared pointer to the internal data storage of type \ref QCPCurveDataContainer. You may
22617 use it to directly manipulate the data, which may be more convenient and faster than using the
22618 regular \ref setData or \ref addData methods.
22619*/
22620
22621/* end of documentation of inline functions */
22622
22623/*!
22624 Constructs a curve which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
22625 axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
22626 the same orientation. If either of these restrictions is violated, a corresponding message is
22627 printed to the debug output (qDebug), the construction is not aborted, though.
22628
22629 The created QCPCurve is automatically registered with the QCustomPlot instance inferred from \a
22630 keyAxis. This QCustomPlot instance takes ownership of the QCPCurve, so do not delete it manually
22631 but use QCustomPlot::removePlottable() instead.
22632*/
22633QCPCurve::QCPCurve(QCPAxis *keyAxis, QCPAxis *valueAxis) :
22634 QCPAbstractPlottable1D<QCPCurveData>(keyAxis, valueAxis),
22635 mScatterSkip{},
22636 mLineStyle{}
22637{
22638 // modify inherited properties from abstract plottable:
22639 setPen(QPen(Qt::blue, 0));
22641
22644 setScatterSkip(0);
22645}
22646
22647QCPCurve::~QCPCurve()
22648{
22649}
22650
22651/*! \overload
22652
22653 Replaces the current data container with the provided \a data container.
22654
22655 Since a QSharedPointer is used, multiple QCPCurves may share the same data container safely.
22656 Modifying the data in the container will then affect all curves that share the container. Sharing
22657 can be achieved by simply exchanging the data containers wrapped in shared pointers:
22658 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcurve-datasharing-1
22659
22660 If you do not wish to share containers, but create a copy from an existing container, rather use
22661 the \ref QCPDataContainer<DataType>::set method on the curve's data container directly:
22662 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcurve-datasharing-2
22663
22664 \see addData
22665*/
22667{
22668 mDataContainer = data;
22669}
22670
22671/*! \overload
22672
22673 Replaces the current data with the provided points in \a t, \a keys and \a values. The provided
22674 vectors should have equal length. Else, the number of added points will be the size of the
22675 smallest vector.
22676
22677 If you can guarantee that the passed data points are sorted by \a t in ascending order, you can
22678 set \a alreadySorted to true, to improve performance by saving a sorting run.
22679
22680 \see addData
22681*/
22683{
22684 mDataContainer->clear();
22685 addData(t, keys, values, alreadySorted);
22686}
22687
22688
22689/*! \overload
22690
22691 Replaces the current data with the provided points in \a keys and \a values. The provided vectors
22692 should have equal length. Else, the number of added points will be the size of the smallest
22693 vector.
22694
22695 The t parameter of each data point will be set to the integer index of the respective key/value
22696 pair.
22697
22698 \see addData
22699*/
22700void QCPCurve::setData(const QVector<double> &keys, const QVector<double> &values)
22701{
22702 mDataContainer->clear();
22703 addData(keys, values);
22704}
22705
22706/*!
22707 Sets the visual appearance of single data points in the plot. If set to \ref
22708 QCPScatterStyle::ssNone, no scatter points are drawn (e.g. for line-only plots with appropriate
22709 line style).
22710
22711 \see QCPScatterStyle, setLineStyle
22712*/
22714{
22715 mScatterStyle = style;
22716}
22717
22718/*!
22719 If scatters are displayed (scatter style not \ref QCPScatterStyle::ssNone), \a skip number of
22720 scatter points are skipped/not drawn after every drawn scatter point.
22721
22722 This can be used to make the data appear sparser while for example still having a smooth line,
22723 and to improve performance for very high density plots.
22724
22725 If \a skip is set to 0 (default), all scatter points are drawn.
22726
22727 \see setScatterStyle
22728*/
22730{
22731 mScatterSkip = qMax(0, skip);
22732}
22733
22734/*!
22735 Sets how the single data points are connected in the plot or how they are represented visually
22736 apart from the scatter symbol. For scatter-only plots, set \a style to \ref lsNone and \ref
22737 setScatterStyle to the desired scatter style.
22738
22739 \see setScatterStyle
22740*/
22742{
22743 mLineStyle = style;
22744}
22745
22746/*! \overload
22747
22748 Adds the provided points in \a t, \a keys and \a values to the current data. The provided vectors
22749 should have equal length. Else, the number of added points will be the size of the smallest
22750 vector.
22751
22752 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
22753 can set \a alreadySorted to true, to improve performance by saving a sorting run.
22754
22755 Alternatively, you can also access and modify the data directly via the \ref data method, which
22756 returns a pointer to the internal data container.
22757*/
22759{
22760 if (t.size() != keys.size() || t.size() != values.size())
22761 qDebug() << Q_FUNC_INFO << "ts, keys and values have different sizes:" << t.size() << keys.size() << values.size();
22762 const int n = qMin(qMin(t.size(), keys.size()), values.size());
22766 int i = 0;
22767 while (it != itEnd)
22768 {
22769 it->t = t[i];
22770 it->key = keys[i];
22771 it->value = values[i];
22772 ++it;
22773 ++i;
22774 }
22775 mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
22776}
22777
22778/*! \overload
22779
22780 Adds the provided points in \a keys and \a values to the current data. The provided vectors
22781 should have equal length. Else, the number of added points will be the size of the smallest
22782 vector.
22783
22784 The t parameter of each data point will be set to the integer index of the respective key/value
22785 pair.
22786
22787 Alternatively, you can also access and modify the data directly via the \ref data method, which
22788 returns a pointer to the internal data container.
22789*/
22790void QCPCurve::addData(const QVector<double> &keys, const QVector<double> &values)
22791{
22792 if (keys.size() != values.size())
22793 qDebug() << Q_FUNC_INFO << "keys and values have different sizes:" << keys.size() << values.size();
22794 const int n = qMin(keys.size(), values.size());
22795 double tStart;
22796 if (!mDataContainer->isEmpty())
22797 tStart = (mDataContainer->constEnd()-1)->t + 1.0;
22798 else
22799 tStart = 0;
22803 int i = 0;
22804 while (it != itEnd)
22805 {
22806 it->t = tStart + i;
22807 it->key = keys[i];
22808 it->value = values[i];
22809 ++it;
22810 ++i;
22811 }
22812 mDataContainer->add(tempData, true); // don't modify tempData beyond this to prevent copy on write
22813}
22814
22815/*! \overload
22816 Adds the provided data point as \a t, \a key and \a value to the current data.
22817
22818 Alternatively, you can also access and modify the data directly via the \ref data method, which
22819 returns a pointer to the internal data container.
22820*/
22821void QCPCurve::addData(double t, double key, double value)
22822{
22823 mDataContainer->add(QCPCurveData(t, key, value));
22824}
22825
22826/*! \overload
22827
22828 Adds the provided data point as \a key and \a value to the current data.
22829
22830 The t parameter is generated automatically by increments of 1 for each point, starting at the
22831 highest t of previously existing data or 0, if the curve data is empty.
22832
22833 Alternatively, you can also access and modify the data directly via the \ref data method, which
22834 returns a pointer to the internal data container.
22835*/
22836void QCPCurve::addData(double key, double value)
22837{
22838 if (!mDataContainer->isEmpty())
22839 mDataContainer->add(QCPCurveData((mDataContainer->constEnd()-1)->t + 1.0, key, value));
22840 else
22841 mDataContainer->add(QCPCurveData(0.0, key, value));
22842}
22843
22844/*!
22845 Implements a selectTest specific to this plottable's point geometry.
22846
22847 If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
22848 point to \a pos.
22849
22850 \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
22851*/
22852double QCPCurve::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
22853{
22854 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
22855 return -1;
22856 if (!mKeyAxis || !mValueAxis)
22857 return -1;
22858
22859 if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()) || mParentPlot->interactions().testFlag(QCP::iSelectPlottablesBeyondAxisRect))
22860 {
22861 QCPCurveDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
22862 double result = pointDistance(pos, closestDataPoint);
22863 if (details)
22864 {
22865 int pointIndex = int( closestDataPoint-mDataContainer->constBegin() );
22866 details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
22867 }
22868 return result;
22869 } else
22870 return -1;
22871}
22872
22873/* inherits documentation from base class */
22875{
22876 return mDataContainer->keyRange(foundRange, inSignDomain);
22877}
22878
22879/* inherits documentation from base class */
22881{
22882 return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
22883}
22884
22885/* inherits documentation from base class */
22887{
22888 if (mDataContainer->isEmpty()) return;
22889
22890 // allocate line vector:
22892
22893 // loop over and draw segments of unselected/selected data:
22897 for (int i=0; i<allSegments.size(); ++i)
22898 {
22899 bool isSelectedSegment = i >= unselectedSegments.size();
22900
22901 // fill with curve data:
22902 QPen finalCurvePen = mPen; // determine the final pen already here, because the line optimization depends on its stroke width
22903 if (isSelectedSegment && mSelectionDecorator)
22904 finalCurvePen = mSelectionDecorator->pen();
22905
22906 QCPDataRange lineDataRange = isSelectedSegment ? allSegments.at(i) : allSegments.at(i).adjusted(-1, 1); // unselected segments extend lines to bordering selected data point (safe to exceed total data bounds in first/last segment, getCurveLines takes care)
22907 getCurveLines(&lines, lineDataRange, finalCurvePen.widthF());
22908
22909 // check data validity if flag set:
22910 #ifdef QCUSTOMPLOT_CHECK_DATA
22911 for (QCPCurveDataContainer::const_iterator it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
22912 {
22913 if (QCP::isInvalidData(it->t) ||
22914 QCP::isInvalidData(it->key, it->value))
22915 qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "invalid." << "Plottable name:" << name();
22916 }
22917 #endif
22918
22919 // draw curve fill:
22921 if (isSelectedSegment && mSelectionDecorator)
22922 mSelectionDecorator->applyBrush(painter);
22923 else
22924 painter->setBrush(mBrush);
22925 painter->setPen(Qt::NoPen);
22926 if (painter->brush().style() != Qt::NoBrush && painter->brush().color().alpha() != 0)
22927 painter->drawPolygon(QPolygonF(lines));
22928
22929 // draw curve line:
22930 if (mLineStyle != lsNone)
22931 {
22932 painter->setPen(finalCurvePen);
22933 painter->setBrush(Qt::NoBrush);
22934 drawCurveLine(painter, lines);
22935 }
22936
22937 // draw scatters:
22938 QCPScatterStyle finalScatterStyle = mScatterStyle;
22939 if (isSelectedSegment && mSelectionDecorator)
22940 finalScatterStyle = mSelectionDecorator->getFinalScatterStyle(mScatterStyle);
22941 if (!finalScatterStyle.isNone())
22942 {
22945 }
22946 }
22947
22948 // draw other selection decoration that isn't just line/scatter pens and brushes:
22949 if (mSelectionDecorator)
22950 mSelectionDecorator->drawDecoration(painter, selection());
22951}
22952
22953/* inherits documentation from base class */
22954void QCPCurve::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
22955{
22956 // draw fill:
22957 if (mBrush.style() != Qt::NoBrush)
22958 {
22960 painter->fillRect(QRectF(rect.left(), rect.top()+rect.height()/2.0, rect.width(), rect.height()/3.0), mBrush);
22961 }
22962 // draw line vertically centered:
22963 if (mLineStyle != lsNone)
22964 {
22966 painter->setPen(mPen);
22967 painter->drawLine(QLineF(rect.left(), rect.top()+rect.height()/2.0, rect.right()+5, rect.top()+rect.height()/2.0)); // +5 on x2 else last segment is missing from dashed/dotted pens
22968 }
22969 // draw scatter symbol:
22970 if (!mScatterStyle.isNone())
22971 {
22973 // scale scatter pixmap if it's too large to fit in legend icon rect:
22974 if (mScatterStyle.shape() == QCPScatterStyle::ssPixmap && (mScatterStyle.pixmap().size().width() > rect.width() || mScatterStyle.pixmap().size().height() > rect.height()))
22975 {
22976 QCPScatterStyle scaledStyle(mScatterStyle);
22977 scaledStyle.setPixmap(scaledStyle.pixmap().scaled(rect.size().toSize(), Qt::KeepAspectRatio, Qt::SmoothTransformation));
22978 scaledStyle.applyTo(painter, mPen);
22979 scaledStyle.drawShape(painter, QRectF(rect).center());
22980 } else
22981 {
22982 mScatterStyle.applyTo(painter, mPen);
22983 mScatterStyle.drawShape(painter, QRectF(rect).center());
22984 }
22985 }
22986}
22987
22988/*! \internal
22989
22990 Draws lines between the points in \a lines, given in pixel coordinates.
22991
22992 \see drawScatterPlot, getCurveLines
22993*/
22994void QCPCurve::drawCurveLine(QCPPainter *painter, const QVector<QPointF> &lines) const
22995{
22996 if (painter->pen().style() != Qt::NoPen && painter->pen().color().alpha() != 0)
22997 {
22999 drawPolyline(painter, lines);
23000 }
23001}
23002
23003/*! \internal
23004
23005 Draws scatter symbols at every point passed in \a points, given in pixel coordinates. The
23006 scatters will be drawn with \a painter and have the appearance as specified in \a style.
23007
23008 \see drawCurveLine, getCurveLines
23009*/
23010void QCPCurve::drawScatterPlot(QCPPainter *painter, const QVector<QPointF> &points, const QCPScatterStyle &style) const
23011{
23012 // draw scatter point symbols:
23014 style.applyTo(painter, mPen);
23015 foreach (const QPointF &point, points)
23016 if (!qIsNaN(point.x()) && !qIsNaN(point.y()))
23017 style.drawShape(painter, point);
23018}
23019
23020/*! \internal
23021
23022 Called by \ref draw to generate points in pixel coordinates which represent the line of the
23023 curve.
23024
23025 Line segments that aren't visible in the current axis rect are handled in an optimized way. They
23026 are projected onto a rectangle slightly larger than the visible axis rect and simplified
23027 regarding point count. The algorithm makes sure to preserve appearance of lines and fills inside
23028 the visible axis rect by generating new temporary points on the outer rect if necessary.
23029
23030 \a lines will be filled with points in pixel coordinates, that can be drawn with \ref
23031 drawCurveLine.
23032
23033 \a dataRange specifies the beginning and ending data indices that will be taken into account for
23034 conversion. In this function, the specified range may exceed the total data bounds without harm:
23035 a correspondingly trimmed data range will be used. This takes the burden off the user of this
23036 function to check for valid indices in \a dataRange, e.g. when extending ranges coming from \ref
23037 getDataSegments.
23038
23039 \a penWidth specifies the pen width that will be used to later draw the lines generated by this
23040 function. This is needed here to calculate an accordingly wider margin around the axis rect when
23041 performing the line optimization.
23042
23043 Methods that are also involved in the algorithm are: \ref getRegion, \ref getOptimizedPoint, \ref
23044 getOptimizedCornerPoints \ref mayTraverse, \ref getTraverse, \ref getTraverseCornerPoints.
23045
23046 \see drawCurveLine, drawScatterPlot
23047*/
23048void QCPCurve::getCurveLines(QVector<QPointF> *lines, const QCPDataRange &dataRange, double penWidth) const
23049{
23050 if (!lines) return;
23051 lines->clear();
23052 QCPAxis *keyAxis = mKeyAxis.data();
23053 QCPAxis *valueAxis = mValueAxis.data();
23054 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
23055
23056 // add margins to rect to compensate for stroke width
23057 const double strokeMargin = qMax(qreal(1.0), qreal(penWidth*0.75)); // stroke radius + 50% safety
23058 const double keyMin = keyAxis->pixelToCoord(keyAxis->coordToPixel(keyAxis->range().lower)-strokeMargin*keyAxis->pixelOrientation());
23059 const double keyMax = keyAxis->pixelToCoord(keyAxis->coordToPixel(keyAxis->range().upper)+strokeMargin*keyAxis->pixelOrientation());
23060 const double valueMin = valueAxis->pixelToCoord(valueAxis->coordToPixel(valueAxis->range().lower)-strokeMargin*valueAxis->pixelOrientation());
23061 const double valueMax = valueAxis->pixelToCoord(valueAxis->coordToPixel(valueAxis->range().upper)+strokeMargin*valueAxis->pixelOrientation());
23062 QCPCurveDataContainer::const_iterator itBegin = mDataContainer->constBegin();
23063 QCPCurveDataContainer::const_iterator itEnd = mDataContainer->constEnd();
23064 mDataContainer->limitIteratorsToDataRange(itBegin, itEnd, dataRange);
23065 if (itBegin == itEnd)
23066 return;
23067 QCPCurveDataContainer::const_iterator it = itBegin;
23068 QCPCurveDataContainer::const_iterator prevIt = itEnd-1;
23070 QVector<QPointF> trailingPoints; // points that must be applied after all other points (are generated only when handling first point to get virtual segment between last and first point right)
23071 while (it != itEnd)
23072 {
23073 const int currentRegion = getRegion(it->key, it->value, keyMin, valueMax, keyMax, valueMin);
23074 if (currentRegion != prevRegion) // changed region, possibly need to add some optimized edge points or original points if entering R
23075 {
23076 if (currentRegion != 5) // segment doesn't end in R, so it's a candidate for removal
23077 {
23079 if (prevRegion == 5) // we're coming from R, so add this point optimized
23080 {
23081 lines->append(getOptimizedPoint(currentRegion, it->key, it->value, prevIt->key, prevIt->value, keyMin, valueMax, keyMax, valueMin));
23082 // in the situations 5->1/7/9/3 the segment may leave R and directly cross through two outer regions. In these cases we need to add an additional corner point
23083 *lines << getOptimizedCornerPoints(prevRegion, currentRegion, prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin);
23084 } else if (mayTraverse(prevRegion, currentRegion) &&
23085 getTraverse(prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin, crossA, crossB))
23086 {
23087 // add the two cross points optimized if segment crosses R and if segment isn't virtual zeroth segment between last and first curve point:
23090 if (it != itBegin)
23091 {
23093 lines->append(crossA);
23094 lines->append(crossB);
23095 *lines << afterTraverseCornerPoints;
23096 } else
23097 {
23098 lines->append(crossB);
23099 *lines << afterTraverseCornerPoints;
23101 }
23102 } else // doesn't cross R, line is just moving around in outside regions, so only need to add optimized point(s) at the boundary corner(s)
23103 {
23104 *lines << getOptimizedCornerPoints(prevRegion, currentRegion, prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin);
23105 }
23106 } else // segment does end in R, so we add previous point optimized and this point at original position
23107 {
23108 if (it == itBegin) // it is first point in curve and prevIt is last one. So save optimized point for adding it to the lineData in the end
23110 else
23111 lines->append(getOptimizedPoint(prevRegion, prevIt->key, prevIt->value, it->key, it->value, keyMin, valueMax, keyMax, valueMin));
23112 lines->append(coordsToPixels(it->key, it->value));
23113 }
23114 } else // region didn't change
23115 {
23116 if (currentRegion == 5) // still in R, keep adding original points
23117 {
23118 lines->append(coordsToPixels(it->key, it->value));
23119 } else // still outside R, no need to add anything
23120 {
23121 // see how this is not doing anything? That's the main optimization...
23122 }
23123 }
23124 prevIt = it;
23126 ++it;
23127 }
23128 *lines << trailingPoints;
23129}
23130
23131/*! \internal
23132
23133 Called by \ref draw to generate points in pixel coordinates which represent the scatters of the
23134 curve. If a scatter skip is configured (\ref setScatterSkip), the returned points are accordingly
23135 sparser.
23136
23137 Scatters that aren't visible in the current axis rect are optimized away.
23138
23139 \a scatters will be filled with points in pixel coordinates, that can be drawn with \ref
23140 drawScatterPlot.
23141
23142 \a dataRange specifies the beginning and ending data indices that will be taken into account for
23143 conversion.
23144
23145 \a scatterWidth specifies the scatter width that will be used to later draw the scatters at pixel
23146 coordinates generated by this function. This is needed here to calculate an accordingly wider
23147 margin around the axis rect when performing the data point reduction.
23148
23149 \see draw, drawScatterPlot
23150*/
23152{
23153 if (!scatters) return;
23154 scatters->clear();
23155 QCPAxis *keyAxis = mKeyAxis.data();
23156 QCPAxis *valueAxis = mValueAxis.data();
23157 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
23158
23159 QCPCurveDataContainer::const_iterator begin = mDataContainer->constBegin();
23160 QCPCurveDataContainer::const_iterator end = mDataContainer->constEnd();
23161 mDataContainer->limitIteratorsToDataRange(begin, end, dataRange);
23162 if (begin == end)
23163 return;
23164 const int scatterModulo = mScatterSkip+1;
23165 const bool doScatterSkip = mScatterSkip > 0;
23166 int endIndex = int( end-mDataContainer->constBegin() );
23167
23168 QCPRange keyRange = keyAxis->range();
23169 QCPRange valueRange = valueAxis->range();
23170 // extend range to include width of scatter symbols:
23171 keyRange.lower = keyAxis->pixelToCoord(keyAxis->coordToPixel(keyRange.lower)-scatterWidth*keyAxis->pixelOrientation());
23172 keyRange.upper = keyAxis->pixelToCoord(keyAxis->coordToPixel(keyRange.upper)+scatterWidth*keyAxis->pixelOrientation());
23173 valueRange.lower = valueAxis->pixelToCoord(valueAxis->coordToPixel(valueRange.lower)-scatterWidth*valueAxis->pixelOrientation());
23174 valueRange.upper = valueAxis->pixelToCoord(valueAxis->coordToPixel(valueRange.upper)+scatterWidth*valueAxis->pixelOrientation());
23175
23176 QCPCurveDataContainer::const_iterator it = begin;
23177 int itIndex = int( begin-mDataContainer->constBegin() );
23178 while (doScatterSkip && it != end && itIndex % scatterModulo != 0) // advance begin iterator to first non-skipped scatter
23179 {
23180 ++itIndex;
23181 ++it;
23182 }
23183 if (keyAxis->orientation() == Qt::Vertical)
23184 {
23185 while (it != end)
23186 {
23187 if (!qIsNaN(it->value) && keyRange.contains(it->key) && valueRange.contains(it->value))
23188 scatters->append(QPointF(valueAxis->coordToPixel(it->value), keyAxis->coordToPixel(it->key)));
23189
23190 // advance iterator to next (non-skipped) data point:
23191 if (!doScatterSkip)
23192 ++it;
23193 else
23194 {
23196 if (itIndex < endIndex) // make sure we didn't jump over end
23197 it += scatterModulo;
23198 else
23199 {
23200 it = end;
23201 itIndex = endIndex;
23202 }
23203 }
23204 }
23205 } else
23206 {
23207 while (it != end)
23208 {
23209 if (!qIsNaN(it->value) && keyRange.contains(it->key) && valueRange.contains(it->value))
23210 scatters->append(QPointF(keyAxis->coordToPixel(it->key), valueAxis->coordToPixel(it->value)));
23211
23212 // advance iterator to next (non-skipped) data point:
23213 if (!doScatterSkip)
23214 ++it;
23215 else
23216 {
23218 if (itIndex < endIndex) // make sure we didn't jump over end
23219 it += scatterModulo;
23220 else
23221 {
23222 it = end;
23223 itIndex = endIndex;
23224 }
23225 }
23226 }
23227 }
23228}
23229
23230/*! \internal
23231
23232 This function is part of the curve optimization algorithm of \ref getCurveLines.
23233
23234 It returns the region of the given point (\a key, \a value) with respect to a rectangle defined
23235 by \a keyMin, \a keyMax, \a valueMin, and \a valueMax.
23236
23237 The regions are enumerated from top to bottom (\a valueMin to \a valueMax) and left to right (\a
23238 keyMin to \a keyMax):
23239
23240 <table style="width:10em; text-align:center">
23241 <tr><td>1</td><td>4</td><td>7</td></tr>
23242 <tr><td>2</td><td style="border:1px solid black">5</td><td>8</td></tr>
23243 <tr><td>3</td><td>6</td><td>9</td></tr>
23244 </table>
23245
23246 With the rectangle being region 5, and the outer regions extending infinitely outwards. In the
23247 curve optimization algorithm, region 5 is considered to be the visible portion of the plot.
23248*/
23249int QCPCurve::getRegion(double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
23250{
23251 if (key < keyMin) // region 123
23252 {
23253 if (value > valueMax)
23254 return 1;
23255 else if (value < valueMin)
23256 return 3;
23257 else
23258 return 2;
23259 } else if (key > keyMax) // region 789
23260 {
23261 if (value > valueMax)
23262 return 7;
23263 else if (value < valueMin)
23264 return 9;
23265 else
23266 return 8;
23267 } else // region 456
23268 {
23269 if (value > valueMax)
23270 return 4;
23271 else if (value < valueMin)
23272 return 6;
23273 else
23274 return 5;
23275 }
23276}
23277
23278/*! \internal
23279
23280 This function is part of the curve optimization algorithm of \ref getCurveLines.
23281
23282 This method is used in case the current segment passes from inside the visible rect (region 5,
23283 see \ref getRegion) to any of the outer regions (\a otherRegion). The current segment is given by
23284 the line connecting (\a key, \a value) with (\a otherKey, \a otherValue).
23285
23286 It returns the intersection point of the segment with the border of region 5.
23287
23288 For this function it doesn't matter whether (\a key, \a value) is the point inside region 5 or
23289 whether it's (\a otherKey, \a otherValue), i.e. whether the segment is coming from region 5 or
23290 leaving it. It is important though that \a otherRegion correctly identifies the other region not
23291 equal to 5.
23292*/
23293QPointF QCPCurve::getOptimizedPoint(int otherRegion, double otherKey, double otherValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
23294{
23295 // The intersection point interpolation here is done in pixel coordinates, so we don't need to
23296 // differentiate between different axis scale types. Note that the nomenclature
23297 // top/left/bottom/right/min/max is with respect to the rect in plot coordinates, wich may be
23298 // different in pixel coordinates (horz/vert key axes, reversed ranges)
23299
23300 const double keyMinPx = mKeyAxis->coordToPixel(keyMin);
23301 const double keyMaxPx = mKeyAxis->coordToPixel(keyMax);
23302 const double valueMinPx = mValueAxis->coordToPixel(valueMin);
23303 const double valueMaxPx = mValueAxis->coordToPixel(valueMax);
23304 const double otherValuePx = mValueAxis->coordToPixel(otherValue);
23305 const double valuePx = mValueAxis->coordToPixel(value);
23306 const double otherKeyPx = mKeyAxis->coordToPixel(otherKey);
23307 const double keyPx = mKeyAxis->coordToPixel(key);
23308 double intersectKeyPx = keyMinPx; // initial key just a fail-safe
23309 double intersectValuePx = valueMinPx; // initial value just a fail-safe
23310 switch (otherRegion)
23311 {
23312 case 1: // top and left edge
23313 {
23316 if (intersectKeyPx < qMin(keyMinPx, keyMaxPx) || intersectKeyPx > qMax(keyMinPx, keyMaxPx)) // check whether top edge is not intersected, then it must be left edge (qMin/qMax necessary since axes may be reversed)
23317 {
23320 }
23321 break;
23322 }
23323 case 2: // left edge
23324 {
23327 break;
23328 }
23329 case 3: // bottom and left edge
23330 {
23333 if (intersectKeyPx < qMin(keyMinPx, keyMaxPx) || intersectKeyPx > qMax(keyMinPx, keyMaxPx)) // check whether bottom edge is not intersected, then it must be left edge (qMin/qMax necessary since axes may be reversed)
23334 {
23337 }
23338 break;
23339 }
23340 case 4: // top edge
23341 {
23344 break;
23345 }
23346 case 5:
23347 {
23348 break; // case 5 shouldn't happen for this function but we add it anyway to prevent potential discontinuity in branch table
23349 }
23350 case 6: // bottom edge
23351 {
23354 break;
23355 }
23356 case 7: // top and right edge
23357 {
23360 if (intersectKeyPx < qMin(keyMinPx, keyMaxPx) || intersectKeyPx > qMax(keyMinPx, keyMaxPx)) // check whether top edge is not intersected, then it must be right edge (qMin/qMax necessary since axes may be reversed)
23361 {
23364 }
23365 break;
23366 }
23367 case 8: // right edge
23368 {
23371 break;
23372 }
23373 case 9: // bottom and right edge
23374 {
23377 if (intersectKeyPx < qMin(keyMinPx, keyMaxPx) || intersectKeyPx > qMax(keyMinPx, keyMaxPx)) // check whether bottom edge is not intersected, then it must be right edge (qMin/qMax necessary since axes may be reversed)
23378 {
23381 }
23382 break;
23383 }
23384 }
23385 if (mKeyAxis->orientation() == Qt::Horizontal)
23387 else
23389}
23390
23391/*! \internal
23392
23393 This function is part of the curve optimization algorithm of \ref getCurveLines.
23394
23395 In situations where a single segment skips over multiple regions it might become necessary to add
23396 extra points at the corners of region 5 (see \ref getRegion) such that the optimized segment
23397 doesn't unintentionally cut through the visible area of the axis rect and create plot artifacts.
23398 This method provides these points that must be added, assuming the original segment doesn't
23399 start, end, or traverse region 5. (Corner points where region 5 is traversed are calculated by
23400 \ref getTraverseCornerPoints.)
23401
23402 For example, consider a segment which directly goes from region 4 to 2 but originally is far out
23403 to the top left such that it doesn't cross region 5. Naively optimizing these points by
23404 projecting them on the top and left borders of region 5 will create a segment that surely crosses
23405 5, creating a visual artifact in the plot. This method prevents this by providing extra points at
23406 the top left corner, making the optimized curve correctly pass from region 4 to 1 to 2 without
23407 traversing 5.
23408*/
23409QVector<QPointF> QCPCurve::getOptimizedCornerPoints(int prevRegion, int currentRegion, double prevKey, double prevValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
23410{
23411 QVector<QPointF> result;
23412 switch (prevRegion)
23413 {
23414 case 1:
23415 {
23416 switch (currentRegion)
23417 {
23418 case 2: { result << coordsToPixels(keyMin, valueMax); break; }
23419 case 4: { result << coordsToPixels(keyMin, valueMax); break; }
23420 case 3: { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMin, valueMin); break; }
23421 case 7: { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMax, valueMax); break; }
23422 case 6: { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMin, valueMin); result.append(result.last()); break; }
23423 case 8: { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMax, valueMax); result.append(result.last()); break; }
23424 case 9: { // in this case we need another distinction of cases: segment may pass below or above rect, requiring either bottom right or top left corner points
23425 if ((value-prevValue)/(key-prevKey)*(keyMin-key)+value < valueMin) // segment passes below R
23426 { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMin, valueMin); result.append(result.last()); result << coordsToPixels(keyMax, valueMin); }
23427 else
23428 { result << coordsToPixels(keyMin, valueMax) << coordsToPixels(keyMax, valueMax); result.append(result.last()); result << coordsToPixels(keyMax, valueMin); }
23429 break;
23430 }
23431 }
23432 break;
23433 }
23434 case 2:
23435 {
23436 switch (currentRegion)
23437 {
23438 case 1: { result << coordsToPixels(keyMin, valueMax); break; }
23439 case 3: { result << coordsToPixels(keyMin, valueMin); break; }
23440 case 4: { result << coordsToPixels(keyMin, valueMax); result.append(result.last()); break; }
23441 case 6: { result << coordsToPixels(keyMin, valueMin); result.append(result.last()); break; }
23442 case 7: { result << coordsToPixels(keyMin, valueMax); result.append(result.last()); result << coordsToPixels(keyMax, valueMax); break; }
23443 case 9: { result << coordsToPixels(keyMin, valueMin); result.append(result.last()); result << coordsToPixels(keyMax, valueMin); break; }
23444 }
23445 break;
23446 }
23447 case 3:
23448 {
23449 switch (currentRegion)
23450 {
23451 case 2: { result << coordsToPixels(keyMin, valueMin); break; }
23452 case 6: { result << coordsToPixels(keyMin, valueMin); break; }
23453 case 1: { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMin, valueMax); break; }
23454 case 9: { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMax, valueMin); break; }
23455 case 4: { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMin, valueMax); result.append(result.last()); break; }
23456 case 8: { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMax, valueMin); result.append(result.last()); break; }
23457 case 7: { // in this case we need another distinction of cases: segment may pass below or above rect, requiring either bottom right or top left corner points
23458 if ((value-prevValue)/(key-prevKey)*(keyMax-key)+value < valueMin) // segment passes below R
23459 { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMax, valueMin); result.append(result.last()); result << coordsToPixels(keyMax, valueMax); }
23460 else
23461 { result << coordsToPixels(keyMin, valueMin) << coordsToPixels(keyMin, valueMax); result.append(result.last()); result << coordsToPixels(keyMax, valueMax); }
23462 break;
23463 }
23464 }
23465 break;
23466 }
23467 case 4:
23468 {
23469 switch (currentRegion)
23470 {
23471 case 1: { result << coordsToPixels(keyMin, valueMax); break; }
23472 case 7: { result << coordsToPixels(keyMax, valueMax); break; }
23473 case 2: { result << coordsToPixels(keyMin, valueMax); result.append(result.last()); break; }
23474 case 8: { result << coordsToPixels(keyMax, valueMax); result.append(result.last()); break; }
23475 case 3: { result << coordsToPixels(keyMin, valueMax); result.append(result.last()); result << coordsToPixels(keyMin, valueMin); break; }
23476 case 9: { result << coordsToPixels(keyMax, valueMax); result.append(result.last()); result << coordsToPixels(keyMax, valueMin); break; }
23477 }
23478 break;
23479 }
23480 case 5:
23481 {
23482 switch (currentRegion)
23483 {
23484 case 1: { result << coordsToPixels(keyMin, valueMax); break; }
23485 case 7: { result << coordsToPixels(keyMax, valueMax); break; }
23486 case 9: { result << coordsToPixels(keyMax, valueMin); break; }
23487 case 3: { result << coordsToPixels(keyMin, valueMin); break; }
23488 }
23489 break;
23490 }
23491 case 6:
23492 {
23493 switch (currentRegion)
23494 {
23495 case 3: { result << coordsToPixels(keyMin, valueMin); break; }
23496 case 9: { result << coordsToPixels(keyMax, valueMin); break; }
23497 case 2: { result << coordsToPixels(keyMin, valueMin); result.append(result.last()); break; }
23498 case 8: { result << coordsToPixels(keyMax, valueMin); result.append(result.last()); break; }
23499 case 1: { result << coordsToPixels(keyMin, valueMin); result.append(result.last()); result << coordsToPixels(keyMin, valueMax); break; }
23500 case 7: { result << coordsToPixels(keyMax, valueMin); result.append(result.last()); result << coordsToPixels(keyMax, valueMax); break; }
23501 }
23502 break;
23503 }
23504 case 7:
23505 {
23506 switch (currentRegion)
23507 {
23508 case 4: { result << coordsToPixels(keyMax, valueMax); break; }
23509 case 8: { result << coordsToPixels(keyMax, valueMax); break; }
23510 case 1: { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMin, valueMax); break; }
23511 case 9: { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMax, valueMin); break; }
23512 case 2: { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMin, valueMax); result.append(result.last()); break; }
23513 case 6: { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMax, valueMin); result.append(result.last()); break; }
23514 case 3: { // in this case we need another distinction of cases: segment may pass below or above rect, requiring either bottom right or top left corner points
23515 if ((value-prevValue)/(key-prevKey)*(keyMax-key)+value < valueMin) // segment passes below R
23516 { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMax, valueMin); result.append(result.last()); result << coordsToPixels(keyMin, valueMin); }
23517 else
23518 { result << coordsToPixels(keyMax, valueMax) << coordsToPixels(keyMin, valueMax); result.append(result.last()); result << coordsToPixels(keyMin, valueMin); }
23519 break;
23520 }
23521 }
23522 break;
23523 }
23524 case 8:
23525 {
23526 switch (currentRegion)
23527 {
23528 case 7: { result << coordsToPixels(keyMax, valueMax); break; }
23529 case 9: { result << coordsToPixels(keyMax, valueMin); break; }
23530 case 4: { result << coordsToPixels(keyMax, valueMax); result.append(result.last()); break; }
23531 case 6: { result << coordsToPixels(keyMax, valueMin); result.append(result.last()); break; }
23532 case 1: { result << coordsToPixels(keyMax, valueMax); result.append(result.last()); result << coordsToPixels(keyMin, valueMax); break; }
23533 case 3: { result << coordsToPixels(keyMax, valueMin); result.append(result.last()); result << coordsToPixels(keyMin, valueMin); break; }
23534 }
23535 break;
23536 }
23537 case 9:
23538 {
23539 switch (currentRegion)
23540 {
23541 case 6: { result << coordsToPixels(keyMax, valueMin); break; }
23542 case 8: { result << coordsToPixels(keyMax, valueMin); break; }
23543 case 3: { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMin, valueMin); break; }
23544 case 7: { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMax, valueMax); break; }
23545 case 2: { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMin, valueMin); result.append(result.last()); break; }
23546 case 4: { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMax, valueMax); result.append(result.last()); break; }
23547 case 1: { // in this case we need another distinction of cases: segment may pass below or above rect, requiring either bottom right or top left corner points
23548 if ((value-prevValue)/(key-prevKey)*(keyMin-key)+value < valueMin) // segment passes below R
23549 { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMin, valueMin); result.append(result.last()); result << coordsToPixels(keyMin, valueMax); }
23550 else
23551 { result << coordsToPixels(keyMax, valueMin) << coordsToPixels(keyMax, valueMax); result.append(result.last()); result << coordsToPixels(keyMin, valueMax); }
23552 break;
23553 }
23554 }
23555 break;
23556 }
23557 }
23558 return result;
23559}
23560
23561/*! \internal
23562
23563 This function is part of the curve optimization algorithm of \ref getCurveLines.
23564
23565 This method returns whether a segment going from \a prevRegion to \a currentRegion (see \ref
23566 getRegion) may traverse the visible region 5. This function assumes that neither \a prevRegion
23567 nor \a currentRegion is 5 itself.
23568
23569 If this method returns false, the segment for sure doesn't pass region 5. If it returns true, the
23570 segment may or may not pass region 5 and a more fine-grained calculation must be used (\ref
23571 getTraverse).
23572*/
23574{
23575 switch (prevRegion)
23576 {
23577 case 1:
23578 {
23579 switch (currentRegion)
23580 {
23581 case 4:
23582 case 7:
23583 case 2:
23584 case 3: return false;
23585 default: return true;
23586 }
23587 }
23588 case 2:
23589 {
23590 switch (currentRegion)
23591 {
23592 case 1:
23593 case 3: return false;
23594 default: return true;
23595 }
23596 }
23597 case 3:
23598 {
23599 switch (currentRegion)
23600 {
23601 case 1:
23602 case 2:
23603 case 6:
23604 case 9: return false;
23605 default: return true;
23606 }
23607 }
23608 case 4:
23609 {
23610 switch (currentRegion)
23611 {
23612 case 1:
23613 case 7: return false;
23614 default: return true;
23615 }
23616 }
23617 case 5: return false; // should never occur
23618 case 6:
23619 {
23620 switch (currentRegion)
23621 {
23622 case 3:
23623 case 9: return false;
23624 default: return true;
23625 }
23626 }
23627 case 7:
23628 {
23629 switch (currentRegion)
23630 {
23631 case 1:
23632 case 4:
23633 case 8:
23634 case 9: return false;
23635 default: return true;
23636 }
23637 }
23638 case 8:
23639 {
23640 switch (currentRegion)
23641 {
23642 case 7:
23643 case 9: return false;
23644 default: return true;
23645 }
23646 }
23647 case 9:
23648 {
23649 switch (currentRegion)
23650 {
23651 case 3:
23652 case 6:
23653 case 8:
23654 case 7: return false;
23655 default: return true;
23656 }
23657 }
23658 default: return true;
23659 }
23660}
23661
23662
23663/*! \internal
23664
23665 This function is part of the curve optimization algorithm of \ref getCurveLines.
23666
23667 This method assumes that the \ref mayTraverse test has returned true, so there is a chance the
23668 segment defined by (\a prevKey, \a prevValue) and (\a key, \a value) goes through the visible
23669 region 5.
23670
23671 The return value of this method indicates whether the segment actually traverses region 5 or not.
23672
23673 If the segment traverses 5, the output parameters \a crossA and \a crossB indicate the entry and
23674 exit points of region 5. They will become the optimized points for that segment.
23675*/
23676bool QCPCurve::getTraverse(double prevKey, double prevValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin, QPointF &crossA, QPointF &crossB) const
23677{
23678 // The intersection point interpolation here is done in pixel coordinates, so we don't need to
23679 // differentiate between different axis scale types. Note that the nomenclature
23680 // top/left/bottom/right/min/max is with respect to the rect in plot coordinates, wich may be
23681 // different in pixel coordinates (horz/vert key axes, reversed ranges)
23682
23683 QList<QPointF> intersections;
23684 const double valueMinPx = mValueAxis->coordToPixel(valueMin);
23685 const double valueMaxPx = mValueAxis->coordToPixel(valueMax);
23686 const double keyMinPx = mKeyAxis->coordToPixel(keyMin);
23687 const double keyMaxPx = mKeyAxis->coordToPixel(keyMax);
23688 const double keyPx = mKeyAxis->coordToPixel(key);
23689 const double valuePx = mValueAxis->coordToPixel(value);
23690 const double prevKeyPx = mKeyAxis->coordToPixel(prevKey);
23691 const double prevValuePx = mValueAxis->coordToPixel(prevValue);
23692 if (qFuzzyIsNull(keyPx-prevKeyPx)) // line is parallel to value axis
23693 {
23694 // due to region filter in mayTraverse(), if line is parallel to value or key axis, region 5 is traversed here
23695 intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyPx, valueMinPx) : QPointF(valueMinPx, keyPx)); // direction will be taken care of at end of method
23696 intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyPx, valueMaxPx) : QPointF(valueMaxPx, keyPx));
23697 } else if (qFuzzyIsNull(valuePx-prevValuePx)) // line is parallel to key axis
23698 {
23699 // due to region filter in mayTraverse(), if line is parallel to value or key axis, region 5 is traversed here
23700 intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyMinPx, valuePx) : QPointF(valuePx, keyMinPx)); // direction will be taken care of at end of method
23701 intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyMaxPx, valuePx) : QPointF(valuePx, keyMaxPx));
23702 } else // line is skewed
23703 {
23704 double gamma;
23706 // check top of rect:
23708 if (gamma >= qMin(keyMinPx, keyMaxPx) && gamma <= qMax(keyMinPx, keyMaxPx)) // qMin/qMax necessary since axes may be reversed
23709 intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(gamma, valueMaxPx) : QPointF(valueMaxPx, gamma));
23710 // check bottom of rect:
23712 if (gamma >= qMin(keyMinPx, keyMaxPx) && gamma <= qMax(keyMinPx, keyMaxPx)) // qMin/qMax necessary since axes may be reversed
23713 intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(gamma, valueMinPx) : QPointF(valueMinPx, gamma));
23714 const double valuePerKeyPx = 1.0/keyPerValuePx;
23715 // check left of rect:
23717 if (gamma >= qMin(valueMinPx, valueMaxPx) && gamma <= qMax(valueMinPx, valueMaxPx)) // qMin/qMax necessary since axes may be reversed
23718 intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyMinPx, gamma) : QPointF(gamma, keyMinPx));
23719 // check right of rect:
23721 if (gamma >= qMin(valueMinPx, valueMaxPx) && gamma <= qMax(valueMinPx, valueMaxPx)) // qMin/qMax necessary since axes may be reversed
23722 intersections.append(mKeyAxis->orientation() == Qt::Horizontal ? QPointF(keyMaxPx, gamma) : QPointF(gamma, keyMaxPx));
23723 }
23724
23725 // handle cases where found points isn't exactly 2:
23726 if (intersections.size() > 2)
23727 {
23728 // line probably goes through corner of rect, and we got duplicate points there. single out the point pair with greatest distance in between:
23729 double distSqrMax = 0;
23730 QPointF pv1, pv2;
23731 for (int i=0; i<intersections.size()-1; ++i)
23732 {
23733 for (int k=i+1; k<intersections.size(); ++k)
23734 {
23735 QPointF distPoint = intersections.at(i)-intersections.at(k);
23736 double distSqr = distPoint.x()*distPoint.x()+distPoint.y()+distPoint.y();
23737 if (distSqr > distSqrMax)
23738 {
23739 pv1 = intersections.at(i);
23740 pv2 = intersections.at(k);
23742 }
23743 }
23744 }
23745 intersections = QList<QPointF>() << pv1 << pv2;
23746 } else if (intersections.size() != 2)
23747 {
23748 // one or even zero points found (shouldn't happen unless line perfectly tangent to corner), no need to draw segment
23749 return false;
23750 }
23751
23752 // possibly re-sort points so optimized point segment has same direction as original segment:
23753 double xDelta = keyPx-prevKeyPx;
23754 double yDelta = valuePx-prevValuePx;
23755 if (mKeyAxis->orientation() != Qt::Horizontal)
23757 if (xDelta*(intersections.at(1).x()-intersections.at(0).x()) + yDelta*(intersections.at(1).y()-intersections.at(0).y()) < 0) // scalar product of both segments < 0 -> opposite direction
23758 intersections.move(0, 1);
23759 crossA = intersections.at(0);
23760 crossB = intersections.at(1);
23761 return true;
23762}
23763
23764/*! \internal
23765
23766 This function is part of the curve optimization algorithm of \ref getCurveLines.
23767
23768 This method assumes that the \ref getTraverse test has returned true, so the segment definitely
23769 traverses the visible region 5 when going from \a prevRegion to \a currentRegion.
23770
23771 In certain situations it is not sufficient to merely generate the entry and exit points of the
23772 segment into/out of region 5, as \ref getTraverse provides. It may happen that a single segment, in
23773 addition to traversing region 5, skips another region outside of region 5, which makes it
23774 necessary to add an optimized corner point there (very similar to the job \ref
23775 getOptimizedCornerPoints does for segments that are completely in outside regions and don't
23776 traverse 5).
23777
23778 As an example, consider a segment going from region 1 to region 6, traversing the lower left
23779 corner of region 5. In this configuration, the segment additionally crosses the border between
23780 region 1 and 2 before entering region 5. This makes it necessary to add an additional point in
23781 the top left corner, before adding the optimized traverse points. So in this case, the output
23782 parameter \a beforeTraverse will contain the top left corner point, and \a afterTraverse will be
23783 empty.
23784
23785 In some cases, such as when going from region 1 to 9, it may even be necessary to add additional
23786 corner points before and after the traverse. Then both \a beforeTraverse and \a afterTraverse
23787 return the respective corner points.
23788*/
23790{
23791 switch (prevRegion)
23792 {
23793 case 1:
23794 {
23795 switch (currentRegion)
23796 {
23797 case 6: { beforeTraverse << coordsToPixels(keyMin, valueMax); break; }
23799 case 8: { beforeTraverse << coordsToPixels(keyMin, valueMax); break; }
23800 }
23801 break;
23802 }
23803 case 2:
23804 {
23805 switch (currentRegion)
23806 {
23807 case 7: { afterTraverse << coordsToPixels(keyMax, valueMax); break; }
23808 case 9: { afterTraverse << coordsToPixels(keyMax, valueMin); break; }
23809 }
23810 break;
23811 }
23812 case 3:
23813 {
23814 switch (currentRegion)
23815 {
23816 case 4: { beforeTraverse << coordsToPixels(keyMin, valueMin); break; }
23818 case 8: { beforeTraverse << coordsToPixels(keyMin, valueMin); break; }
23819 }
23820 break;
23821 }
23822 case 4:
23823 {
23824 switch (currentRegion)
23825 {
23826 case 3: { afterTraverse << coordsToPixels(keyMin, valueMin); break; }
23827 case 9: { afterTraverse << coordsToPixels(keyMax, valueMin); break; }
23828 }
23829 break;
23830 }
23831 case 5: { break; } // shouldn't happen because this method only handles full traverses
23832 case 6:
23833 {
23834 switch (currentRegion)
23835 {
23836 case 1: { afterTraverse << coordsToPixels(keyMin, valueMax); break; }
23837 case 7: { afterTraverse << coordsToPixels(keyMax, valueMax); break; }
23838 }
23839 break;
23840 }
23841 case 7:
23842 {
23843 switch (currentRegion)
23844 {
23845 case 2: { beforeTraverse << coordsToPixels(keyMax, valueMax); break; }
23847 case 6: { beforeTraverse << coordsToPixels(keyMax, valueMax); break; }
23848 }
23849 break;
23850 }
23851 case 8:
23852 {
23853 switch (currentRegion)
23854 {
23855 case 1: { afterTraverse << coordsToPixels(keyMin, valueMax); break; }
23856 case 3: { afterTraverse << coordsToPixels(keyMin, valueMin); break; }
23857 }
23858 break;
23859 }
23860 case 9:
23861 {
23862 switch (currentRegion)
23863 {
23864 case 2: { beforeTraverse << coordsToPixels(keyMax, valueMin); break; }
23866 case 4: { beforeTraverse << coordsToPixels(keyMax, valueMin); break; }
23867 }
23868 break;
23869 }
23870 }
23871}
23872
23873/*! \internal
23874
23875 Calculates the (minimum) distance (in pixels) the curve's representation has from the given \a
23876 pixelPoint in pixels. This is used to determine whether the curve was clicked or not, e.g. in
23877 \ref selectTest. The closest data point to \a pixelPoint is returned in \a closestData. Note that
23878 if the curve has a line representation, the returned distance may be smaller than the distance to
23879 the \a closestData point, since the distance to the curve line is also taken into account.
23880
23881 If either the curve has no data or if the line style is \ref lsNone and the scatter style's shape
23882 is \ref QCPScatterStyle::ssNone (i.e. there is no visual representation of the curve), returns
23883 -1.0.
23884*/
23885double QCPCurve::pointDistance(const QPointF &pixelPoint, QCPCurveDataContainer::const_iterator &closestData) const
23886{
23887 closestData = mDataContainer->constEnd();
23888 if (mDataContainer->isEmpty())
23889 return -1.0;
23890 if (mLineStyle == lsNone && mScatterStyle.isNone())
23891 return -1.0;
23892
23893 if (mDataContainer->size() == 1)
23894 {
23895 QPointF dataPoint = coordsToPixels(mDataContainer->constBegin()->key, mDataContainer->constBegin()->value);
23896 closestData = mDataContainer->constBegin();
23898 }
23899
23900 // calculate minimum distances to curve data points and find closestData iterator:
23901 double minDistSqr = (std::numeric_limits<double>::max)();
23902 // iterate over found data points and then choose the one with the shortest distance to pos:
23903 QCPCurveDataContainer::const_iterator begin = mDataContainer->constBegin();
23904 QCPCurveDataContainer::const_iterator end = mDataContainer->constEnd();
23905 for (QCPCurveDataContainer::const_iterator it=begin; it!=end; ++it)
23906 {
23907 const double currentDistSqr = QCPVector2D(coordsToPixels(it->key, it->value)-pixelPoint).lengthSquared();
23909 {
23911 closestData = it;
23912 }
23913 }
23914
23915 // calculate distance to line if there is one (if so, will probably be smaller than distance to closest data point):
23916 if (mLineStyle != lsNone)
23917 {
23918 QVector<QPointF> lines;
23919 getCurveLines(&lines, QCPDataRange(0, dataCount()), mParentPlot->selectionTolerance()*1.2); // optimized lines outside axis rect shouldn't respond to clicks at the edge, so use 1.2*tolerance as pen width
23920 for (int i=0; i<lines.size()-1; ++i)
23921 {
23922 double currentDistSqr = QCPVector2D(pixelPoint).distanceSquaredToLine(lines.at(i), lines.at(i+1));
23925 }
23926 }
23927
23928 return qSqrt(minDistSqr);
23929}
23930/* end of 'src/plottables/plottable-curve.cpp' */
23931
23932
23933/* including file 'src/plottables/plottable-bars.cpp' */
23934/* modified 2021-03-29T02:30:44, size 43907 */
23935
23936
23937////////////////////////////////////////////////////////////////////////////////////////////////////
23938//////////////////// QCPBarsGroup
23939////////////////////////////////////////////////////////////////////////////////////////////////////
23940
23941/*! \class QCPBarsGroup
23942 \brief Groups multiple QCPBars together so they appear side by side
23943
23944 \image html QCPBarsGroup.png
23945
23946 When showing multiple QCPBars in one plot which have bars at identical keys, it may be desirable
23947 to have them appearing next to each other at each key. This is what adding the respective QCPBars
23948 plottables to a QCPBarsGroup achieves. (An alternative approach is to stack them on top of each
23949 other, see \ref QCPBars::moveAbove.)
23950
23951 \section qcpbarsgroup-usage Usage
23952
23953 To add a QCPBars plottable to the group, create a new group and then add the respective bars
23954 intances:
23955 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbarsgroup-creation
23956 Alternatively to appending to the group like shown above, you can also set the group on the
23957 QCPBars plottable via \ref QCPBars::setBarsGroup.
23958
23959 The spacing between the bars can be configured via \ref setSpacingType and \ref setSpacing. The
23960 bars in this group appear in the plot in the order they were appended. To insert a bars plottable
23961 at a certain index position, or to reposition a bars plottable which is already in the group, use
23962 \ref insert.
23963
23964 To remove specific bars from the group, use either \ref remove or call \ref
23965 QCPBars::setBarsGroup "QCPBars::setBarsGroup(0)" on the respective bars plottable.
23966
23967 To clear the entire group, call \ref clear, or simply delete the group.
23968
23969 \section qcpbarsgroup-example Example
23970
23971 The image above is generated with the following code:
23972 \snippet documentation/doc-image-generator/mainwindow.cpp qcpbarsgroup-example
23973*/
23974
23975/* start of documentation of inline functions */
23976
23977/*! \fn QList<QCPBars*> QCPBarsGroup::bars() const
23978
23979 Returns all bars currently in this group.
23980
23981 \see bars(int index)
23982*/
23983
23984/*! \fn int QCPBarsGroup::size() const
23985
23986 Returns the number of QCPBars plottables that are part of this group.
23987
23988*/
23989
23990/*! \fn bool QCPBarsGroup::isEmpty() const
23991
23992 Returns whether this bars group is empty.
23993
23994 \see size
23995*/
23996
23997/*! \fn bool QCPBarsGroup::contains(QCPBars *bars)
23998
23999 Returns whether the specified \a bars plottable is part of this group.
24000
24001*/
24002
24003/* end of documentation of inline functions */
24004
24005/*!
24006 Constructs a new bars group for the specified QCustomPlot instance.
24007*/
24009 QObject(parentPlot),
24010 mParentPlot(parentPlot),
24011 mSpacingType(stAbsolute),
24012 mSpacing(4)
24013{
24014}
24015
24016QCPBarsGroup::~QCPBarsGroup()
24017{
24018 clear();
24019}
24020
24021/*!
24022 Sets how the spacing between adjacent bars is interpreted. See \ref SpacingType.
24023
24024 The actual spacing can then be specified with \ref setSpacing.
24025
24026 \see setSpacing
24027*/
24029{
24030 mSpacingType = spacingType;
24031}
24032
24033/*!
24034 Sets the spacing between adjacent bars. What the number passed as \a spacing actually means, is
24035 defined by the current \ref SpacingType, which can be set with \ref setSpacingType.
24036
24037 \see setSpacingType
24038*/
24039void QCPBarsGroup::setSpacing(double spacing)
24040{
24041 mSpacing = spacing;
24042}
24043
24044/*!
24045 Returns the QCPBars instance with the specified \a index in this group. If no such QCPBars
24046 exists, returns \c nullptr.
24047
24048 \see bars(), size
24049*/
24051{
24052 if (index >= 0 && index < mBars.size())
24053 {
24054 return mBars.at(index);
24055 } else
24056 {
24057 qDebug() << Q_FUNC_INFO << "index out of bounds:" << index;
24058 return nullptr;
24059 }
24060}
24061
24062/*!
24063 Removes all QCPBars plottables from this group.
24064
24065 \see isEmpty
24066*/
24068{
24069 const QList<QCPBars*> oldBars = mBars;
24070 foreach (QCPBars *bars, oldBars)
24071 bars->setBarsGroup(nullptr); // removes itself from mBars via removeBars
24072}
24073
24074/*!
24075 Adds the specified \a bars plottable to this group. Alternatively, you can also use \ref
24076 QCPBars::setBarsGroup on the \a bars instance.
24077
24078 \see insert, remove
24079*/
24081{
24082 if (!bars)
24083 {
24084 qDebug() << Q_FUNC_INFO << "bars is 0";
24085 return;
24086 }
24087
24088 if (!mBars.contains(bars))
24089 bars->setBarsGroup(this);
24090 else
24091 qDebug() << Q_FUNC_INFO << "bars plottable is already in this bars group:" << reinterpret_cast<quintptr>(bars);
24092}
24093
24094/*!
24095 Inserts the specified \a bars plottable into this group at the specified index position \a i.
24096 This gives you full control over the ordering of the bars.
24097
24098 \a bars may already be part of this group. In that case, \a bars is just moved to the new index
24099 position.
24100
24101 \see append, remove
24102*/
24104{
24105 if (!bars)
24106 {
24107 qDebug() << Q_FUNC_INFO << "bars is 0";
24108 return;
24109 }
24110
24111 // first append to bars list normally:
24112 if (!mBars.contains(bars))
24113 bars->setBarsGroup(this);
24114 // then move to according position:
24115 mBars.move(mBars.indexOf(bars), qBound(0, i, mBars.size()-1));
24116}
24117
24118/*!
24119 Removes the specified \a bars plottable from this group.
24120
24121 \see contains, clear
24122*/
24124{
24125 if (!bars)
24126 {
24127 qDebug() << Q_FUNC_INFO << "bars is 0";
24128 return;
24129 }
24130
24131 if (mBars.contains(bars))
24132 bars->setBarsGroup(nullptr);
24133 else
24134 qDebug() << Q_FUNC_INFO << "bars plottable is not in this bars group:" << reinterpret_cast<quintptr>(bars);
24135}
24136
24137/*! \internal
24138
24139 Adds the specified \a bars to the internal mBars list of bars. This method does not change the
24140 barsGroup property on \a bars.
24141
24142 \see unregisterBars
24143*/
24145{
24146 if (!mBars.contains(bars))
24147 mBars.append(bars);
24148}
24149
24150/*! \internal
24151
24152 Removes the specified \a bars from the internal mBars list of bars. This method does not change
24153 the barsGroup property on \a bars.
24154
24155 \see registerBars
24156*/
24158{
24159 mBars.removeOne(bars);
24160}
24161
24162/*! \internal
24163
24164 Returns the pixel offset in the key dimension the specified \a bars plottable should have at the
24165 given key coordinate \a keyCoord. The offset is relative to the pixel position of the key
24166 coordinate \a keyCoord.
24167*/
24169{
24170 // find list of all base bars in case some mBars are stacked:
24172 foreach (const QCPBars *b, mBars)
24173 {
24174 while (b->barBelow())
24175 b = b->barBelow();
24176 if (!baseBars.contains(b))
24177 baseBars.append(b);
24178 }
24179 // find base bar this "bars" is stacked on:
24180 const QCPBars *thisBase = bars;
24181 while (thisBase->barBelow())
24182 thisBase = thisBase->barBelow();
24183
24184 // determine key pixel offset of this base bars considering all other base bars in this barsgroup:
24185 double result = 0;
24186 int index = baseBars.indexOf(thisBase);
24187 if (index >= 0)
24188 {
24189 if (baseBars.size() % 2 == 1 && index == (baseBars.size()-1)/2) // is center bar (int division on purpose)
24190 {
24191 return result;
24192 } else
24193 {
24195 int startIndex;
24196 int dir = (index <= (baseBars.size()-1)/2) ? -1 : 1; // if bar is to lower keys of center, dir is negative
24197 if (baseBars.size() % 2 == 0) // even number of bars
24198 {
24199 startIndex = baseBars.size()/2 + (dir < 0 ? -1 : 0);
24200 result += getPixelSpacing(baseBars.at(startIndex), keyCoord)*0.5; // half of middle spacing
24201 } else // uneven number of bars
24202 {
24203 startIndex = (baseBars.size()-1)/2+dir;
24204 baseBars.at((baseBars.size()-1)/2)->getPixelWidth(keyCoord, lowerPixelWidth, upperPixelWidth);
24205 result += qAbs(upperPixelWidth-lowerPixelWidth)*0.5; // half of center bar
24206 result += getPixelSpacing(baseBars.at((baseBars.size()-1)/2), keyCoord); // center bar spacing
24207 }
24208 for (int i = startIndex; i != index; i += dir) // add widths and spacings of bars in between center and our bars
24209 {
24210 baseBars.at(i)->getPixelWidth(keyCoord, lowerPixelWidth, upperPixelWidth);
24212 result += getPixelSpacing(baseBars.at(i), keyCoord);
24213 }
24214 // finally half of our bars width:
24215 baseBars.at(index)->getPixelWidth(keyCoord, lowerPixelWidth, upperPixelWidth);
24216 result += qAbs(upperPixelWidth-lowerPixelWidth)*0.5;
24217 // correct sign of result depending on orientation and direction of key axis:
24218 result *= dir*thisBase->keyAxis()->pixelOrientation();
24219 }
24220 }
24221 return result;
24222}
24223
24224/*! \internal
24225
24226 Returns the spacing in pixels which is between this \a bars and the following one, both at the
24227 key coordinate \a keyCoord.
24228
24229 \note Typically the returned value doesn't depend on \a bars or \a keyCoord. \a bars is only
24230 needed to get access to the key axis transformation and axis rect for the modes \ref
24231 stAxisRectRatio and \ref stPlotCoords. The \a keyCoord is only relevant for spacings given in
24232 \ref stPlotCoords on a logarithmic axis.
24233*/
24235{
24236 switch (mSpacingType)
24237 {
24238 case stAbsolute:
24239 {
24240 return mSpacing;
24241 }
24242 case stAxisRectRatio:
24243 {
24244 if (bars->keyAxis()->orientation() == Qt::Horizontal)
24245 return bars->keyAxis()->axisRect()->width()*mSpacing;
24246 else
24247 return bars->keyAxis()->axisRect()->height()*mSpacing;
24248 }
24249 case stPlotCoords:
24250 {
24251 double keyPixel = bars->keyAxis()->coordToPixel(keyCoord);
24252 return qAbs(bars->keyAxis()->coordToPixel(keyCoord+mSpacing)-keyPixel);
24253 }
24254 }
24255 return 0;
24256}
24257
24258
24259////////////////////////////////////////////////////////////////////////////////////////////////////
24260//////////////////// QCPBarsData
24261////////////////////////////////////////////////////////////////////////////////////////////////////
24262
24263/*! \class QCPBarsData
24264 \brief Holds the data of one single data point (one bar) for QCPBars.
24265
24266 The stored data is:
24267 \li \a key: coordinate on the key axis of this bar (this is the \a mainKey and the \a sortKey)
24268 \li \a value: height coordinate on the value axis of this bar (this is the \a mainValue)
24269
24270 The container for storing multiple data points is \ref QCPBarsDataContainer. It is a typedef for
24271 \ref QCPDataContainer with \ref QCPBarsData as the DataType template parameter. See the
24272 documentation there for an explanation regarding the data type's generic methods.
24273
24274 \see QCPBarsDataContainer
24275*/
24276
24277/* start documentation of inline functions */
24278
24279/*! \fn double QCPBarsData::sortKey() const
24280
24281 Returns the \a key member of this data point.
24282
24283 For a general explanation of what this method is good for in the context of the data container,
24284 see the documentation of \ref QCPDataContainer.
24285*/
24286
24287/*! \fn static QCPBarsData QCPBarsData::fromSortKey(double sortKey)
24288
24289 Returns a data point with the specified \a sortKey. All other members are set to zero.
24290
24291 For a general explanation of what this method is good for in the context of the data container,
24292 see the documentation of \ref QCPDataContainer.
24293*/
24294
24295/*! \fn static static bool QCPBarsData::sortKeyIsMainKey()
24296
24297 Since the member \a key is both the data point key coordinate and the data ordering parameter,
24298 this method returns true.
24299
24300 For a general explanation of what this method is good for in the context of the data container,
24301 see the documentation of \ref QCPDataContainer.
24302*/
24303
24304/*! \fn double QCPBarsData::mainKey() const
24305
24306 Returns the \a key member of this data point.
24307
24308 For a general explanation of what this method is good for in the context of the data container,
24309 see the documentation of \ref QCPDataContainer.
24310*/
24311
24312/*! \fn double QCPBarsData::mainValue() const
24313
24314 Returns the \a value member of this data point.
24315
24316 For a general explanation of what this method is good for in the context of the data container,
24317 see the documentation of \ref QCPDataContainer.
24318*/
24319
24320/*! \fn QCPRange QCPBarsData::valueRange() const
24321
24322 Returns a QCPRange with both lower and upper boundary set to \a value of this data point.
24323
24324 For a general explanation of what this method is good for in the context of the data container,
24325 see the documentation of \ref QCPDataContainer.
24326*/
24327
24328/* end documentation of inline functions */
24329
24330/*!
24331 Constructs a bar data point with key and value set to zero.
24332*/
24334 key(0),
24335 value(0)
24336{
24337}
24338
24339/*!
24340 Constructs a bar data point with the specified \a key and \a value.
24341*/
24342QCPBarsData::QCPBarsData(double key, double value) :
24343 key(key),
24344 value(value)
24345{
24346}
24347
24348
24349////////////////////////////////////////////////////////////////////////////////////////////////////
24350//////////////////// QCPBars
24351////////////////////////////////////////////////////////////////////////////////////////////////////
24352
24353/*! \class QCPBars
24354 \brief A plottable representing a bar chart in a plot.
24355
24356 \image html QCPBars.png
24357
24358 To plot data, assign it with the \ref setData or \ref addData functions.
24359
24360 \section qcpbars-appearance Changing the appearance
24361
24362 The appearance of the bars is determined by the pen and the brush (\ref setPen, \ref setBrush).
24363 The width of the individual bars can be controlled with \ref setWidthType and \ref setWidth.
24364
24365 Bar charts are stackable. This means, two QCPBars plottables can be placed on top of each other
24366 (see \ref QCPBars::moveAbove). So when two bars are at the same key position, they will appear
24367 stacked.
24368
24369 If you would like to group multiple QCPBars plottables together so they appear side by side as
24370 shown below, use QCPBarsGroup.
24371
24372 \image html QCPBarsGroup.png
24373
24374 \section qcpbars-usage Usage
24375
24376 Like all data representing objects in QCustomPlot, the QCPBars is a plottable
24377 (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
24378 (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)
24379
24380 Usually, you first create an instance:
24381 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbars-creation-1
24382 which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot instance takes
24383 ownership of the plottable, so do not delete it manually but use QCustomPlot::removePlottable() instead.
24384 The newly created plottable can be modified, e.g.:
24385 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbars-creation-2
24386*/
24387
24388/* start of documentation of inline functions */
24389
24390/*! \fn QSharedPointer<QCPBarsDataContainer> QCPBars::data() const
24391
24392 Returns a shared pointer to the internal data storage of type \ref QCPBarsDataContainer. You may
24393 use it to directly manipulate the data, which may be more convenient and faster than using the
24394 regular \ref setData or \ref addData methods.
24395*/
24396
24397/*! \fn QCPBars *QCPBars::barBelow() const
24398 Returns the bars plottable that is directly below this bars plottable.
24399 If there is no such plottable, returns \c nullptr.
24400
24401 \see barAbove, moveBelow, moveAbove
24402*/
24403
24404/*! \fn QCPBars *QCPBars::barAbove() const
24405 Returns the bars plottable that is directly above this bars plottable.
24406 If there is no such plottable, returns \c nullptr.
24407
24408 \see barBelow, moveBelow, moveAbove
24409*/
24410
24411/* end of documentation of inline functions */
24412
24413/*!
24414 Constructs a bar chart which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
24415 axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
24416 the same orientation. If either of these restrictions is violated, a corresponding message is
24417 printed to the debug output (qDebug), the construction is not aborted, though.
24418
24419 The created QCPBars is automatically registered with the QCustomPlot instance inferred from \a
24420 keyAxis. This QCustomPlot instance takes ownership of the QCPBars, so do not delete it manually
24421 but use QCustomPlot::removePlottable() instead.
24422*/
24423QCPBars::QCPBars(QCPAxis *keyAxis, QCPAxis *valueAxis) :
24424 QCPAbstractPlottable1D<QCPBarsData>(keyAxis, valueAxis),
24425 mWidth(0.75),
24426 mWidthType(wtPlotCoords),
24427 mBarsGroup(nullptr),
24428 mBaseValue(0),
24429 mStackingGap(1)
24430{
24431 // modify inherited properties from abstract plottable:
24432 mPen.setColor(Qt::blue);
24433 mPen.setStyle(Qt::SolidLine);
24434 mBrush.setColor(QColor(40, 50, 255, 30));
24435 mBrush.setStyle(Qt::SolidPattern);
24436 mSelectionDecorator->setBrush(QBrush(QColor(160, 160, 255)));
24437}
24438
24439QCPBars::~QCPBars()
24440{
24441 setBarsGroup(nullptr);
24442 if (mBarBelow || mBarAbove)
24443 connectBars(mBarBelow.data(), mBarAbove.data()); // take this bar out of any stacking
24444}
24445
24446/*! \overload
24447
24448 Replaces the current data container with the provided \a data container.
24449
24450 Since a QSharedPointer is used, multiple QCPBars may share the same data container safely.
24451 Modifying the data in the container will then affect all bars that share the container. Sharing
24452 can be achieved by simply exchanging the data containers wrapped in shared pointers:
24453 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbars-datasharing-1
24454
24455 If you do not wish to share containers, but create a copy from an existing container, rather use
24456 the \ref QCPDataContainer<DataType>::set method on the bar's data container directly:
24457 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpbars-datasharing-2
24458
24459 \see addData
24460*/
24462{
24463 mDataContainer = data;
24464}
24465
24466/*! \overload
24467
24468 Replaces the current data with the provided points in \a keys and \a values. The provided
24469 vectors should have equal length. Else, the number of added points will be the size of the
24470 smallest vector.
24471
24472 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
24473 can set \a alreadySorted to true, to improve performance by saving a sorting run.
24474
24475 \see addData
24476*/
24478{
24479 mDataContainer->clear();
24480 addData(keys, values, alreadySorted);
24481}
24482
24483/*!
24484 Sets the width of the bars.
24485
24486 How the number passed as \a width is interpreted (e.g. screen pixels, plot coordinates,...),
24487 depends on the currently set width type, see \ref setWidthType and \ref WidthType.
24488*/
24489void QCPBars::setWidth(double width)
24490{
24491 mWidth = width;
24492}
24493
24494/*!
24495 Sets how the width of the bars is defined. See the documentation of \ref WidthType for an
24496 explanation of the possible values for \a widthType.
24497
24498 The default value is \ref wtPlotCoords.
24499
24500 \see setWidth
24501*/
24503{
24504 mWidthType = widthType;
24505}
24506
24507/*!
24508 Sets to which QCPBarsGroup this QCPBars instance belongs to. Alternatively, you can also use \ref
24509 QCPBarsGroup::append.
24510
24511 To remove this QCPBars from any group, set \a barsGroup to \c nullptr.
24512*/
24514{
24515 // deregister at old group:
24516 if (mBarsGroup)
24517 mBarsGroup->unregisterBars(this);
24518 mBarsGroup = barsGroup;
24519 // register at new group:
24520 if (mBarsGroup)
24521 mBarsGroup->registerBars(this);
24522}
24523
24524/*!
24525 Sets the base value of this bars plottable.
24526
24527 The base value defines where on the value coordinate the bars start. How far the bars extend from
24528 the base value is given by their individual value data. For example, if the base value is set to
24529 1, a bar with data value 2 will have its lowest point at value coordinate 1 and highest point at
24530 3.
24531
24532 For stacked bars, only the base value of the bottom-most QCPBars has meaning.
24533
24534 The default base value is 0.
24535*/
24536void QCPBars::setBaseValue(double baseValue)
24537{
24538 mBaseValue = baseValue;
24539}
24540
24541/*!
24542 If this bars plottable is stacked on top of another bars plottable (\ref moveAbove), this method
24543 allows specifying a distance in \a pixels, by which the drawn bar rectangles will be separated by
24544 the bars below it.
24545*/
24547{
24548 mStackingGap = pixels;
24549}
24550
24551/*! \overload
24552
24553 Adds the provided points in \a keys and \a values to the current data. The provided vectors
24554 should have equal length. Else, the number of added points will be the size of the smallest
24555 vector.
24556
24557 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
24558 can set \a alreadySorted to true, to improve performance by saving a sorting run.
24559
24560 Alternatively, you can also access and modify the data directly via the \ref data method, which
24561 returns a pointer to the internal data container.
24562*/
24564{
24565 if (keys.size() != values.size())
24566 qDebug() << Q_FUNC_INFO << "keys and values have different sizes:" << keys.size() << values.size();
24567 const int n = qMin(keys.size(), values.size());
24571 int i = 0;
24572 while (it != itEnd)
24573 {
24574 it->key = keys[i];
24575 it->value = values[i];
24576 ++it;
24577 ++i;
24578 }
24579 mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
24580}
24581
24582/*! \overload
24583 Adds the provided data point as \a key and \a value to the current data.
24584
24585 Alternatively, you can also access and modify the data directly via the \ref data method, which
24586 returns a pointer to the internal data container.
24587*/
24588void QCPBars::addData(double key, double value)
24589{
24590 mDataContainer->add(QCPBarsData(key, value));
24591}
24592
24593/*!
24594 Moves this bars plottable below \a bars. In other words, the bars of this plottable will appear
24595 below the bars of \a bars. The move target \a bars must use the same key and value axis as this
24596 plottable.
24597
24598 Inserting into and removing from existing bar stacking is handled gracefully. If \a bars already
24599 has a bars object below itself, this bars object is inserted between the two. If this bars object
24600 is already between two other bars, the two other bars will be stacked on top of each other after
24601 the operation.
24602
24603 To remove this bars plottable from any stacking, set \a bars to \c nullptr.
24604
24605 \see moveBelow, barAbove, barBelow
24606*/
24608{
24609 if (bars == this) return;
24610 if (bars && (bars->keyAxis() != mKeyAxis.data() || bars->valueAxis() != mValueAxis.data()))
24611 {
24612 qDebug() << Q_FUNC_INFO << "passed QCPBars* doesn't have same key and value axis as this QCPBars";
24613 return;
24614 }
24615 // remove from stacking:
24616 connectBars(mBarBelow.data(), mBarAbove.data()); // Note: also works if one (or both) of them is 0
24617 // if new bar given, insert this bar below it:
24618 if (bars)
24619 {
24620 if (bars->mBarBelow)
24621 connectBars(bars->mBarBelow.data(), this);
24622 connectBars(this, bars);
24623 }
24624}
24625
24626/*!
24627 Moves this bars plottable above \a bars. In other words, the bars of this plottable will appear
24628 above the bars of \a bars. The move target \a bars must use the same key and value axis as this
24629 plottable.
24630
24631 Inserting into and removing from existing bar stacking is handled gracefully. If \a bars already
24632 has a bars object above itself, this bars object is inserted between the two. If this bars object
24633 is already between two other bars, the two other bars will be stacked on top of each other after
24634 the operation.
24635
24636 To remove this bars plottable from any stacking, set \a bars to \c nullptr.
24637
24638 \see moveBelow, barBelow, barAbove
24639*/
24641{
24642 if (bars == this) return;
24643 if (bars && (bars->keyAxis() != mKeyAxis.data() || bars->valueAxis() != mValueAxis.data()))
24644 {
24645 qDebug() << Q_FUNC_INFO << "passed QCPBars* doesn't have same key and value axis as this QCPBars";
24646 return;
24647 }
24648 // remove from stacking:
24649 connectBars(mBarBelow.data(), mBarAbove.data()); // Note: also works if one (or both) of them is 0
24650 // if new bar given, insert this bar above it:
24651 if (bars)
24652 {
24653 if (bars->mBarAbove)
24654 connectBars(this, bars->mBarAbove.data());
24655 connectBars(bars, this);
24656 }
24657}
24658
24659/*!
24660 \copydoc QCPPlottableInterface1D::selectTestRect
24661*/
24663{
24664 QCPDataSelection result;
24665 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
24666 return result;
24667 if (!mKeyAxis || !mValueAxis)
24668 return result;
24669
24670 QCPBarsDataContainer::const_iterator visibleBegin, visibleEnd;
24672
24673 for (QCPBarsDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
24674 {
24675 if (rect.intersects(getBarRect(it->key, it->value)))
24676 result.addDataRange(QCPDataRange(int(it-mDataContainer->constBegin()), int(it-mDataContainer->constBegin()+1)), false);
24677 }
24678 result.simplify();
24679 return result;
24680}
24681
24682/*!
24683 Implements a selectTest specific to this plottable's point geometry.
24684
24685 If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
24686 point to \a pos.
24687
24688 \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
24689*/
24690double QCPBars::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
24691{
24692 Q_UNUSED(details)
24693 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
24694 return -1;
24695 if (!mKeyAxis || !mValueAxis)
24696 return -1;
24697
24698 if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()) || mParentPlot->interactions().testFlag(QCP::iSelectPlottablesBeyondAxisRect))
24699 {
24700 // get visible data range:
24701 QCPBarsDataContainer::const_iterator visibleBegin, visibleEnd;
24703 for (QCPBarsDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
24704 {
24705 if (getBarRect(it->key, it->value).contains(pos))
24706 {
24707 if (details)
24708 {
24709 int pointIndex = int(it-mDataContainer->constBegin());
24710 details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
24711 }
24712 return mParentPlot->selectionTolerance()*0.99;
24713 }
24714 }
24715 }
24716 return -1;
24717}
24718
24719/* inherits documentation from base class */
24721{
24722 /* Note: If this QCPBars uses absolute pixels as width (or is in a QCPBarsGroup with spacing in
24723 absolute pixels), using this method to adapt the key axis range to fit the bars into the
24724 currently visible axis range will not work perfectly. Because in the moment the axis range is
24725 changed to the new range, the fixed pixel widths/spacings will represent different coordinate
24726 spans than before, which in turn would require a different key range to perfectly fit, and so on.
24727 The only solution would be to iteratively approach the perfect fitting axis range, but the
24728 mismatch isn't large enough in most applications, to warrant this here. If a user does need a
24729 better fit, he should call the corresponding axis rescale multiple times in a row.
24730 */
24731 QCPRange range;
24732 range = mDataContainer->keyRange(foundRange, inSignDomain);
24733
24734 // determine exact range of bars by including bar width and barsgroup offset:
24735 if (foundRange && mKeyAxis)
24736 {
24738 // lower range bound:
24740 keyPixel = mKeyAxis.data()->coordToPixel(range.lower) + lowerPixelWidth;
24741 if (mBarsGroup)
24742 keyPixel += mBarsGroup->keyPixelOffset(this, range.lower);
24743 const double lowerCorrected = mKeyAxis.data()->pixelToCoord(keyPixel);
24744 if (!qIsNaN(lowerCorrected) && qIsFinite(lowerCorrected) && range.lower > lowerCorrected)
24745 range.lower = lowerCorrected;
24746 // upper range bound:
24748 keyPixel = mKeyAxis.data()->coordToPixel(range.upper) + upperPixelWidth;
24749 if (mBarsGroup)
24750 keyPixel += mBarsGroup->keyPixelOffset(this, range.upper);
24751 const double upperCorrected = mKeyAxis.data()->pixelToCoord(keyPixel);
24752 if (!qIsNaN(upperCorrected) && qIsFinite(upperCorrected) && range.upper < upperCorrected)
24753 range.upper = upperCorrected;
24754 }
24755 return range;
24756}
24757
24758/* inherits documentation from base class */
24760{
24761 // Note: can't simply use mDataContainer->valueRange here because we need to
24762 // take into account bar base value and possible stacking of multiple bars
24763 QCPRange range;
24764 range.lower = mBaseValue;
24765 range.upper = mBaseValue;
24766 bool haveLower = true; // set to true, because baseValue should always be visible in bar charts
24767 bool haveUpper = true; // set to true, because baseValue should always be visible in bar charts
24768 QCPBarsDataContainer::const_iterator itBegin = mDataContainer->constBegin();
24769 QCPBarsDataContainer::const_iterator itEnd = mDataContainer->constEnd();
24770 if (inKeyRange != QCPRange())
24771 {
24772 itBegin = mDataContainer->findBegin(inKeyRange.lower, false);
24773 itEnd = mDataContainer->findEnd(inKeyRange.upper, false);
24774 }
24775 for (QCPBarsDataContainer::const_iterator it = itBegin; it != itEnd; ++it)
24776 {
24777 const double current = it->value + getStackedBaseValue(it->key, it->value >= 0);
24778 if (qIsNaN(current)) continue;
24779 if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
24780 {
24781 if (current < range.lower || !haveLower)
24782 {
24783 range.lower = current;
24784 haveLower = true;
24785 }
24786 if (current > range.upper || !haveUpper)
24787 {
24788 range.upper = current;
24789 haveUpper = true;
24790 }
24791 }
24792 }
24793
24794 foundRange = true; // return true because bar charts always have the 0-line visible
24795 return range;
24796}
24797
24798/* inherits documentation from base class */
24800{
24801 if (index >= 0 && index < mDataContainer->size())
24802 {
24803 QCPAxis *keyAxis = mKeyAxis.data();
24804 QCPAxis *valueAxis = mValueAxis.data();
24805 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return {}; }
24806
24807 const QCPDataContainer<QCPBarsData>::const_iterator it = mDataContainer->constBegin()+index;
24808 const double valuePixel = valueAxis->coordToPixel(getStackedBaseValue(it->key, it->value >= 0) + it->value);
24809 const double keyPixel = keyAxis->coordToPixel(it->key) + (mBarsGroup ? mBarsGroup->keyPixelOffset(this, it->key) : 0);
24810 if (keyAxis->orientation() == Qt::Horizontal)
24811 return {keyPixel, valuePixel};
24812 else
24813 return {valuePixel, keyPixel};
24814 } else
24815 {
24816 qDebug() << Q_FUNC_INFO << "Index out of bounds" << index;
24817 return {};
24818 }
24819}
24820
24821/* inherits documentation from base class */
24823{
24824 if (!mKeyAxis || !mValueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
24825 if (mDataContainer->isEmpty()) return;
24826
24827 QCPBarsDataContainer::const_iterator visibleBegin, visibleEnd;
24829
24830 // loop over and draw segments of unselected/selected data:
24834 for (int i=0; i<allSegments.size(); ++i)
24835 {
24836 bool isSelectedSegment = i >= unselectedSegments.size();
24837 QCPBarsDataContainer::const_iterator begin = visibleBegin;
24838 QCPBarsDataContainer::const_iterator end = visibleEnd;
24839 mDataContainer->limitIteratorsToDataRange(begin, end, allSegments.at(i));
24840 if (begin == end)
24841 continue;
24842
24843 for (QCPBarsDataContainer::const_iterator it=begin; it!=end; ++it)
24844 {
24845 // check data validity if flag set:
24846#ifdef QCUSTOMPLOT_CHECK_DATA
24847 if (QCP::isInvalidData(it->key, it->value))
24848 qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "of drawn range invalid." << "Plottable name:" << name();
24849#endif
24850 // draw bar:
24851 if (isSelectedSegment && mSelectionDecorator)
24852 {
24853 mSelectionDecorator->applyBrush(painter);
24854 mSelectionDecorator->applyPen(painter);
24855 } else
24856 {
24857 painter->setBrush(mBrush);
24858 painter->setPen(mPen);
24859 }
24861 painter->drawPolygon(getBarRect(it->key, it->value));
24862 }
24863 }
24864
24865 // draw other selection decoration that isn't just line/scatter pens and brushes:
24866 if (mSelectionDecorator)
24867 mSelectionDecorator->drawDecoration(painter, selection());
24868}
24869
24870/* inherits documentation from base class */
24871void QCPBars::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
24872{
24873 // draw filled rect:
24875 painter->setBrush(mBrush);
24876 painter->setPen(mPen);
24877 QRectF r = QRectF(0, 0, rect.width()*0.67, rect.height()*0.67);
24878 r.moveCenter(rect.center());
24879 painter->drawRect(r);
24880}
24881
24882/*! \internal
24883
24884 called by \ref draw to determine which data (key) range is visible at the current key axis range
24885 setting, so only that needs to be processed. It also takes into account the bar width.
24886
24887 \a begin returns an iterator to the lowest data point that needs to be taken into account when
24888 plotting. Note that in order to get a clean plot all the way to the edge of the axis rect, \a
24889 lower may still be just outside the visible range.
24890
24891 \a end returns an iterator one higher than the highest visible data point. Same as before, \a end
24892 may also lie just outside of the visible range.
24893
24894 if the plottable contains no data, both \a begin and \a end point to constEnd.
24895*/
24896void QCPBars::getVisibleDataBounds(QCPBarsDataContainer::const_iterator &begin, QCPBarsDataContainer::const_iterator &end) const
24897{
24898 if (!mKeyAxis)
24899 {
24900 qDebug() << Q_FUNC_INFO << "invalid key axis";
24901 begin = mDataContainer->constEnd();
24902 end = mDataContainer->constEnd();
24903 return;
24904 }
24905 if (mDataContainer->isEmpty())
24906 {
24907 begin = mDataContainer->constEnd();
24908 end = mDataContainer->constEnd();
24909 return;
24910 }
24911
24912 // get visible data range as QMap iterators
24913 begin = mDataContainer->findBegin(mKeyAxis.data()->range().lower);
24914 end = mDataContainer->findEnd(mKeyAxis.data()->range().upper);
24915 double lowerPixelBound = mKeyAxis.data()->coordToPixel(mKeyAxis.data()->range().lower);
24916 double upperPixelBound = mKeyAxis.data()->coordToPixel(mKeyAxis.data()->range().upper);
24917 bool isVisible = false;
24918 // walk left from begin to find lower bar that actually is completely outside visible pixel range:
24919 QCPBarsDataContainer::const_iterator it = begin;
24920 while (it != mDataContainer->constBegin())
24921 {
24922 --it;
24923 const QRectF barRect = getBarRect(it->key, it->value);
24924 if (mKeyAxis.data()->orientation() == Qt::Horizontal)
24925 isVisible = ((!mKeyAxis.data()->rangeReversed() && barRect.right() >= lowerPixelBound) || (mKeyAxis.data()->rangeReversed() && barRect.left() <= lowerPixelBound));
24926 else // keyaxis is vertical
24927 isVisible = ((!mKeyAxis.data()->rangeReversed() && barRect.top() <= lowerPixelBound) || (mKeyAxis.data()->rangeReversed() && barRect.bottom() >= lowerPixelBound));
24928 if (isVisible)
24929 begin = it;
24930 else
24931 break;
24932 }
24933 // walk right from ubound to find upper bar that actually is completely outside visible pixel range:
24934 it = end;
24935 while (it != mDataContainer->constEnd())
24936 {
24937 const QRectF barRect = getBarRect(it->key, it->value);
24938 if (mKeyAxis.data()->orientation() == Qt::Horizontal)
24939 isVisible = ((!mKeyAxis.data()->rangeReversed() && barRect.left() <= upperPixelBound) || (mKeyAxis.data()->rangeReversed() && barRect.right() >= upperPixelBound));
24940 else // keyaxis is vertical
24941 isVisible = ((!mKeyAxis.data()->rangeReversed() && barRect.bottom() >= upperPixelBound) || (mKeyAxis.data()->rangeReversed() && barRect.top() <= upperPixelBound));
24942 if (isVisible)
24943 end = it+1;
24944 else
24945 break;
24946 ++it;
24947 }
24948}
24949
24950/*! \internal
24951
24952 Returns the rect in pixel coordinates of a single bar with the specified \a key and \a value. The
24953 rect is shifted according to the bar stacking (see \ref moveAbove) and base value (see \ref
24954 setBaseValue), and to have non-overlapping border lines with the bars stacked below.
24955*/
24956QRectF QCPBars::getBarRect(double key, double value) const
24957{
24958 QCPAxis *keyAxis = mKeyAxis.data();
24959 QCPAxis *valueAxis = mValueAxis.data();
24960 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return {}; }
24961
24964 double base = getStackedBaseValue(key, value >= 0);
24965 double basePixel = valueAxis->coordToPixel(base);
24966 double valuePixel = valueAxis->coordToPixel(base+value);
24967 double keyPixel = keyAxis->coordToPixel(key);
24968 if (mBarsGroup)
24969 keyPixel += mBarsGroup->keyPixelOffset(this, key);
24970 double bottomOffset = (mBarBelow && mPen != Qt::NoPen ? 1 : 0)*(mPen.isCosmetic() ? 1 : mPen.widthF());
24971 bottomOffset += mBarBelow ? mStackingGap : 0;
24972 bottomOffset *= (value<0 ? -1 : 1)*valueAxis->pixelOrientation();
24975 if (keyAxis->orientation() == Qt::Horizontal)
24976 {
24978 } else
24979 {
24981 }
24982}
24983
24984/*! \internal
24985
24986 This function is used to determine the width of the bar at coordinate \a key, according to the
24987 specified width (\ref setWidth) and width type (\ref setWidthType).
24988
24989 The output parameters \a lower and \a upper return the number of pixels the bar extends to lower
24990 and higher keys, relative to the \a key coordinate (so with a non-reversed horizontal axis, \a
24991 lower is negative and \a upper positive).
24992*/
24993void QCPBars::getPixelWidth(double key, double &lower, double &upper) const
24994{
24995 lower = 0;
24996 upper = 0;
24997 switch (mWidthType)
24998 {
24999 case wtAbsolute:
25000 {
25001 upper = mWidth*0.5*mKeyAxis.data()->pixelOrientation();
25002 lower = -upper;
25003 break;
25004 }
25005 case wtAxisRectRatio:
25006 {
25007 if (mKeyAxis && mKeyAxis.data()->axisRect())
25008 {
25009 if (mKeyAxis.data()->orientation() == Qt::Horizontal)
25010 upper = mKeyAxis.data()->axisRect()->width()*mWidth*0.5*mKeyAxis.data()->pixelOrientation();
25011 else
25012 upper = mKeyAxis.data()->axisRect()->height()*mWidth*0.5*mKeyAxis.data()->pixelOrientation();
25013 lower = -upper;
25014 } else
25015 qDebug() << Q_FUNC_INFO << "No key axis or axis rect defined";
25016 break;
25017 }
25018 case wtPlotCoords:
25019 {
25020 if (mKeyAxis)
25021 {
25022 double keyPixel = mKeyAxis.data()->coordToPixel(key);
25023 upper = mKeyAxis.data()->coordToPixel(key+mWidth*0.5)-keyPixel;
25024 lower = mKeyAxis.data()->coordToPixel(key-mWidth*0.5)-keyPixel;
25025 // no need to qSwap(lower, higher) when range reversed, because higher/lower are gained by
25026 // coordinate transform which includes range direction
25027 } else
25028 qDebug() << Q_FUNC_INFO << "No key axis defined";
25029 break;
25030 }
25031 }
25032}
25033
25034/*! \internal
25035
25036 This function is called to find at which value to start drawing the base of a bar at \a key, when
25037 it is stacked on top of another QCPBars (e.g. with \ref moveAbove).
25038
25039 positive and negative bars are separated per stack (positive are stacked above baseValue upwards,
25040 negative are stacked below baseValue downwards). This can be indicated with \a positive. So if the
25041 bar for which we need the base value is negative, set \a positive to false.
25042*/
25043double QCPBars::getStackedBaseValue(double key, bool positive) const
25044{
25045 if (mBarBelow)
25046 {
25047 double max = 0; // don't initialize with mBaseValue here because only base value of bottom-most bar has meaning in a bar stack
25048 // find bars of mBarBelow that are approximately at key and find largest one:
25049 double epsilon = qAbs(key)*(sizeof(key)==4 ? 1e-6 : 1e-14); // should be safe even when changed to use float at some point
25050 if (key == 0)
25051 epsilon = (sizeof(key)==4 ? 1e-6 : 1e-14);
25052 QCPBarsDataContainer::const_iterator it = mBarBelow.data()->mDataContainer->findBegin(key-epsilon);
25053 QCPBarsDataContainer::const_iterator itEnd = mBarBelow.data()->mDataContainer->findEnd(key+epsilon);
25054 while (it != itEnd)
25055 {
25056 if (it->key > key-epsilon && it->key < key+epsilon)
25057 {
25058 if ((positive && it->value > max) ||
25059 (!positive && it->value < max))
25060 max = it->value;
25061 }
25062 ++it;
25063 }
25064 // recurse down the bar-stack to find the total height:
25065 return max + mBarBelow.data()->getStackedBaseValue(key, positive);
25066 } else
25067 return mBaseValue;
25068}
25069
25070/*! \internal
25071
25072 Connects \a below and \a above to each other via their mBarAbove/mBarBelow properties. The bar(s)
25073 currently above lower and below upper will become disconnected to lower/upper.
25074
25075 If lower is zero, upper will be disconnected at the bottom.
25076 If upper is zero, lower will be disconnected at the top.
25077*/
25079{
25080 if (!lower && !upper) return;
25081
25082 if (!lower) // disconnect upper at bottom
25083 {
25084 // disconnect old bar below upper:
25085 if (upper->mBarBelow && upper->mBarBelow.data()->mBarAbove.data() == upper)
25086 upper->mBarBelow.data()->mBarAbove = nullptr;
25087 upper->mBarBelow = nullptr;
25088 } else if (!upper) // disconnect lower at top
25089 {
25090 // disconnect old bar above lower:
25091 if (lower->mBarAbove && lower->mBarAbove.data()->mBarBelow.data() == lower)
25092 lower->mBarAbove.data()->mBarBelow = nullptr;
25093 lower->mBarAbove = nullptr;
25094 } else // connect lower and upper
25095 {
25096 // disconnect old bar above lower:
25097 if (lower->mBarAbove && lower->mBarAbove.data()->mBarBelow.data() == lower)
25098 lower->mBarAbove.data()->mBarBelow = nullptr;
25099 // disconnect old bar below upper:
25100 if (upper->mBarBelow && upper->mBarBelow.data()->mBarAbove.data() == upper)
25101 upper->mBarBelow.data()->mBarAbove = nullptr;
25102 lower->mBarAbove = upper;
25103 upper->mBarBelow = lower;
25104 }
25105}
25106/* end of 'src/plottables/plottable-bars.cpp' */
25107
25108
25109/* including file 'src/plottables/plottable-statisticalbox.cpp' */
25110/* modified 2021-03-29T02:30:44, size 28951 */
25111
25112////////////////////////////////////////////////////////////////////////////////////////////////////
25113//////////////////// QCPStatisticalBoxData
25114////////////////////////////////////////////////////////////////////////////////////////////////////
25115
25116/*! \class QCPStatisticalBoxData
25117 \brief Holds the data of one single data point for QCPStatisticalBox.
25118
25119 The stored data is:
25120
25121 \li \a key: coordinate on the key axis of this data point (this is the \a mainKey and the \a sortKey)
25122
25123 \li \a minimum: the position of the lower whisker, typically the minimum measurement of the
25124 sample that's not considered an outlier.
25125
25126 \li \a lowerQuartile: the lower end of the box. The lower and the upper quartiles are the two
25127 statistical quartiles around the median of the sample, they should contain 50% of the sample
25128 data.
25129
25130 \li \a median: the value of the median mark inside the quartile box. The median separates the
25131 sample data in half (50% of the sample data is below/above the median). (This is the \a mainValue)
25132
25133 \li \a upperQuartile: the upper end of the box. The lower and the upper quartiles are the two
25134 statistical quartiles around the median of the sample, they should contain 50% of the sample
25135 data.
25136
25137 \li \a maximum: the position of the upper whisker, typically the maximum measurement of the
25138 sample that's not considered an outlier.
25139
25140 \li \a outliers: a QVector of outlier values that will be drawn as scatter points at the \a key
25141 coordinate of this data point (see \ref QCPStatisticalBox::setOutlierStyle)
25142
25143 The container for storing multiple data points is \ref QCPStatisticalBoxDataContainer. It is a
25144 typedef for \ref QCPDataContainer with \ref QCPStatisticalBoxData as the DataType template
25145 parameter. See the documentation there for an explanation regarding the data type's generic
25146 methods.
25147
25148 \see QCPStatisticalBoxDataContainer
25149*/
25150
25151/* start documentation of inline functions */
25152
25153/*! \fn double QCPStatisticalBoxData::sortKey() const
25154
25155 Returns the \a key member of this data point.
25156
25157 For a general explanation of what this method is good for in the context of the data container,
25158 see the documentation of \ref QCPDataContainer.
25159*/
25160
25161/*! \fn static QCPStatisticalBoxData QCPStatisticalBoxData::fromSortKey(double sortKey)
25162
25163 Returns a data point with the specified \a sortKey. All other members are set to zero.
25164
25165 For a general explanation of what this method is good for in the context of the data container,
25166 see the documentation of \ref QCPDataContainer.
25167*/
25168
25169/*! \fn static static bool QCPStatisticalBoxData::sortKeyIsMainKey()
25170
25171 Since the member \a key is both the data point key coordinate and the data ordering parameter,
25172 this method returns true.
25173
25174 For a general explanation of what this method is good for in the context of the data container,
25175 see the documentation of \ref QCPDataContainer.
25176*/
25177
25178/*! \fn double QCPStatisticalBoxData::mainKey() const
25179
25180 Returns the \a key member of this data point.
25181
25182 For a general explanation of what this method is good for in the context of the data container,
25183 see the documentation of \ref QCPDataContainer.
25184*/
25185
25186/*! \fn double QCPStatisticalBoxData::mainValue() const
25187
25188 Returns the \a median member of this data point.
25189
25190 For a general explanation of what this method is good for in the context of the data container,
25191 see the documentation of \ref QCPDataContainer.
25192*/
25193
25194/*! \fn QCPRange QCPStatisticalBoxData::valueRange() const
25195
25196 Returns a QCPRange spanning from the \a minimum to the \a maximum member of this statistical box
25197 data point, possibly further expanded by outliers.
25198
25199 For a general explanation of what this method is good for in the context of the data container,
25200 see the documentation of \ref QCPDataContainer.
25201*/
25202
25203/* end documentation of inline functions */
25204
25205/*!
25206 Constructs a data point with key and all values set to zero.
25207*/
25209 key(0),
25210 minimum(0),
25211 lowerQuartile(0),
25212 median(0),
25213 upperQuartile(0),
25214 maximum(0)
25215{
25216}
25217
25218/*!
25219 Constructs a data point with the specified \a key, \a minimum, \a lowerQuartile, \a median, \a
25220 upperQuartile, \a maximum and optionally a number of \a outliers.
25221*/
25222QCPStatisticalBoxData::QCPStatisticalBoxData(double key, double minimum, double lowerQuartile, double median, double upperQuartile, double maximum, const QVector<double> &outliers) :
25223 key(key),
25224 minimum(minimum),
25225 lowerQuartile(lowerQuartile),
25226 median(median),
25227 upperQuartile(upperQuartile),
25228 maximum(maximum),
25229 outliers(outliers)
25230{
25231}
25232
25233
25234////////////////////////////////////////////////////////////////////////////////////////////////////
25235//////////////////// QCPStatisticalBox
25236////////////////////////////////////////////////////////////////////////////////////////////////////
25237
25238/*! \class QCPStatisticalBox
25239 \brief A plottable representing a single statistical box in a plot.
25240
25241 \image html QCPStatisticalBox.png
25242
25243 To plot data, assign it with the \ref setData or \ref addData functions. Alternatively, you can
25244 also access and modify the data via the \ref data method, which returns a pointer to the internal
25245 \ref QCPStatisticalBoxDataContainer.
25246
25247 Additionally each data point can itself have a list of outliers, drawn as scatter points at the
25248 key coordinate of the respective statistical box data point. They can either be set by using the
25249 respective \ref addData(double,double,double,double,double,double,const QVector<double>&)
25250 "addData" method or accessing the individual data points through \ref data, and setting the
25251 <tt>QVector<double> outliers</tt> of the data points directly.
25252
25253 \section qcpstatisticalbox-appearance Changing the appearance
25254
25255 The appearance of each data point box, ranging from the lower to the upper quartile, is
25256 controlled via \ref setPen and \ref setBrush. You may change the width of the boxes with \ref
25257 setWidth in plot coordinates.
25258
25259 Each data point's visual representation also consists of two whiskers. Whiskers are the lines
25260 which reach from the upper quartile to the maximum, and from the lower quartile to the minimum.
25261 The appearance of the whiskers can be modified with: \ref setWhiskerPen, \ref setWhiskerBarPen,
25262 \ref setWhiskerWidth. The whisker width is the width of the bar perpendicular to the whisker at
25263 the top (for maximum) and bottom (for minimum). If the whisker pen is changed, make sure to set
25264 the \c capStyle to \c Qt::FlatCap. Otherwise the backbone line might exceed the whisker bars by a
25265 few pixels due to the pen cap being not perfectly flat.
25266
25267 The median indicator line inside the box has its own pen, \ref setMedianPen.
25268
25269 The outlier data points are drawn as normal scatter points. Their look can be controlled with
25270 \ref setOutlierStyle
25271
25272 \section qcpstatisticalbox-usage Usage
25273
25274 Like all data representing objects in QCustomPlot, the QCPStatisticalBox is a plottable
25275 (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
25276 (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)
25277
25278 Usually, you first create an instance:
25279 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpstatisticalbox-creation-1
25280 which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot instance takes
25281 ownership of the plottable, so do not delete it manually but use QCustomPlot::removePlottable() instead.
25282 The newly created plottable can be modified, e.g.:
25283 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpstatisticalbox-creation-2
25284*/
25285
25286/* start documentation of inline functions */
25287
25288/*! \fn QSharedPointer<QCPStatisticalBoxDataContainer> QCPStatisticalBox::data() const
25289
25290 Returns a shared pointer to the internal data storage of type \ref
25291 QCPStatisticalBoxDataContainer. You may use it to directly manipulate the data, which may be more
25292 convenient and faster than using the regular \ref setData or \ref addData methods.
25293*/
25294
25295/* end documentation of inline functions */
25296
25297/*!
25298 Constructs a statistical box which uses \a keyAxis as its key axis ("x") and \a valueAxis as its
25299 value axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and
25300 not have the same orientation. If either of these restrictions is violated, a corresponding
25301 message is printed to the debug output (qDebug), the construction is not aborted, though.
25302
25303 The created QCPStatisticalBox is automatically registered with the QCustomPlot instance inferred
25304 from \a keyAxis. This QCustomPlot instance takes ownership of the QCPStatisticalBox, so do not
25305 delete it manually but use QCustomPlot::removePlottable() instead.
25306*/
25308 QCPAbstractPlottable1D<QCPStatisticalBoxData>(keyAxis, valueAxis),
25309 mWidth(0.5),
25310 mWhiskerWidth(0.2),
25311 mWhiskerPen(Qt::black, 0, Qt::DashLine, Qt::FlatCap),
25312 mWhiskerBarPen(Qt::black),
25313 mWhiskerAntialiased(false),
25314 mMedianPen(Qt::black, 3, Qt::SolidLine, Qt::FlatCap),
25315 mOutlierStyle(QCPScatterStyle::ssCircle, Qt::blue, 6)
25316{
25319}
25320
25321/*! \overload
25322
25323 Replaces the current data container with the provided \a data container.
25324
25325 Since a QSharedPointer is used, multiple QCPStatisticalBoxes may share the same data container
25326 safely. Modifying the data in the container will then affect all statistical boxes that share the
25327 container. Sharing can be achieved by simply exchanging the data containers wrapped in shared
25328 pointers:
25329 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpstatisticalbox-datasharing-1
25330
25331 If you do not wish to share containers, but create a copy from an existing container, rather use
25332 the \ref QCPDataContainer<DataType>::set method on the statistical box data container directly:
25333 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpstatisticalbox-datasharing-2
25334
25335 \see addData
25336*/
25341/*! \overload
25342
25343 Replaces the current data with the provided points in \a keys, \a minimum, \a lowerQuartile, \a
25344 median, \a upperQuartile and \a maximum. The provided vectors should have equal length. Else, the
25345 number of added points will be the size of the smallest vector.
25346
25347 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
25348 can set \a alreadySorted to true, to improve performance by saving a sorting run.
25349
25350 \see addData
25351*/
25352void QCPStatisticalBox::setData(const QVector<double> &keys, const QVector<double> &minimum, const QVector<double> &lowerQuartile, const QVector<double> &median, const QVector<double> &upperQuartile, const QVector<double> &maximum, bool alreadySorted)
25353{
25354 mDataContainer->clear();
25355 addData(keys, minimum, lowerQuartile, median, upperQuartile, maximum, alreadySorted);
25356}
25357
25358/*!
25359 Sets the width of the boxes in key coordinates.
25360
25361 \see setWhiskerWidth
25362*/
25364{
25365 mWidth = width;
25366}
25367
25368/*!
25369 Sets the width of the whiskers in key coordinates.
25370
25371 Whiskers are the lines which reach from the upper quartile to the maximum, and from the lower
25372 quartile to the minimum.
25373
25374 \see setWidth
25375*/
25377{
25378 mWhiskerWidth = width;
25379}
25380
25381/*!
25382 Sets the pen used for drawing the whisker backbone.
25383
25384 Whiskers are the lines which reach from the upper quartile to the maximum, and from the lower
25385 quartile to the minimum.
25386
25387 Make sure to set the \c capStyle of the passed \a pen to \c Qt::FlatCap. Otherwise the backbone
25388 line might exceed the whisker bars by a few pixels due to the pen cap being not perfectly flat.
25389
25390 \see setWhiskerBarPen
25391*/
25393{
25394 mWhiskerPen = pen;
25395}
25396
25397/*!
25398 Sets the pen used for drawing the whisker bars. Those are the lines parallel to the key axis at
25399 each end of the whisker backbone.
25400
25401 Whiskers are the lines which reach from the upper quartile to the maximum, and from the lower
25402 quartile to the minimum.
25403
25404 \see setWhiskerPen
25405*/
25407{
25408 mWhiskerBarPen = pen;
25409}
25410
25411/*!
25412 Sets whether the statistical boxes whiskers are drawn with antialiasing or not.
25413
25414 Note that antialiasing settings may be overridden by QCustomPlot::setAntialiasedElements and
25415 QCustomPlot::setNotAntialiasedElements.
25416*/
25418{
25419 mWhiskerAntialiased = enabled;
25420}
25421
25422/*!
25423 Sets the pen used for drawing the median indicator line inside the statistical boxes.
25424*/
25426{
25427 mMedianPen = pen;
25428}
25429
25430/*!
25431 Sets the appearance of the outlier data points.
25432
25433 Outliers can be specified with the method
25434 \ref addData(double key, double minimum, double lowerQuartile, double median, double upperQuartile, double maximum, const QVector<double> &outliers)
25435*/
25437{
25438 mOutlierStyle = style;
25439}
25440
25441/*! \overload
25442
25443 Adds the provided points in \a keys, \a minimum, \a lowerQuartile, \a median, \a upperQuartile and
25444 \a maximum to the current data. The provided vectors should have equal length. Else, the number
25445 of added points will be the size of the smallest vector.
25446
25447 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
25448 can set \a alreadySorted to true, to improve performance by saving a sorting run.
25449
25450 Alternatively, you can also access and modify the data directly via the \ref data method, which
25451 returns a pointer to the internal data container.
25452*/
25453void QCPStatisticalBox::addData(const QVector<double> &keys, const QVector<double> &minimum, const QVector<double> &lowerQuartile, const QVector<double> &median, const QVector<double> &upperQuartile, const QVector<double> &maximum, bool alreadySorted)
25454{
25455 if (keys.size() != minimum.size() || minimum.size() != lowerQuartile.size() || lowerQuartile.size() != median.size() ||
25456 median.size() != upperQuartile.size() || upperQuartile.size() != maximum.size() || maximum.size() != keys.size())
25457 qDebug() << Q_FUNC_INFO << "keys, minimum, lowerQuartile, median, upperQuartile, maximum have different sizes:"
25458 << keys.size() << minimum.size() << lowerQuartile.size() << median.size() << upperQuartile.size() << maximum.size();
25459 const int n = qMin(keys.size(), qMin(minimum.size(), qMin(lowerQuartile.size(), qMin(median.size(), qMin(upperQuartile.size(), maximum.size())))));
25463 int i = 0;
25464 while (it != itEnd)
25465 {
25466 it->key = keys[i];
25467 it->minimum = minimum[i];
25468 it->lowerQuartile = lowerQuartile[i];
25469 it->median = median[i];
25470 it->upperQuartile = upperQuartile[i];
25471 it->maximum = maximum[i];
25472 ++it;
25473 ++i;
25474 }
25475 mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
25476}
25477
25478/*! \overload
25479
25480 Adds the provided data point as \a key, \a minimum, \a lowerQuartile, \a median, \a upperQuartile
25481 and \a maximum to the current data.
25482
25483 Alternatively, you can also access and modify the data directly via the \ref data method, which
25484 returns a pointer to the internal data container.
25485*/
25486void QCPStatisticalBox::addData(double key, double minimum, double lowerQuartile, double median, double upperQuartile, double maximum, const QVector<double> &outliers)
25487{
25488 mDataContainer->add(QCPStatisticalBoxData(key, minimum, lowerQuartile, median, upperQuartile, maximum, outliers));
25489}
25490
25491/*!
25492 \copydoc QCPPlottableInterface1D::selectTestRect
25493*/
25495{
25496 QCPDataSelection result;
25497 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
25498 return result;
25499 if (!mKeyAxis || !mValueAxis)
25500 return result;
25501
25502 QCPStatisticalBoxDataContainer::const_iterator visibleBegin, visibleEnd;
25504
25505 for (QCPStatisticalBoxDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
25506 {
25507 if (rect.intersects(getQuartileBox(it)))
25508 result.addDataRange(QCPDataRange(int(it-mDataContainer->constBegin()), int(it-mDataContainer->constBegin()+1)), false);
25509 }
25510 result.simplify();
25511 return result;
25512}
25513
25514/*!
25515 Implements a selectTest specific to this plottable's point geometry.
25516
25517 If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
25518 point to \a pos.
25519
25520 \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
25521*/
25522double QCPStatisticalBox::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
25523{
25524 Q_UNUSED(details)
25525 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
25526 return -1;
25527 if (!mKeyAxis || !mValueAxis)
25528 return -1;
25529
25530 if (mKeyAxis->axisRect()->rect().contains(pos.toPoint()) || mParentPlot->interactions().testFlag(QCP::iSelectPlottablesBeyondAxisRect))
25531 {
25532 // get visible data range:
25533 QCPStatisticalBoxDataContainer::const_iterator visibleBegin, visibleEnd;
25534 QCPStatisticalBoxDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
25536 double minDistSqr = (std::numeric_limits<double>::max)();
25537 for (QCPStatisticalBoxDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
25538 {
25539 if (getQuartileBox(it).contains(pos)) // quartile box
25540 {
25541 double currentDistSqr = mParentPlot->selectionTolerance()*0.99 * mParentPlot->selectionTolerance()*0.99;
25543 {
25546 }
25547 } else // whiskers
25548 {
25550 const QCPVector2D posVec(pos);
25551 foreach (const QLineF &backbone, whiskerBackbones)
25552 {
25553 double currentDistSqr = posVec.distanceSquaredToLine(backbone);
25555 {
25558 }
25559 }
25560 }
25561 }
25562 if (details)
25563 {
25564 int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
25565 details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
25566 }
25567 return qSqrt(minDistSqr);
25568 }
25569 return -1;
25570}
25571
25572/* inherits documentation from base class */
25574{
25575 QCPRange range = mDataContainer->keyRange(foundRange, inSignDomain);
25576 // determine exact range by including width of bars/flags:
25577 if (foundRange)
25578 {
25579 if (inSignDomain != QCP::sdPositive || range.lower-mWidth*0.5 > 0)
25580 range.lower -= mWidth*0.5;
25581 if (inSignDomain != QCP::sdNegative || range.upper+mWidth*0.5 < 0)
25582 range.upper += mWidth*0.5;
25583 }
25584 return range;
25585}
25586
25587/* inherits documentation from base class */
25589{
25590 return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
25591}
25592
25593/* inherits documentation from base class */
25595{
25596 if (mDataContainer->isEmpty()) return;
25597 QCPAxis *keyAxis = mKeyAxis.data();
25598 QCPAxis *valueAxis = mValueAxis.data();
25599 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
25600
25601 QCPStatisticalBoxDataContainer::const_iterator visibleBegin, visibleEnd;
25603
25604 // loop over and draw segments of unselected/selected data:
25608 for (int i=0; i<allSegments.size(); ++i)
25609 {
25610 bool isSelectedSegment = i >= unselectedSegments.size();
25611 QCPStatisticalBoxDataContainer::const_iterator begin = visibleBegin;
25612 QCPStatisticalBoxDataContainer::const_iterator end = visibleEnd;
25613 mDataContainer->limitIteratorsToDataRange(begin, end, allSegments.at(i));
25614 if (begin == end)
25615 continue;
25616
25617 for (QCPStatisticalBoxDataContainer::const_iterator it=begin; it!=end; ++it)
25618 {
25619 // check data validity if flag set:
25620# ifdef QCUSTOMPLOT_CHECK_DATA
25621 if (QCP::isInvalidData(it->key, it->minimum) ||
25622 QCP::isInvalidData(it->lowerQuartile, it->median) ||
25623 QCP::isInvalidData(it->upperQuartile, it->maximum))
25624 qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "of drawn range has invalid data." << "Plottable name:" << name();
25625 for (int i=0; i<it->outliers.size(); ++i)
25626 if (QCP::isInvalidData(it->outliers.at(i)))
25627 qDebug() << Q_FUNC_INFO << "Data point outlier at" << it->key << "of drawn range invalid." << "Plottable name:" << name();
25628# endif
25629
25630 if (isSelectedSegment && mSelectionDecorator)
25631 {
25632 mSelectionDecorator->applyPen(painter);
25633 mSelectionDecorator->applyBrush(painter);
25634 } else
25635 {
25636 painter->setPen(mPen);
25637 painter->setBrush(mBrush);
25638 }
25639 QCPScatterStyle finalOutlierStyle = mOutlierStyle;
25640 if (isSelectedSegment && mSelectionDecorator)
25641 finalOutlierStyle = mSelectionDecorator->getFinalScatterStyle(mOutlierStyle);
25643 }
25644 }
25645
25646 // draw other selection decoration that isn't just line/scatter pens and brushes:
25647 if (mSelectionDecorator)
25648 mSelectionDecorator->drawDecoration(painter, selection());
25649}
25650
25651/* inherits documentation from base class */
25652void QCPStatisticalBox::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
25653{
25654 // draw filled rect:
25656 painter->setPen(mPen);
25657 painter->setBrush(mBrush);
25658 QRectF r = QRectF(0, 0, rect.width()*0.67, rect.height()*0.67);
25659 r.moveCenter(rect.center());
25660 painter->drawRect(r);
25661}
25662
25663/*!
25664 Draws the graphical representation of a single statistical box with the data given by the
25665 iterator \a it with the provided \a painter.
25666
25667 If the statistical box has a set of outlier data points, they are drawn with \a outlierStyle.
25668
25669 \see getQuartileBox, getWhiskerBackboneLines, getWhiskerBarLines
25670*/
25671void QCPStatisticalBox::drawStatisticalBox(QCPPainter *painter, QCPStatisticalBoxDataContainer::const_iterator it, const QCPScatterStyle &outlierStyle) const
25672{
25673 // draw quartile box:
25676 painter->drawRect(quartileBox);
25677 // draw median line with cliprect set to quartile box:
25678 painter->save();
25680 painter->setPen(mMedianPen);
25681 painter->drawLine(QLineF(coordsToPixels(it->key-mWidth*0.5, it->median), coordsToPixels(it->key+mWidth*0.5, it->median)));
25682 painter->restore();
25683 // draw whisker lines:
25684 applyAntialiasingHint(painter, mWhiskerAntialiased, QCP::aePlottables);
25685 painter->setPen(mWhiskerPen);
25687 painter->setPen(mWhiskerBarPen);
25688 painter->drawLines(getWhiskerBarLines(it));
25689 // draw outliers:
25691 outlierStyle.applyTo(painter, mPen);
25692 for (int i=0; i<it->outliers.size(); ++i)
25693 outlierStyle.drawShape(painter, coordsToPixels(it->key, it->outliers.at(i)));
25694}
25695
25696/*! \internal
25697
25698 called by \ref draw to determine which data (key) range is visible at the current key axis range
25699 setting, so only that needs to be processed. It also takes into account the bar width.
25700
25701 \a begin returns an iterator to the lowest data point that needs to be taken into account when
25702 plotting. Note that in order to get a clean plot all the way to the edge of the axis rect, \a
25703 lower may still be just outside the visible range.
25704
25705 \a end returns an iterator one higher than the highest visible data point. Same as before, \a end
25706 may also lie just outside of the visible range.
25707
25708 if the plottable contains no data, both \a begin and \a end point to constEnd.
25709*/
25710void QCPStatisticalBox::getVisibleDataBounds(QCPStatisticalBoxDataContainer::const_iterator &begin, QCPStatisticalBoxDataContainer::const_iterator &end) const
25711{
25712 if (!mKeyAxis)
25713 {
25714 qDebug() << Q_FUNC_INFO << "invalid key axis";
25715 begin = mDataContainer->constEnd();
25716 end = mDataContainer->constEnd();
25717 return;
25718 }
25719 begin = mDataContainer->findBegin(mKeyAxis.data()->range().lower-mWidth*0.5); // subtract half width of box to include partially visible data points
25720 end = mDataContainer->findEnd(mKeyAxis.data()->range().upper+mWidth*0.5); // add half width of box to include partially visible data points
25721}
25722
25723/*! \internal
25724
25725 Returns the box in plot coordinates (keys in x, values in y of the returned rect) that covers the
25726 value range from the lower to the upper quartile, of the data given by \a it.
25727
25728 \see drawStatisticalBox, getWhiskerBackboneLines, getWhiskerBarLines
25729*/
25730QRectF QCPStatisticalBox::getQuartileBox(QCPStatisticalBoxDataContainer::const_iterator it) const
25731{
25732 QRectF result;
25733 result.setTopLeft(coordsToPixels(it->key-mWidth*0.5, it->upperQuartile));
25734 result.setBottomRight(coordsToPixels(it->key+mWidth*0.5, it->lowerQuartile));
25735 return result;
25736}
25737
25738/*! \internal
25739
25740 Returns the whisker backbones (keys in x, values in y of the returned lines) that cover the value
25741 range from the minimum to the lower quartile, and from the upper quartile to the maximum of the
25742 data given by \a it.
25743
25744 \see drawStatisticalBox, getQuartileBox, getWhiskerBarLines
25745*/
25746QVector<QLineF> QCPStatisticalBox::getWhiskerBackboneLines(QCPStatisticalBoxDataContainer::const_iterator it) const
25747{
25748 QVector<QLineF> result(2);
25749 result[0].setPoints(coordsToPixels(it->key, it->lowerQuartile), coordsToPixels(it->key, it->minimum)); // min backbone
25750 result[1].setPoints(coordsToPixels(it->key, it->upperQuartile), coordsToPixels(it->key, it->maximum)); // max backbone
25751 return result;
25752}
25753
25754/*! \internal
25755
25756 Returns the whisker bars (keys in x, values in y of the returned lines) that are placed at the
25757 end of the whisker backbones, at the minimum and maximum of the data given by \a it.
25758
25759 \see drawStatisticalBox, getQuartileBox, getWhiskerBackboneLines
25760*/
25761QVector<QLineF> QCPStatisticalBox::getWhiskerBarLines(QCPStatisticalBoxDataContainer::const_iterator it) const
25762{
25763 QVector<QLineF> result(2);
25764 result[0].setPoints(coordsToPixels(it->key-mWhiskerWidth*0.5, it->minimum), coordsToPixels(it->key+mWhiskerWidth*0.5, it->minimum)); // min bar
25765 result[1].setPoints(coordsToPixels(it->key-mWhiskerWidth*0.5, it->maximum), coordsToPixels(it->key+mWhiskerWidth*0.5, it->maximum)); // max bar
25766 return result;
25767}
25768/* end of 'src/plottables/plottable-statisticalbox.cpp' */
25769
25770
25771/* including file 'src/plottables/plottable-colormap.cpp' */
25772/* modified 2021-03-29T02:30:44, size 48149 */
25773
25774////////////////////////////////////////////////////////////////////////////////////////////////////
25775//////////////////// QCPColorMapData
25776////////////////////////////////////////////////////////////////////////////////////////////////////
25777
25778/*! \class QCPColorMapData
25779 \brief Holds the two-dimensional data of a QCPColorMap plottable.
25780
25781 This class is a data storage for \ref QCPColorMap. It holds a two-dimensional array, which \ref
25782 QCPColorMap then displays as a 2D image in the plot, where the array values are represented by a
25783 color, depending on the value.
25784
25785 The size of the array can be controlled via \ref setSize (or \ref setKeySize, \ref setValueSize).
25786 Which plot coordinates these cells correspond to can be configured with \ref setRange (or \ref
25787 setKeyRange, \ref setValueRange).
25788
25789 The data cells can be accessed in two ways: They can be directly addressed by an integer index
25790 with \ref setCell. This is the fastest method. Alternatively, they can be addressed by their plot
25791 coordinate with \ref setData. plot coordinate to cell index transformations and vice versa are
25792 provided by the functions \ref coordToCell and \ref cellToCoord.
25793
25794 A \ref QCPColorMapData also holds an on-demand two-dimensional array of alpha values which (if
25795 allocated) has the same size as the data map. It can be accessed via \ref setAlpha, \ref
25796 fillAlpha and \ref clearAlpha. The memory for the alpha map is only allocated if needed, i.e. on
25797 the first call of \ref setAlpha. \ref clearAlpha restores full opacity and frees the alpha map.
25798
25799 This class also buffers the minimum and maximum values that are in the data set, to provide
25800 QCPColorMap::rescaleDataRange with the necessary information quickly. Setting a cell to a value
25801 that is greater than the current maximum increases this maximum to the new value. However,
25802 setting the cell that currently holds the maximum value to a smaller value doesn't decrease the
25803 maximum again, because finding the true new maximum would require going through the entire data
25804 array, which might be time consuming. The same holds for the data minimum. This functionality is
25805 given by \ref recalculateDataBounds, such that you can decide when it is sensible to find the
25806 true current minimum and maximum. The method QCPColorMap::rescaleDataRange offers a convenience
25807 parameter \a recalculateDataBounds which may be set to true to automatically call \ref
25808 recalculateDataBounds internally.
25809*/
25810
25811/* start of documentation of inline functions */
25812
25813/*! \fn bool QCPColorMapData::isEmpty() const
25814
25815 Returns whether this instance carries no data. This is equivalent to having a size where at least
25816 one of the dimensions is 0 (see \ref setSize).
25817*/
25818
25819/* end of documentation of inline functions */
25820
25821/*!
25822 Constructs a new QCPColorMapData instance. The instance has \a keySize cells in the key direction
25823 and \a valueSize cells in the value direction. These cells will be displayed by the \ref QCPColorMap
25824 at the coordinates \a keyRange and \a valueRange.
25825
25826 \see setSize, setKeySize, setValueSize, setRange, setKeyRange, setValueRange
25827*/
25828QCPColorMapData::QCPColorMapData(int keySize, int valueSize, const QCPRange &keyRange, const QCPRange &valueRange) :
25829 mKeySize(0),
25830 mValueSize(0),
25831 mKeyRange(keyRange),
25832 mValueRange(valueRange),
25833 mIsEmpty(true),
25834 mData(nullptr),
25835 mAlpha(nullptr),
25836 mDataModified(true)
25837{
25838 setSize(keySize, valueSize);
25839 fill(0);
25840}
25841
25842QCPColorMapData::~QCPColorMapData()
25843{
25844 delete[] mData;
25845 delete[] mAlpha;
25846}
25847
25848/*!
25849 Constructs a new QCPColorMapData instance copying the data and range of \a other.
25850*/
25852 mKeySize(0),
25853 mValueSize(0),
25854 mIsEmpty(true),
25855 mData(nullptr),
25856 mAlpha(nullptr),
25857 mDataModified(true)
25858{
25859 *this = other;
25860}
25861
25862/*!
25863 Overwrites this color map data instance with the data stored in \a other. The alpha map state is
25864 transferred, too.
25865*/
25867{
25868 if (&other != this)
25869 {
25870 const int keySize = other.keySize();
25871 const int valueSize = other.valueSize();
25872 if (!other.mAlpha && mAlpha)
25873 clearAlpha();
25874 setSize(keySize, valueSize);
25875 if (other.mAlpha && !mAlpha)
25876 createAlpha(false);
25877 setRange(other.keyRange(), other.valueRange());
25878 if (!isEmpty())
25879 {
25880 memcpy(mData, other.mData, sizeof(mData[0])*size_t(keySize*valueSize));
25881 if (mAlpha)
25882 memcpy(mAlpha, other.mAlpha, sizeof(mAlpha[0])*size_t(keySize*valueSize));
25883 }
25884 mDataBounds = other.mDataBounds;
25885 mDataModified = true;
25886 }
25887 return *this;
25888}
25889
25890/* undocumented getter */
25891double QCPColorMapData::data(double key, double value)
25892{
25893 int keyCell = int( (key-mKeyRange.lower)/(mKeyRange.upper-mKeyRange.lower)*(mKeySize-1)+0.5 );
25894 int valueCell = int( (value-mValueRange.lower)/(mValueRange.upper-mValueRange.lower)*(mValueSize-1)+0.5 );
25895 if (keyCell >= 0 && keyCell < mKeySize && valueCell >= 0 && valueCell < mValueSize)
25896 return mData[valueCell*mKeySize + keyCell];
25897 else
25898 return 0;
25899}
25900
25901/* undocumented getter */
25902double QCPColorMapData::cell(int keyIndex, int valueIndex)
25903{
25904 if (keyIndex >= 0 && keyIndex < mKeySize && valueIndex >= 0 && valueIndex < mValueSize)
25905 return mData[valueIndex*mKeySize + keyIndex];
25906 else
25907 return 0;
25908}
25909
25910/*!
25911 Returns the alpha map value of the cell with the indices \a keyIndex and \a valueIndex.
25912
25913 If this color map data doesn't have an alpha map (because \ref setAlpha was never called after
25914 creation or after a call to \ref clearAlpha), returns 255, which corresponds to full opacity.
25915
25916 \see setAlpha
25917*/
25919{
25920 if (mAlpha && keyIndex >= 0 && keyIndex < mKeySize && valueIndex >= 0 && valueIndex < mValueSize)
25921 return mAlpha[valueIndex*mKeySize + keyIndex];
25922 else
25923 return 255;
25924}
25925
25926/*!
25927 Resizes the data array to have \a keySize cells in the key dimension and \a valueSize cells in
25928 the value dimension.
25929
25930 The current data is discarded and the map cells are set to 0, unless the map had already the
25931 requested size.
25932
25933 Setting at least one of \a keySize or \a valueSize to zero frees the internal data array and \ref
25934 isEmpty returns true.
25935
25936 \see setRange, setKeySize, setValueSize
25937*/
25938void QCPColorMapData::setSize(int keySize, int valueSize)
25939{
25940 if (keySize != mKeySize || valueSize != mValueSize)
25941 {
25942 mKeySize = keySize;
25943 mValueSize = valueSize;
25944 delete[] mData;
25945 mIsEmpty = mKeySize == 0 || mValueSize == 0;
25946 if (!mIsEmpty)
25947 {
25948#ifdef __EXCEPTIONS
25949 try { // 2D arrays get memory intensive fast. So if the allocation fails, at least output debug message
25950#endif
25951 mData = new double[size_t(mKeySize*mValueSize)];
25952#ifdef __EXCEPTIONS
25953 } catch (...) { mData = nullptr; }
25954#endif
25955 if (mData)
25956 fill(0);
25957 else
25958 qDebug() << Q_FUNC_INFO << "out of memory for data dimensions "<< mKeySize << "*" << mValueSize;
25959 } else
25960 mData = nullptr;
25961
25962 if (mAlpha) // if we had an alpha map, recreate it with new size
25963 createAlpha();
25964
25965 mDataModified = true;
25966 }
25967}
25968
25969/*!
25970 Resizes the data array to have \a keySize cells in the key dimension.
25971
25972 The current data is discarded and the map cells are set to 0, unless the map had already the
25973 requested size.
25974
25975 Setting \a keySize to zero frees the internal data array and \ref isEmpty returns true.
25976
25977 \see setKeyRange, setSize, setValueSize
25978*/
25980{
25981 setSize(keySize, mValueSize);
25982}
25983
25984/*!
25985 Resizes the data array to have \a valueSize cells in the value dimension.
25986
25987 The current data is discarded and the map cells are set to 0, unless the map had already the
25988 requested size.
25989
25990 Setting \a valueSize to zero frees the internal data array and \ref isEmpty returns true.
25991
25992 \see setValueRange, setSize, setKeySize
25993*/
25995{
25996 setSize(mKeySize, valueSize);
25997}
25998
25999/*!
26000 Sets the coordinate ranges the data shall be distributed over. This defines the rectangular area
26001 covered by the color map in plot coordinates.
26002
26003 The outer cells will be centered on the range boundaries given to this function. For example, if
26004 the key size (\ref setKeySize) is 3 and \a keyRange is set to <tt>QCPRange(2, 3)</tt> there will
26005 be cells centered on the key coordinates 2, 2.5 and 3.
26006
26007 \see setSize
26008*/
26009void QCPColorMapData::setRange(const QCPRange &keyRange, const QCPRange &valueRange)
26010{
26011 setKeyRange(keyRange);
26012 setValueRange(valueRange);
26013}
26014
26015/*!
26016 Sets the coordinate range the data shall be distributed over in the key dimension. Together with
26017 the value range, This defines the rectangular area covered by the color map in plot coordinates.
26018
26019 The outer cells will be centered on the range boundaries given to this function. For example, if
26020 the key size (\ref setKeySize) is 3 and \a keyRange is set to <tt>QCPRange(2, 3)</tt> there will
26021 be cells centered on the key coordinates 2, 2.5 and 3.
26022
26023 \see setRange, setValueRange, setSize
26024*/
26026{
26027 mKeyRange = keyRange;
26028}
26029
26030/*!
26031 Sets the coordinate range the data shall be distributed over in the value dimension. Together with
26032 the key range, This defines the rectangular area covered by the color map in plot coordinates.
26033
26034 The outer cells will be centered on the range boundaries given to this function. For example, if
26035 the value size (\ref setValueSize) is 3 and \a valueRange is set to <tt>QCPRange(2, 3)</tt> there
26036 will be cells centered on the value coordinates 2, 2.5 and 3.
26037
26038 \see setRange, setKeyRange, setSize
26039*/
26041{
26042 mValueRange = valueRange;
26043}
26044
26045/*!
26046 Sets the data of the cell, which lies at the plot coordinates given by \a key and \a value, to \a
26047 z.
26048
26049 \note The QCPColorMap always displays the data at equal key/value intervals, even if the key or
26050 value axis is set to a logarithmic scaling. If you want to use QCPColorMap with logarithmic axes,
26051 you shouldn't use the \ref QCPColorMapData::setData method as it uses a linear transformation to
26052 determine the cell index. Rather directly access the cell index with \ref
26053 QCPColorMapData::setCell.
26054
26055 \see setCell, setRange
26056*/
26057void QCPColorMapData::setData(double key, double value, double z)
26058{
26059 int keyCell = int( (key-mKeyRange.lower)/(mKeyRange.upper-mKeyRange.lower)*(mKeySize-1)+0.5 );
26060 int valueCell = int( (value-mValueRange.lower)/(mValueRange.upper-mValueRange.lower)*(mValueSize-1)+0.5 );
26061 if (keyCell >= 0 && keyCell < mKeySize && valueCell >= 0 && valueCell < mValueSize)
26062 {
26063 mData[valueCell*mKeySize + keyCell] = z;
26064 if (z < mDataBounds.lower)
26065 mDataBounds.lower = z;
26066 if (z > mDataBounds.upper)
26067 mDataBounds.upper = z;
26068 mDataModified = true;
26069 }
26070}
26071
26072/*!
26073 Sets the data of the cell with indices \a keyIndex and \a valueIndex to \a z. The indices
26074 enumerate the cells starting from zero, up to the map's size-1 in the respective dimension (see
26075 \ref setSize).
26076
26077 In the standard plot configuration (horizontal key axis and vertical value axis, both not
26078 range-reversed), the cell with indices (0, 0) is in the bottom left corner and the cell with
26079 indices (keySize-1, valueSize-1) is in the top right corner of the color map.
26080
26081 \see setData, setSize
26082*/
26084{
26085 if (keyIndex >= 0 && keyIndex < mKeySize && valueIndex >= 0 && valueIndex < mValueSize)
26086 {
26087 mData[valueIndex*mKeySize + keyIndex] = z;
26088 if (z < mDataBounds.lower)
26089 mDataBounds.lower = z;
26090 if (z > mDataBounds.upper)
26091 mDataBounds.upper = z;
26092 mDataModified = true;
26093 } else
26094 qDebug() << Q_FUNC_INFO << "index out of bounds:" << keyIndex << valueIndex;
26095}
26096
26097/*!
26098 Sets the alpha of the color map cell given by \a keyIndex and \a valueIndex to \a alpha. A value
26099 of 0 for \a alpha results in a fully transparent cell, and a value of 255 results in a fully
26100 opaque cell.
26101
26102 If an alpha map doesn't exist yet for this color map data, it will be created here. If you wish
26103 to restore full opacity and free any allocated memory of the alpha map, call \ref clearAlpha.
26104
26105 Note that the cell-wise alpha which can be configured here is independent of any alpha configured
26106 in the color map's gradient (\ref QCPColorGradient). If a cell is affected both by the cell-wise
26107 and gradient alpha, the alpha values will be blended accordingly during rendering of the color
26108 map.
26109
26110 \see fillAlpha, clearAlpha
26111*/
26112void QCPColorMapData::setAlpha(int keyIndex, int valueIndex, unsigned char alpha)
26113{
26114 if (keyIndex >= 0 && keyIndex < mKeySize && valueIndex >= 0 && valueIndex < mValueSize)
26115 {
26116 if (mAlpha || createAlpha())
26117 {
26118 mAlpha[valueIndex*mKeySize + keyIndex] = alpha;
26119 mDataModified = true;
26120 }
26121 } else
26122 qDebug() << Q_FUNC_INFO << "index out of bounds:" << keyIndex << valueIndex;
26123}
26124
26125/*!
26126 Goes through the data and updates the buffered minimum and maximum data values.
26127
26128 Calling this method is only advised if you are about to call \ref QCPColorMap::rescaleDataRange
26129 and can not guarantee that the cells holding the maximum or minimum data haven't been overwritten
26130 with a smaller or larger value respectively, since the buffered maximum/minimum values have been
26131 updated the last time. Why this is the case is explained in the class description (\ref
26132 QCPColorMapData).
26133
26134 Note that the method \ref QCPColorMap::rescaleDataRange provides a parameter \a
26135 recalculateDataBounds for convenience. Setting this to true will call this method for you, before
26136 doing the rescale.
26137*/
26139{
26140 if (mKeySize > 0 && mValueSize > 0)
26141 {
26142 double minHeight = mData[0];
26143 double maxHeight = mData[0];
26144 const int dataCount = mValueSize*mKeySize;
26145 for (int i=0; i<dataCount; ++i)
26146 {
26147 if (mData[i] > maxHeight)
26148 maxHeight = mData[i];
26149 if (mData[i] < minHeight)
26150 minHeight = mData[i];
26151 }
26152 mDataBounds.lower = minHeight;
26153 mDataBounds.upper = maxHeight;
26154 }
26155}
26156
26157/*!
26158 Frees the internal data memory.
26159
26160 This is equivalent to calling \ref setSize "setSize(0, 0)".
26161*/
26163{
26164 setSize(0, 0);
26165}
26166
26167/*!
26168 Frees the internal alpha map. The color map will have full opacity again.
26169*/
26171{
26172 if (mAlpha)
26173 {
26174 delete[] mAlpha;
26175 mAlpha = nullptr;
26176 mDataModified = true;
26177 }
26178}
26179
26180/*!
26181 Sets all cells to the value \a z.
26182*/
26184{
26185 const int dataCount = mValueSize*mKeySize;
26186 for (int i=0; i<dataCount; ++i)
26187 mData[i] = z;
26188 mDataBounds = QCPRange(z, z);
26189 mDataModified = true;
26190}
26191
26192/*!
26193 Sets the opacity of all color map cells to \a alpha. A value of 0 for \a alpha results in a fully
26194 transparent color map, and a value of 255 results in a fully opaque color map.
26195
26196 If you wish to restore opacity to 100% and free any used memory for the alpha map, rather use
26197 \ref clearAlpha.
26198
26199 \see setAlpha
26200*/
26201void QCPColorMapData::fillAlpha(unsigned char alpha)
26202{
26203 if (mAlpha || createAlpha(false))
26204 {
26205 const int dataCount = mValueSize*mKeySize;
26206 for (int i=0; i<dataCount; ++i)
26207 mAlpha[i] = alpha;
26208 mDataModified = true;
26209 }
26210}
26211
26212/*!
26213 Transforms plot coordinates given by \a key and \a value to cell indices of this QCPColorMapData
26214 instance. The resulting cell indices are returned via the output parameters \a keyIndex and \a
26215 valueIndex.
26216
26217 The retrieved key/value cell indices can then be used for example with \ref setCell.
26218
26219 If you are only interested in a key or value index, you may pass \c nullptr as \a valueIndex or
26220 \a keyIndex.
26221
26222 \note The QCPColorMap always displays the data at equal key/value intervals, even if the key or
26223 value axis is set to a logarithmic scaling. If you want to use QCPColorMap with logarithmic axes,
26224 you shouldn't use the \ref QCPColorMapData::coordToCell method as it uses a linear transformation to
26225 determine the cell index.
26226
26227 \see cellToCoord, QCPAxis::coordToPixel
26228*/
26229void QCPColorMapData::coordToCell(double key, double value, int *keyIndex, int *valueIndex) const
26230{
26231 if (keyIndex)
26232 *keyIndex = int( (key-mKeyRange.lower)/(mKeyRange.upper-mKeyRange.lower)*(mKeySize-1)+0.5 );
26233 if (valueIndex)
26234 *valueIndex = int( (value-mValueRange.lower)/(mValueRange.upper-mValueRange.lower)*(mValueSize-1)+0.5 );
26235}
26236
26237/*!
26238 Transforms cell indices given by \a keyIndex and \a valueIndex to cell indices of this QCPColorMapData
26239 instance. The resulting coordinates are returned via the output parameters \a key and \a
26240 value.
26241
26242 If you are only interested in a key or value coordinate, you may pass \c nullptr as \a key or \a
26243 value.
26244
26245 \note The QCPColorMap always displays the data at equal key/value intervals, even if the key or
26246 value axis is set to a logarithmic scaling. If you want to use QCPColorMap with logarithmic axes,
26247 you shouldn't use the \ref QCPColorMapData::cellToCoord method as it uses a linear transformation to
26248 determine the cell index.
26249
26250 \see coordToCell, QCPAxis::pixelToCoord
26251*/
26252void QCPColorMapData::cellToCoord(int keyIndex, int valueIndex, double *key, double *value) const
26253{
26254 if (key)
26255 *key = keyIndex/double(mKeySize-1)*(mKeyRange.upper-mKeyRange.lower)+mKeyRange.lower;
26256 if (value)
26257 *value = valueIndex/double(mValueSize-1)*(mValueRange.upper-mValueRange.lower)+mValueRange.lower;
26258}
26259
26260/*! \internal
26261
26262 Allocates the internal alpha map with the current data map key/value size and, if \a
26263 initializeOpaque is true, initializes all values to 255. If \a initializeOpaque is false, the
26264 values are not initialized at all. In this case, the alpha map should be initialized manually,
26265 e.g. with \ref fillAlpha.
26266
26267 If an alpha map exists already, it is deleted first. If this color map is empty (has either key
26268 or value size zero, see \ref isEmpty), the alpha map is cleared.
26269
26270 The return value indicates the existence of the alpha map after the call. So this method returns
26271 true if the data map isn't empty and an alpha map was successfully allocated.
26272*/
26274{
26275 clearAlpha();
26276 if (isEmpty())
26277 return false;
26278
26279#ifdef __EXCEPTIONS
26280 try { // 2D arrays get memory intensive fast. So if the allocation fails, at least output debug message
26281#endif
26282 mAlpha = new unsigned char[size_t(mKeySize*mValueSize)];
26283#ifdef __EXCEPTIONS
26284 } catch (...) { mAlpha = nullptr; }
26285#endif
26286 if (mAlpha)
26287 {
26288 if (initializeOpaque)
26289 fillAlpha(255);
26290 return true;
26291 } else
26292 {
26293 qDebug() << Q_FUNC_INFO << "out of memory for data dimensions "<< mKeySize << "*" << mValueSize;
26294 return false;
26295 }
26296}
26297
26298
26299////////////////////////////////////////////////////////////////////////////////////////////////////
26300//////////////////// QCPColorMap
26301////////////////////////////////////////////////////////////////////////////////////////////////////
26302
26303/*! \class QCPColorMap
26304 \brief A plottable representing a two-dimensional color map in a plot.
26305
26306 \image html QCPColorMap.png
26307
26308 The data is stored in the class \ref QCPColorMapData, which can be accessed via the data()
26309 method.
26310
26311 A color map has three dimensions to represent a data point: The \a key dimension, the \a value
26312 dimension and the \a data dimension. As with other plottables such as graphs, \a key and \a value
26313 correspond to two orthogonal axes on the QCustomPlot surface that you specify in the QCPColorMap
26314 constructor. The \a data dimension however is encoded as the color of the point at (\a key, \a
26315 value).
26316
26317 Set the number of points (or \a cells) in the key/value dimension via \ref
26318 QCPColorMapData::setSize. The plot coordinate range over which these points will be displayed is
26319 specified via \ref QCPColorMapData::setRange. The first cell will be centered on the lower range
26320 boundary and the last cell will be centered on the upper range boundary. The data can be set by
26321 either accessing the cells directly with QCPColorMapData::setCell or by addressing the cells via
26322 their plot coordinates with \ref QCPColorMapData::setData. If possible, you should prefer
26323 setCell, since it doesn't need to do any coordinate transformation and thus performs a bit
26324 better.
26325
26326 The cell with index (0, 0) is at the bottom left, if the color map uses normal (i.e. not reversed)
26327 key and value axes.
26328
26329 To show the user which colors correspond to which \a data values, a \ref QCPColorScale is
26330 typically placed to the right of the axis rect. See the documentation there for details on how to
26331 add and use a color scale.
26332
26333 \section qcpcolormap-appearance Changing the appearance
26334
26335 Most important to the appearance is the color gradient, which can be specified via \ref
26336 setGradient. See the documentation of \ref QCPColorGradient for details on configuring a color
26337 gradient.
26338
26339 The \a data range that is mapped to the colors of the gradient can be specified with \ref
26340 setDataRange. To make the data range encompass the whole data set minimum to maximum, call \ref
26341 rescaleDataRange. If your data may contain NaN values, use \ref QCPColorGradient::setNanHandling
26342 to define how they are displayed.
26343
26344 \section qcpcolormap-transparency Transparency
26345
26346 Transparency in color maps can be achieved by two mechanisms. On one hand, you can specify alpha
26347 values for color stops of the \ref QCPColorGradient, via the regular QColor interface. This will
26348 cause the color map data which gets mapped to colors around those color stops to appear with the
26349 accordingly interpolated transparency.
26350
26351 On the other hand you can also directly apply an alpha value to each cell independent of its
26352 data, by using the alpha map feature of \ref QCPColorMapData. The relevant methods are \ref
26353 QCPColorMapData::setAlpha, QCPColorMapData::fillAlpha and \ref QCPColorMapData::clearAlpha().
26354
26355 The two transparencies will be joined together in the plot and otherwise not interfere with each
26356 other. They are mixed in a multiplicative matter, so an alpha of e.g. 50% (128/255) in both modes
26357 simultaneously, will result in a total transparency of 25% (64/255).
26358
26359 \section qcpcolormap-usage Usage
26360
26361 Like all data representing objects in QCustomPlot, the QCPColorMap is a plottable
26362 (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
26363 (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)
26364
26365 Usually, you first create an instance:
26366 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolormap-creation-1
26367 which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot instance takes
26368 ownership of the plottable, so do not delete it manually but use QCustomPlot::removePlottable() instead.
26369 The newly created plottable can be modified, e.g.:
26370 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpcolormap-creation-2
26371
26372 \note The QCPColorMap always displays the data at equal key/value intervals, even if the key or
26373 value axis is set to a logarithmic scaling. If you want to use QCPColorMap with logarithmic axes,
26374 you shouldn't use the \ref QCPColorMapData::setData method as it uses a linear transformation to
26375 determine the cell index. Rather directly access the cell index with \ref
26376 QCPColorMapData::setCell.
26377*/
26378
26379/* start documentation of inline functions */
26380
26381/*! \fn QCPColorMapData *QCPColorMap::data() const
26382
26383 Returns a pointer to the internal data storage of type \ref QCPColorMapData. Access this to
26384 modify data points (cells) and the color map key/value range.
26385
26386 \see setData
26387*/
26388
26389/* end documentation of inline functions */
26390
26391/* start documentation of signals */
26392
26393/*! \fn void QCPColorMap::dataRangeChanged(const QCPRange &newRange);
26394
26395 This signal is emitted when the data range changes.
26396
26397 \see setDataRange
26398*/
26399
26400/*! \fn void QCPColorMap::dataScaleTypeChanged(QCPAxis::ScaleType scaleType);
26401
26402 This signal is emitted when the data scale type changes.
26403
26404 \see setDataScaleType
26405*/
26406
26407/*! \fn void QCPColorMap::gradientChanged(const QCPColorGradient &newGradient);
26408
26409 This signal is emitted when the gradient changes.
26410
26411 \see setGradient
26412*/
26413
26414/* end documentation of signals */
26415
26416/*!
26417 Constructs a color map with the specified \a keyAxis and \a valueAxis.
26418
26419 The created QCPColorMap is automatically registered with the QCustomPlot instance inferred from
26420 \a keyAxis. This QCustomPlot instance takes ownership of the QCPColorMap, so do not delete it
26421 manually but use QCustomPlot::removePlottable() instead.
26422*/
26424 QCPAbstractPlottable(keyAxis, valueAxis),
26425 mDataScaleType(QCPAxis::stLinear),
26426 mMapData(new QCPColorMapData(10, 10, QCPRange(0, 5), QCPRange(0, 5))),
26427 mGradient(QCPColorGradient::gpCold),
26428 mInterpolate(true),
26429 mTightBoundary(false),
26430 mMapImageInvalidated(true)
26431{
26432}
26433
26434QCPColorMap::~QCPColorMap()
26435{
26436 delete mMapData;
26437}
26438
26439/*!
26440 Replaces the current \ref data with the provided \a data.
26441
26442 If \a copy is set to true, the \a data object will only be copied. if false, the color map
26443 takes ownership of the passed data and replaces the internal data pointer with it. This is
26444 significantly faster than copying for large datasets.
26445*/
26447{
26448 if (mMapData == data)
26449 {
26450 qDebug() << Q_FUNC_INFO << "The data pointer is already in (and owned by) this plottable" << reinterpret_cast<quintptr>(data);
26451 return;
26452 }
26453 if (copy)
26454 {
26455 *mMapData = *data;
26456 } else
26457 {
26458 delete mMapData;
26459 mMapData = data;
26460 }
26461 mMapImageInvalidated = true;
26462}
26463
26464/*!
26465 Sets the data range of this color map to \a dataRange. The data range defines which data values
26466 are mapped to the color gradient.
26467
26468 To make the data range span the full range of the data set, use \ref rescaleDataRange.
26469
26470 \see QCPColorScale::setDataRange
26471*/
26473{
26474 if (!QCPRange::validRange(dataRange)) return;
26475 if (mDataRange.lower != dataRange.lower || mDataRange.upper != dataRange.upper)
26476 {
26477 if (mDataScaleType == QCPAxis::stLogarithmic)
26478 mDataRange = dataRange.sanitizedForLogScale();
26479 else
26480 mDataRange = dataRange.sanitizedForLinScale();
26481 mMapImageInvalidated = true;
26482 emit dataRangeChanged(mDataRange);
26483 }
26484}
26485
26486/*!
26487 Sets whether the data is correlated with the color gradient linearly or logarithmically.
26488
26489 \see QCPColorScale::setDataScaleType
26490*/
26492{
26493 if (mDataScaleType != scaleType)
26494 {
26495 mDataScaleType = scaleType;
26496 mMapImageInvalidated = true;
26497 emit dataScaleTypeChanged(mDataScaleType);
26498 if (mDataScaleType == QCPAxis::stLogarithmic)
26499 setDataRange(mDataRange.sanitizedForLogScale());
26500 }
26501}
26502
26503/*!
26504 Sets the color gradient that is used to represent the data. For more details on how to create an
26505 own gradient or use one of the preset gradients, see \ref QCPColorGradient.
26506
26507 The colors defined by the gradient will be used to represent data values in the currently set
26508 data range, see \ref setDataRange. Data points that are outside this data range will either be
26509 colored uniformly with the respective gradient boundary color, or the gradient will repeat,
26510 depending on \ref QCPColorGradient::setPeriodic.
26511
26512 \see QCPColorScale::setGradient
26513*/
26515{
26516 if (mGradient != gradient)
26517 {
26518 mGradient = gradient;
26519 mMapImageInvalidated = true;
26520 emit gradientChanged(mGradient);
26521 }
26522}
26523
26524/*!
26525 Sets whether the color map image shall use bicubic interpolation when displaying the color map
26526 shrinked or expanded, and not at a 1:1 pixel-to-data scale.
26527
26528 \image html QCPColorMap-interpolate.png "A 10*10 color map, with interpolation and without interpolation enabled"
26529*/
26531{
26532 mInterpolate = enabled;
26533 mMapImageInvalidated = true; // because oversampling factors might need to change
26534}
26535
26536/*!
26537 Sets whether the outer most data rows and columns are clipped to the specified key and value
26538 range (see \ref QCPColorMapData::setKeyRange, \ref QCPColorMapData::setValueRange).
26539
26540 if \a enabled is set to false, the data points at the border of the color map are drawn with the
26541 same width and height as all other data points. Since the data points are represented by
26542 rectangles of one color centered on the data coordinate, this means that the shown color map
26543 extends by half a data point over the specified key/value range in each direction.
26544
26545 \image html QCPColorMap-tightboundary.png "A color map, with tight boundary enabled and disabled"
26546*/
26548{
26549 mTightBoundary = enabled;
26550}
26551
26552/*!
26553 Associates the color scale \a colorScale with this color map.
26554
26555 This means that both the color scale and the color map synchronize their gradient, data range and
26556 data scale type (\ref setGradient, \ref setDataRange, \ref setDataScaleType). Multiple color maps
26557 can be associated with one single color scale. This causes the color maps to also synchronize
26558 those properties, via the mutual color scale.
26559
26560 This function causes the color map to adopt the current color gradient, data range and data scale
26561 type of \a colorScale. After this call, you may change these properties at either the color map
26562 or the color scale, and the setting will be applied to both.
26563
26564 Pass \c nullptr as \a colorScale to disconnect the color scale from this color map again.
26565*/
26567{
26568 if (mColorScale) // unconnect signals from old color scale
26569 {
26576 }
26577 mColorScale = colorScale;
26578 if (mColorScale) // connect signals to new color scale
26579 {
26580 setGradient(mColorScale.data()->gradient());
26581 setDataRange(mColorScale.data()->dataRange());
26582 setDataScaleType(mColorScale.data()->dataScaleType());
26589 }
26590}
26591
26592/*!
26593 Sets the data range (\ref setDataRange) to span the minimum and maximum values that occur in the
26594 current data set. This corresponds to the \ref rescaleKeyAxis or \ref rescaleValueAxis methods,
26595 only for the third data dimension of the color map.
26596
26597 The minimum and maximum values of the data set are buffered in the internal QCPColorMapData
26598 instance (\ref data). As data is updated via its \ref QCPColorMapData::setCell or \ref
26599 QCPColorMapData::setData, the buffered minimum and maximum values are updated, too. For
26600 performance reasons, however, they are only updated in an expanding fashion. So the buffered
26601 maximum can only increase and the buffered minimum can only decrease. In consequence, changes to
26602 the data that actually lower the maximum of the data set (by overwriting the cell holding the
26603 current maximum with a smaller value), aren't recognized and the buffered maximum overestimates
26604 the true maximum of the data set. The same happens for the buffered minimum. To recalculate the
26605 true minimum and maximum by explicitly looking at each cell, the method
26606 QCPColorMapData::recalculateDataBounds can be used. For convenience, setting the parameter \a
26607 recalculateDataBounds calls this method before setting the data range to the buffered minimum and
26608 maximum.
26609
26610 \see setDataRange
26611*/
26612void QCPColorMap::rescaleDataRange(bool recalculateDataBounds)
26613{
26614 if (recalculateDataBounds)
26615 mMapData->recalculateDataBounds();
26616 setDataRange(mMapData->dataBounds());
26617}
26618
26619/*!
26620 Takes the current appearance of the color map and updates the legend icon, which is used to
26621 represent this color map in the legend (see \ref QCPLegend).
26622
26623 The \a transformMode specifies whether the rescaling is done by a faster, low quality image
26624 scaling algorithm (Qt::FastTransformation) or by a slower, higher quality algorithm
26625 (Qt::SmoothTransformation).
26626
26627 The current color map appearance is scaled down to \a thumbSize. Ideally, this should be equal to
26628 the size of the legend icon (see \ref QCPLegend::setIconSize). If it isn't exactly the configured
26629 legend icon size, the thumb will be rescaled during drawing of the legend item.
26630
26631 \see setDataRange
26632*/
26634{
26635 if (mMapImage.isNull() && !data()->isEmpty())
26636 updateMapImage(); // try to update map image if it's null (happens if no draw has happened yet)
26637
26638 if (!mMapImage.isNull()) // might still be null, e.g. if data is empty, so check here again
26639 {
26640 bool mirrorX = (keyAxis()->orientation() == Qt::Horizontal ? keyAxis() : valueAxis())->rangeReversed();
26641 bool mirrorY = (valueAxis()->orientation() == Qt::Vertical ? valueAxis() : keyAxis())->rangeReversed();
26642 mLegendIcon = QPixmap::fromImage(mMapImage.mirrored(mirrorX, mirrorY)).scaled(thumbSize, Qt::KeepAspectRatio, transformMode);
26643 }
26644}
26645
26646/* inherits documentation from base class */
26647double QCPColorMap::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
26648{
26649 Q_UNUSED(details)
26650 if ((onlySelectable && mSelectable == QCP::stNone) || mMapData->isEmpty())
26651 return -1;
26652 if (!mKeyAxis || !mValueAxis)
26653 return -1;
26654
26655 if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()) || mParentPlot->interactions().testFlag(QCP::iSelectPlottablesBeyondAxisRect))
26656 {
26657 double posKey, posValue;
26659 if (mMapData->keyRange().contains(posKey) && mMapData->valueRange().contains(posValue))
26660 {
26661 if (details)
26662 details->setValue(QCPDataSelection(QCPDataRange(0, 1))); // temporary solution, to facilitate whole-plottable selection. Replace in future version with segmented 2D selection.
26663 return mParentPlot->selectionTolerance()*0.99;
26664 }
26665 }
26666 return -1;
26667}
26668
26669/* inherits documentation from base class */
26671{
26672 foundRange = true;
26673 QCPRange result = mMapData->keyRange();
26674 result.normalize();
26676 {
26677 if (result.lower <= 0 && result.upper > 0)
26678 result.lower = result.upper*1e-3;
26679 else if (result.lower <= 0 && result.upper <= 0)
26680 foundRange = false;
26681 } else if (inSignDomain == QCP::sdNegative)
26682 {
26683 if (result.upper >= 0 && result.lower < 0)
26684 result.upper = result.lower*1e-3;
26685 else if (result.upper >= 0 && result.lower >= 0)
26686 foundRange = false;
26687 }
26688 return result;
26689}
26690
26691/* inherits documentation from base class */
26693{
26694 if (inKeyRange != QCPRange())
26695 {
26696 if (mMapData->keyRange().upper < inKeyRange.lower || mMapData->keyRange().lower > inKeyRange.upper)
26697 {
26698 foundRange = false;
26699 return {};
26700 }
26701 }
26702
26703 foundRange = true;
26704 QCPRange result = mMapData->valueRange();
26705 result.normalize();
26707 {
26708 if (result.lower <= 0 && result.upper > 0)
26709 result.lower = result.upper*1e-3;
26710 else if (result.lower <= 0 && result.upper <= 0)
26711 foundRange = false;
26712 } else if (inSignDomain == QCP::sdNegative)
26713 {
26714 if (result.upper >= 0 && result.lower < 0)
26715 result.upper = result.lower*1e-3;
26716 else if (result.upper >= 0 && result.lower >= 0)
26717 foundRange = false;
26718 }
26719 return result;
26720}
26721
26722/*! \internal
26723
26724 Updates the internal map image buffer by going through the internal \ref QCPColorMapData and
26725 turning the data values into color pixels with \ref QCPColorGradient::colorize.
26726
26727 This method is called by \ref QCPColorMap::draw if either the data has been modified or the map image
26728 has been invalidated for a different reason (e.g. a change of the data range with \ref
26729 setDataRange).
26730
26731 If the map cell count is low, the image created will be oversampled in order to avoid a
26732 QPainter::drawImage bug which makes inner pixel boundaries jitter when stretch-drawing images
26733 without smooth transform enabled. Accordingly, oversampling isn't performed if \ref
26734 setInterpolate is true.
26735*/
26737{
26738 QCPAxis *keyAxis = mKeyAxis.data();
26739 if (!keyAxis) return;
26740 if (mMapData->isEmpty()) return;
26741
26743 const int keySize = mMapData->keySize();
26744 const int valueSize = mMapData->valueSize();
26745 int keyOversamplingFactor = mInterpolate ? 1 : int(1.0+100.0/double(keySize)); // make mMapImage have at least size 100, factor becomes 1 if size > 200 or interpolation is on
26746 int valueOversamplingFactor = mInterpolate ? 1 : int(1.0+100.0/double(valueSize)); // make mMapImage have at least size 100, factor becomes 1 if size > 200 or interpolation is on
26747
26748 // resize mMapImage to correct dimensions including possible oversampling factors, according to key/value axes orientation:
26749 if (keyAxis->orientation() == Qt::Horizontal && (mMapImage.width() != keySize*keyOversamplingFactor || mMapImage.height() != valueSize*valueOversamplingFactor))
26750 mMapImage = QImage(QSize(keySize*keyOversamplingFactor, valueSize*valueOversamplingFactor), format);
26751 else if (keyAxis->orientation() == Qt::Vertical && (mMapImage.width() != valueSize*valueOversamplingFactor || mMapImage.height() != keySize*keyOversamplingFactor))
26752 mMapImage = QImage(QSize(valueSize*valueOversamplingFactor, keySize*keyOversamplingFactor), format);
26753
26754 if (mMapImage.isNull())
26755 {
26756 qDebug() << Q_FUNC_INFO << "Couldn't create map image (possibly too large for memory)";
26757 mMapImage = QImage(QSize(10, 10), format);
26758 mMapImage.fill(Qt::black);
26759 } else
26760 {
26761 QImage *localMapImage = &mMapImage; // this is the image on which the colorization operates. Either the final mMapImage, or if we need oversampling, mUndersampledMapImage
26763 {
26764 // resize undersampled map image to actual key/value cell sizes:
26765 if (keyAxis->orientation() == Qt::Horizontal && (mUndersampledMapImage.width() != keySize || mUndersampledMapImage.height() != valueSize))
26766 mUndersampledMapImage = QImage(QSize(keySize, valueSize), format);
26767 else if (keyAxis->orientation() == Qt::Vertical && (mUndersampledMapImage.width() != valueSize || mUndersampledMapImage.height() != keySize))
26768 mUndersampledMapImage = QImage(QSize(valueSize, keySize), format);
26769 localMapImage = &mUndersampledMapImage; // make the colorization run on the undersampled image
26770 } else if (!mUndersampledMapImage.isNull())
26771 mUndersampledMapImage = QImage(); // don't need oversampling mechanism anymore (map size has changed) but mUndersampledMapImage still has nonzero size, free it
26772
26773 const double *rawData = mMapData->mData;
26774 const unsigned char *rawAlpha = mMapData->mAlpha;
26775 if (keyAxis->orientation() == Qt::Horizontal)
26776 {
26777 const int lineCount = valueSize;
26778 const int rowCount = keySize;
26779 for (int line=0; line<lineCount; ++line)
26780 {
26781 QRgb* pixels = reinterpret_cast<QRgb*>(localMapImage->scanLine(lineCount-1-line)); // invert scanline index because QImage counts scanlines from top, but our vertical index counts from bottom (mathematical coordinate system)
26782 if (rawAlpha)
26783 mGradient.colorize(rawData+line*rowCount, rawAlpha+line*rowCount, mDataRange, pixels, rowCount, 1, mDataScaleType==QCPAxis::stLogarithmic);
26784 else
26785 mGradient.colorize(rawData+line*rowCount, mDataRange, pixels, rowCount, 1, mDataScaleType==QCPAxis::stLogarithmic);
26786 }
26787 } else // keyAxis->orientation() == Qt::Vertical
26788 {
26789 const int lineCount = keySize;
26790 const int rowCount = valueSize;
26791 for (int line=0; line<lineCount; ++line)
26792 {
26793 QRgb* pixels = reinterpret_cast<QRgb*>(localMapImage->scanLine(lineCount-1-line)); // invert scanline index because QImage counts scanlines from top, but our vertical index counts from bottom (mathematical coordinate system)
26794 if (rawAlpha)
26795 mGradient.colorize(rawData+line, rawAlpha+line, mDataRange, pixels, rowCount, lineCount, mDataScaleType==QCPAxis::stLogarithmic);
26796 else
26797 mGradient.colorize(rawData+line, mDataRange, pixels, rowCount, lineCount, mDataScaleType==QCPAxis::stLogarithmic);
26798 }
26799 }
26800
26802 {
26803 if (keyAxis->orientation() == Qt::Horizontal)
26804 mMapImage = mUndersampledMapImage.scaled(keySize*keyOversamplingFactor, valueSize*valueOversamplingFactor, Qt::IgnoreAspectRatio, Qt::FastTransformation);
26805 else
26806 mMapImage = mUndersampledMapImage.scaled(valueSize*valueOversamplingFactor, keySize*keyOversamplingFactor, Qt::IgnoreAspectRatio, Qt::FastTransformation);
26807 }
26808 }
26809 mMapData->mDataModified = false;
26810 mMapImageInvalidated = false;
26811}
26812
26813/* inherits documentation from base class */
26815{
26816 if (mMapData->isEmpty()) return;
26817 if (!mKeyAxis || !mValueAxis) return;
26819
26820 if (mMapData->mDataModified || mMapImageInvalidated)
26822
26823 // use buffer if painting vectorized (PDF):
26824 const bool useBuffer = painter->modes().testFlag(QCPPainter::pmVectorized);
26825 QCPPainter *localPainter = painter; // will be redirected to paint on mapBuffer if painting vectorized
26826 QRectF mapBufferTarget; // the rect in absolute widget coordinates where the visible map portion/buffer will end up in
26828 if (useBuffer)
26829 {
26830 const double mapBufferPixelRatio = 3; // factor by which DPI is increased in embedded bitmaps
26836 localPainter->translate(-mapBufferTarget.topLeft());
26837 }
26838
26839 QRectF imageRect = QRectF(coordsToPixels(mMapData->keyRange().lower, mMapData->valueRange().lower),
26840 coordsToPixels(mMapData->keyRange().upper, mMapData->valueRange().upper)).normalized();
26841 // extend imageRect to contain outer halves/quarters of bordering/cornering pixels (cells are centered on map range boundary):
26842 double halfCellWidth = 0; // in pixels
26843 double halfCellHeight = 0; // in pixels
26844 if (keyAxis()->orientation() == Qt::Horizontal)
26845 {
26846 if (mMapData->keySize() > 1)
26847 halfCellWidth = 0.5*imageRect.width()/double(mMapData->keySize()-1);
26848 if (mMapData->valueSize() > 1)
26849 halfCellHeight = 0.5*imageRect.height()/double(mMapData->valueSize()-1);
26850 } else // keyAxis orientation is Qt::Vertical
26851 {
26852 if (mMapData->keySize() > 1)
26853 halfCellHeight = 0.5*imageRect.height()/double(mMapData->keySize()-1);
26854 if (mMapData->valueSize() > 1)
26855 halfCellWidth = 0.5*imageRect.width()/double(mMapData->valueSize()-1);
26856 }
26858 const bool mirrorX = (keyAxis()->orientation() == Qt::Horizontal ? keyAxis() : valueAxis())->rangeReversed();
26859 const bool mirrorY = (valueAxis()->orientation() == Qt::Vertical ? valueAxis() : keyAxis())->rangeReversed();
26861 localPainter->setRenderHint(QPainter::SmoothPixmapTransform, mInterpolate);
26863 if (mTightBoundary)
26864 {
26865 clipBackup = localPainter->clipRegion();
26866 QRectF tightClipRect = QRectF(coordsToPixels(mMapData->keyRange().lower, mMapData->valueRange().lower),
26867 coordsToPixels(mMapData->keyRange().upper, mMapData->valueRange().upper)).normalized();
26869 }
26870 localPainter->drawImage(imageRect, mMapImage.mirrored(mirrorX, mirrorY));
26871 if (mTightBoundary)
26872 localPainter->setClipRegion(clipBackup);
26874
26875 if (useBuffer) // localPainter painted to mapBuffer, so now draw buffer with original painter
26876 {
26877 delete localPainter;
26878 painter->drawPixmap(mapBufferTarget.toRect(), mapBuffer);
26879 }
26880}
26881
26882/* inherits documentation from base class */
26883void QCPColorMap::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
26884{
26886 // draw map thumbnail:
26887 if (!mLegendIcon.isNull())
26888 {
26890 QRectF iconRect = QRectF(0, 0, scaledIcon.width(), scaledIcon.height());
26891 iconRect.moveCenter(rect.center());
26892 painter->drawPixmap(iconRect.topLeft(), scaledIcon);
26893 }
26894 /*
26895 // draw frame:
26896 painter->setBrush(Qt::NoBrush);
26897 painter->setPen(Qt::black);
26898 painter->drawRect(rect.adjusted(1, 1, 0, 0));
26899 */
26900}
26901/* end of 'src/plottables/plottable-colormap.cpp' */
26902
26903
26904/* including file 'src/plottables/plottable-financial.cpp' */
26905/* modified 2021-03-29T02:30:44, size 42914 */
26906
26907////////////////////////////////////////////////////////////////////////////////////////////////////
26908//////////////////// QCPFinancialData
26909////////////////////////////////////////////////////////////////////////////////////////////////////
26910
26911/*! \class QCPFinancialData
26912 \brief Holds the data of one single data point for QCPFinancial.
26913
26914 The stored data is:
26915 \li \a key: coordinate on the key axis of this data point (this is the \a mainKey and the \a sortKey)
26916 \li \a open: The opening value at the data point (this is the \a mainValue)
26917 \li \a high: The high/maximum value at the data point
26918 \li \a low: The low/minimum value at the data point
26919 \li \a close: The closing value at the data point
26920
26921 The container for storing multiple data points is \ref QCPFinancialDataContainer. It is a typedef
26922 for \ref QCPDataContainer with \ref QCPFinancialData as the DataType template parameter. See the
26923 documentation there for an explanation regarding the data type's generic methods.
26924
26925 \see QCPFinancialDataContainer
26926*/
26927
26928/* start documentation of inline functions */
26929
26930/*! \fn double QCPFinancialData::sortKey() const
26931
26932 Returns the \a key member of this data point.
26933
26934 For a general explanation of what this method is good for in the context of the data container,
26935 see the documentation of \ref QCPDataContainer.
26936*/
26937
26938/*! \fn static QCPFinancialData QCPFinancialData::fromSortKey(double sortKey)
26939
26940 Returns a data point with the specified \a sortKey. All other members are set to zero.
26941
26942 For a general explanation of what this method is good for in the context of the data container,
26943 see the documentation of \ref QCPDataContainer.
26944*/
26945
26946/*! \fn static static bool QCPFinancialData::sortKeyIsMainKey()
26947
26948 Since the member \a key is both the data point key coordinate and the data ordering parameter,
26949 this method returns true.
26950
26951 For a general explanation of what this method is good for in the context of the data container,
26952 see the documentation of \ref QCPDataContainer.
26953*/
26954
26955/*! \fn double QCPFinancialData::mainKey() const
26956
26957 Returns the \a key member of this data point.
26958
26959 For a general explanation of what this method is good for in the context of the data container,
26960 see the documentation of \ref QCPDataContainer.
26961*/
26962
26963/*! \fn double QCPFinancialData::mainValue() const
26964
26965 Returns the \a open member of this data point.
26966
26967 For a general explanation of what this method is good for in the context of the data container,
26968 see the documentation of \ref QCPDataContainer.
26969*/
26970
26971/*! \fn QCPRange QCPFinancialData::valueRange() const
26972
26973 Returns a QCPRange spanning from the \a low to the \a high value of this data point.
26974
26975 For a general explanation of what this method is good for in the context of the data container,
26976 see the documentation of \ref QCPDataContainer.
26977*/
26978
26979/* end documentation of inline functions */
26980
26981/*!
26982 Constructs a data point with key and all values set to zero.
26983*/
26985 key(0),
26986 open(0),
26987 high(0),
26988 low(0),
26989 close(0)
26990{
26991}
26992
26993/*!
26994 Constructs a data point with the specified \a key and OHLC values.
26995*/
26996QCPFinancialData::QCPFinancialData(double key, double open, double high, double low, double close) :
26997 key(key),
26998 open(open),
26999 high(high),
27000 low(low),
27001 close(close)
27002{
27003}
27004
27005
27006////////////////////////////////////////////////////////////////////////////////////////////////////
27007//////////////////// QCPFinancial
27008////////////////////////////////////////////////////////////////////////////////////////////////////
27009
27010/*! \class QCPFinancial
27011 \brief A plottable representing a financial stock chart
27012
27013 \image html QCPFinancial.png
27014
27015 This plottable represents time series data binned to certain intervals, mainly used for stock
27016 charts. The two common representations OHLC (Open-High-Low-Close) bars and Candlesticks can be
27017 set via \ref setChartStyle.
27018
27019 The data is passed via \ref setData as a set of open/high/low/close values at certain keys
27020 (typically times). This means the data must be already binned appropriately. If data is only
27021 available as a series of values (e.g. \a price against \a time), you can use the static
27022 convenience function \ref timeSeriesToOhlc to generate binned OHLC-data which can then be passed
27023 to \ref setData.
27024
27025 The width of the OHLC bars/candlesticks can be controlled with \ref setWidth and \ref
27026 setWidthType. A typical choice is to set the width type to \ref wtPlotCoords (the default) and
27027 the width to (or slightly less than) one time bin interval width.
27028
27029 \section qcpfinancial-appearance Changing the appearance
27030
27031 Charts can be either single- or two-colored (\ref setTwoColored). If set to be single-colored,
27032 lines are drawn with the plottable's pen (\ref setPen) and fills with the brush (\ref setBrush).
27033
27034 If set to two-colored, positive changes of the value during an interval (\a close >= \a open) are
27035 represented with a different pen and brush than negative changes (\a close < \a open). These can
27036 be configured with \ref setPenPositive, \ref setPenNegative, \ref setBrushPositive, and \ref
27037 setBrushNegative. In two-colored mode, the normal plottable pen/brush is ignored. Upon selection
27038 however, the normal selected pen/brush (provided by the \ref selectionDecorator) is used,
27039 irrespective of whether the chart is single- or two-colored.
27040
27041 \section qcpfinancial-usage Usage
27042
27043 Like all data representing objects in QCustomPlot, the QCPFinancial is a plottable
27044 (QCPAbstractPlottable). So the plottable-interface of QCustomPlot applies
27045 (QCustomPlot::plottable, QCustomPlot::removePlottable, etc.)
27046
27047 Usually, you first create an instance:
27048
27049 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpfinancial-creation-1
27050 which registers it with the QCustomPlot instance of the passed axes. Note that this QCustomPlot
27051 instance takes ownership of the plottable, so do not delete it manually but use
27052 QCustomPlot::removePlottable() instead. The newly created plottable can be modified, e.g.:
27053
27054 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpfinancial-creation-2
27055 Here we have used the static helper method \ref timeSeriesToOhlc, to turn a time-price data
27056 series into a 24-hour binned open-high-low-close data series as QCPFinancial uses.
27057*/
27058
27059/* start of documentation of inline functions */
27060
27061/*! \fn QCPFinancialDataContainer *QCPFinancial::data() const
27062
27063 Returns a pointer to the internal data storage of type \ref QCPFinancialDataContainer. You may
27064 use it to directly manipulate the data, which may be more convenient and faster than using the
27065 regular \ref setData or \ref addData methods, in certain situations.
27066*/
27067
27068/* end of documentation of inline functions */
27069
27070/*!
27071 Constructs a financial chart which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
27072 axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
27073 the same orientation. If either of these restrictions is violated, a corresponding message is
27074 printed to the debug output (qDebug), the construction is not aborted, though.
27075
27076 The created QCPFinancial is automatically registered with the QCustomPlot instance inferred from \a
27077 keyAxis. This QCustomPlot instance takes ownership of the QCPFinancial, so do not delete it manually
27078 but use QCustomPlot::removePlottable() instead.
27079*/
27081 QCPAbstractPlottable1D<QCPFinancialData>(keyAxis, valueAxis),
27082 mChartStyle(csCandlestick),
27083 mWidth(0.5),
27084 mWidthType(wtPlotCoords),
27085 mTwoColored(true),
27086 mBrushPositive(QBrush(QColor(50, 160, 0))),
27087 mBrushNegative(QBrush(QColor(180, 0, 15))),
27088 mPenPositive(QPen(QColor(40, 150, 0))),
27089 mPenNegative(QPen(QColor(170, 5, 5)))
27090{
27091 mSelectionDecorator->setBrush(QBrush(QColor(160, 160, 255)));
27092}
27093
27094QCPFinancial::~QCPFinancial()
27095{
27096}
27097
27098/*! \overload
27099
27100 Replaces the current data container with the provided \a data container.
27101
27102 Since a QSharedPointer is used, multiple QCPFinancials may share the same data container safely.
27103 Modifying the data in the container will then affect all financials that share the container.
27104 Sharing can be achieved by simply exchanging the data containers wrapped in shared pointers:
27105 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpfinancial-datasharing-1
27106
27107 If you do not wish to share containers, but create a copy from an existing container, rather use
27108 the \ref QCPDataContainer<DataType>::set method on the financial's data container directly:
27109 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpfinancial-datasharing-2
27110
27111 \see addData, timeSeriesToOhlc
27112*/
27114{
27115 mDataContainer = data;
27116}
27117
27118/*! \overload
27119
27120 Replaces the current data with the provided points in \a keys, \a open, \a high, \a low and \a
27121 close. The provided vectors should have equal length. Else, the number of added points will be
27122 the size of the smallest vector.
27123
27124 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
27125 can set \a alreadySorted to true, to improve performance by saving a sorting run.
27126
27127 \see addData, timeSeriesToOhlc
27128*/
27129void QCPFinancial::setData(const QVector<double> &keys, const QVector<double> &open, const QVector<double> &high, const QVector<double> &low, const QVector<double> &close, bool alreadySorted)
27130{
27131 mDataContainer->clear();
27132 addData(keys, open, high, low, close, alreadySorted);
27133}
27134
27135/*!
27136 Sets which representation style shall be used to display the OHLC data.
27137*/
27139{
27140 mChartStyle = style;
27141}
27142
27143/*!
27144 Sets the width of the individual bars/candlesticks to \a width in plot key coordinates.
27145
27146 A typical choice is to set it to (or slightly less than) one bin interval width.
27147*/
27148void QCPFinancial::setWidth(double width)
27149{
27150 mWidth = width;
27151}
27152
27153/*!
27154 Sets how the width of the financial bars is defined. See the documentation of \ref WidthType for
27155 an explanation of the possible values for \a widthType.
27156
27157 The default value is \ref wtPlotCoords.
27158
27159 \see setWidth
27160*/
27162{
27163 mWidthType = widthType;
27164}
27165
27166/*!
27167 Sets whether this chart shall contrast positive from negative trends per data point by using two
27168 separate colors to draw the respective bars/candlesticks.
27169
27170 If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
27171 setBrush).
27172
27173 \see setPenPositive, setPenNegative, setBrushPositive, setBrushNegative
27174*/
27175void QCPFinancial::setTwoColored(bool twoColored)
27176{
27177 mTwoColored = twoColored;
27178}
27179
27180/*!
27181 If \ref setTwoColored is set to true, this function controls the brush that is used to draw fills
27182 of data points with a positive trend (i.e. bars/candlesticks with close >= open).
27183
27184 If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
27185 setBrush).
27186
27187 \see setBrushNegative, setPenPositive, setPenNegative
27188*/
27190{
27191 mBrushPositive = brush;
27192}
27193
27194/*!
27195 If \ref setTwoColored is set to true, this function controls the brush that is used to draw fills
27196 of data points with a negative trend (i.e. bars/candlesticks with close < open).
27197
27198 If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
27199 setBrush).
27200
27201 \see setBrushPositive, setPenNegative, setPenPositive
27202*/
27204{
27205 mBrushNegative = brush;
27206}
27207
27208/*!
27209 If \ref setTwoColored is set to true, this function controls the pen that is used to draw
27210 outlines of data points with a positive trend (i.e. bars/candlesticks with close >= open).
27211
27212 If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
27213 setBrush).
27214
27215 \see setPenNegative, setBrushPositive, setBrushNegative
27216*/
27218{
27219 mPenPositive = pen;
27220}
27221
27222/*!
27223 If \ref setTwoColored is set to true, this function controls the pen that is used to draw
27224 outlines of data points with a negative trend (i.e. bars/candlesticks with close < open).
27225
27226 If \a twoColored is false, the normal plottable's pen and brush are used (\ref setPen, \ref
27227 setBrush).
27228
27229 \see setPenPositive, setBrushNegative, setBrushPositive
27230*/
27232{
27233 mPenNegative = pen;
27234}
27235
27236/*! \overload
27237
27238 Adds the provided points in \a keys, \a open, \a high, \a low and \a close to the current data.
27239 The provided vectors should have equal length. Else, the number of added points will be the size
27240 of the smallest vector.
27241
27242 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
27243 can set \a alreadySorted to true, to improve performance by saving a sorting run.
27244
27245 Alternatively, you can also access and modify the data directly via the \ref data method, which
27246 returns a pointer to the internal data container.
27247
27248 \see timeSeriesToOhlc
27249*/
27250void QCPFinancial::addData(const QVector<double> &keys, const QVector<double> &open, const QVector<double> &high, const QVector<double> &low, const QVector<double> &close, bool alreadySorted)
27251{
27252 if (keys.size() != open.size() || open.size() != high.size() || high.size() != low.size() || low.size() != close.size() || close.size() != keys.size())
27253 qDebug() << Q_FUNC_INFO << "keys, open, high, low, close have different sizes:" << keys.size() << open.size() << high.size() << low.size() << close.size();
27254 const int n = qMin(keys.size(), qMin(open.size(), qMin(high.size(), qMin(low.size(), close.size()))));
27258 int i = 0;
27259 while (it != itEnd)
27260 {
27261 it->key = keys[i];
27262 it->open = open[i];
27263 it->high = high[i];
27264 it->low = low[i];
27265 it->close = close[i];
27266 ++it;
27267 ++i;
27268 }
27269 mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
27270}
27271
27272/*! \overload
27273
27274 Adds the provided data point as \a key, \a open, \a high, \a low and \a close to the current
27275 data.
27276
27277 Alternatively, you can also access and modify the data directly via the \ref data method, which
27278 returns a pointer to the internal data container.
27279
27280 \see timeSeriesToOhlc
27281*/
27282void QCPFinancial::addData(double key, double open, double high, double low, double close)
27283{
27284 mDataContainer->add(QCPFinancialData(key, open, high, low, close));
27285}
27286
27287/*!
27288 \copydoc QCPPlottableInterface1D::selectTestRect
27289*/
27291{
27292 QCPDataSelection result;
27293 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
27294 return result;
27295 if (!mKeyAxis || !mValueAxis)
27296 return result;
27297
27298 QCPFinancialDataContainer::const_iterator visibleBegin, visibleEnd;
27300
27301 for (QCPFinancialDataContainer::const_iterator it=visibleBegin; it!=visibleEnd; ++it)
27302 {
27303 if (rect.intersects(selectionHitBox(it)))
27304 result.addDataRange(QCPDataRange(int(it-mDataContainer->constBegin()), int(it-mDataContainer->constBegin()+1)), false);
27305 }
27306 result.simplify();
27307 return result;
27308}
27309
27310/*!
27311 Implements a selectTest specific to this plottable's point geometry.
27312
27313 If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
27314 point to \a pos.
27315
27316 \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
27317*/
27318double QCPFinancial::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
27319{
27320 Q_UNUSED(details)
27321 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
27322 return -1;
27323 if (!mKeyAxis || !mValueAxis)
27324 return -1;
27325
27326 if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()) || mParentPlot->interactions().testFlag(QCP::iSelectPlottablesBeyondAxisRect))
27327 {
27328 // get visible data range:
27329 QCPFinancialDataContainer::const_iterator visibleBegin, visibleEnd;
27330 QCPFinancialDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
27332 // perform select test according to configured style:
27333 double result = -1;
27334 switch (mChartStyle)
27335 {
27340 }
27341 if (details)
27342 {
27343 int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
27344 details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
27345 }
27346 return result;
27347 }
27348
27349 return -1;
27350}
27351
27352/* inherits documentation from base class */
27354{
27355 QCPRange range = mDataContainer->keyRange(foundRange, inSignDomain);
27356 // determine exact range by including width of bars/flags:
27357 if (foundRange)
27358 {
27359 if (inSignDomain != QCP::sdPositive || range.lower-mWidth*0.5 > 0)
27360 range.lower -= mWidth*0.5;
27361 if (inSignDomain != QCP::sdNegative || range.upper+mWidth*0.5 < 0)
27362 range.upper += mWidth*0.5;
27363 }
27364 return range;
27365}
27366
27367/* inherits documentation from base class */
27369{
27370 return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
27371}
27372
27373/*!
27374 A convenience function that converts time series data (\a value against \a time) to OHLC binned
27375 data points. The return value can then be passed on to \ref QCPFinancialDataContainer::set(const
27376 QCPFinancialDataContainer&).
27377
27378 The size of the bins can be controlled with \a timeBinSize in the same units as \a time is given.
27379 For example, if the unit of \a time is seconds and single OHLC/Candlesticks should span an hour
27380 each, set \a timeBinSize to 3600.
27381
27382 \a timeBinOffset allows to control precisely at what \a time coordinate a bin should start. The
27383 value passed as \a timeBinOffset doesn't need to be in the range encompassed by the \a time keys.
27384 It merely defines the mathematical offset/phase of the bins that will be used to process the
27385 data.
27386*/
27388{
27390 int count = qMin(time.size(), value.size());
27391 if (count == 0)
27393
27394 QCPFinancialData currentBinData(0, value.first(), value.first(), value.first(), value.first());
27395 int currentBinIndex = qFloor((time.first()-timeBinOffset)/timeBinSize+0.5);
27396 for (int i=0; i<count; ++i)
27397 {
27398 int index = qFloor((time.at(i)-timeBinOffset)/timeBinSize+0.5);
27399 if (currentBinIndex == index) // data point still in current bin, extend high/low:
27400 {
27401 if (value.at(i) < currentBinData.low) currentBinData.low = value.at(i);
27402 if (value.at(i) > currentBinData.high) currentBinData.high = value.at(i);
27403 if (i == count-1) // last data point is in current bin, finalize bin:
27404 {
27405 currentBinData.close = value.at(i);
27407 data.add(currentBinData);
27408 }
27409 } else // data point not anymore in current bin, set close of old and open of new bin, and add old to map:
27410 {
27411 // finalize current bin:
27412 currentBinData.close = value.at(i-1);
27414 data.add(currentBinData);
27415 // start next bin:
27416 currentBinIndex = index;
27417 currentBinData.open = value.at(i);
27418 currentBinData.high = value.at(i);
27419 currentBinData.low = value.at(i);
27420 }
27421 }
27422
27423 return data;
27424}
27425
27426/* inherits documentation from base class */
27428{
27429 // get visible data range:
27430 QCPFinancialDataContainer::const_iterator visibleBegin, visibleEnd;
27432
27433 // loop over and draw segments of unselected/selected data:
27437 for (int i=0; i<allSegments.size(); ++i)
27438 {
27439 bool isSelectedSegment = i >= unselectedSegments.size();
27440 QCPFinancialDataContainer::const_iterator begin = visibleBegin;
27441 QCPFinancialDataContainer::const_iterator end = visibleEnd;
27442 mDataContainer->limitIteratorsToDataRange(begin, end, allSegments.at(i));
27443 if (begin == end)
27444 continue;
27445
27446 // draw data segment according to configured style:
27447 switch (mChartStyle)
27448 {
27450 drawOhlcPlot(painter, begin, end, isSelectedSegment); break;
27452 drawCandlestickPlot(painter, begin, end, isSelectedSegment); break;
27453 }
27454 }
27455
27456 // draw other selection decoration that isn't just line/scatter pens and brushes:
27457 if (mSelectionDecorator)
27458 mSelectionDecorator->drawDecoration(painter, selection());
27459}
27460
27461/* inherits documentation from base class */
27462void QCPFinancial::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
27463{
27464 painter->setAntialiasing(false); // legend icon especially of csCandlestick looks better without antialiasing
27465 if (mChartStyle == csOhlc)
27466 {
27467 if (mTwoColored)
27468 {
27469 // draw upper left half icon with positive color:
27470 painter->setBrush(mBrushPositive);
27471 painter->setPen(mPenPositive);
27472 painter->setClipRegion(QRegion(QPolygon() << rect.bottomLeft().toPoint() << rect.topRight().toPoint() << rect.topLeft().toPoint()));
27473 painter->drawLine(QLineF(0, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
27474 painter->drawLine(QLineF(rect.width()*0.2, rect.height()*0.3, rect.width()*0.2, rect.height()*0.5).translated(rect.topLeft()));
27475 painter->drawLine(QLineF(rect.width()*0.8, rect.height()*0.5, rect.width()*0.8, rect.height()*0.7).translated(rect.topLeft()));
27476 // draw bottom right half icon with negative color:
27477 painter->setBrush(mBrushNegative);
27478 painter->setPen(mPenNegative);
27479 painter->setClipRegion(QRegion(QPolygon() << rect.bottomLeft().toPoint() << rect.topRight().toPoint() << rect.bottomRight().toPoint()));
27480 painter->drawLine(QLineF(0, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
27481 painter->drawLine(QLineF(rect.width()*0.2, rect.height()*0.3, rect.width()*0.2, rect.height()*0.5).translated(rect.topLeft()));
27482 painter->drawLine(QLineF(rect.width()*0.8, rect.height()*0.5, rect.width()*0.8, rect.height()*0.7).translated(rect.topLeft()));
27483 } else
27484 {
27485 painter->setBrush(mBrush);
27486 painter->setPen(mPen);
27487 painter->drawLine(QLineF(0, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
27488 painter->drawLine(QLineF(rect.width()*0.2, rect.height()*0.3, rect.width()*0.2, rect.height()*0.5).translated(rect.topLeft()));
27489 painter->drawLine(QLineF(rect.width()*0.8, rect.height()*0.5, rect.width()*0.8, rect.height()*0.7).translated(rect.topLeft()));
27490 }
27491 } else if (mChartStyle == csCandlestick)
27492 {
27493 if (mTwoColored)
27494 {
27495 // draw upper left half icon with positive color:
27496 painter->setBrush(mBrushPositive);
27497 painter->setPen(mPenPositive);
27498 painter->setClipRegion(QRegion(QPolygon() << rect.bottomLeft().toPoint() << rect.topRight().toPoint() << rect.topLeft().toPoint()));
27499 painter->drawLine(QLineF(0, rect.height()*0.5, rect.width()*0.25, rect.height()*0.5).translated(rect.topLeft()));
27500 painter->drawLine(QLineF(rect.width()*0.75, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
27501 painter->drawRect(QRectF(rect.width()*0.25, rect.height()*0.25, rect.width()*0.5, rect.height()*0.5).translated(rect.topLeft()));
27502 // draw bottom right half icon with negative color:
27503 painter->setBrush(mBrushNegative);
27504 painter->setPen(mPenNegative);
27505 painter->setClipRegion(QRegion(QPolygon() << rect.bottomLeft().toPoint() << rect.topRight().toPoint() << rect.bottomRight().toPoint()));
27506 painter->drawLine(QLineF(0, rect.height()*0.5, rect.width()*0.25, rect.height()*0.5).translated(rect.topLeft()));
27507 painter->drawLine(QLineF(rect.width()*0.75, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
27508 painter->drawRect(QRectF(rect.width()*0.25, rect.height()*0.25, rect.width()*0.5, rect.height()*0.5).translated(rect.topLeft()));
27509 } else
27510 {
27511 painter->setBrush(mBrush);
27512 painter->setPen(mPen);
27513 painter->drawLine(QLineF(0, rect.height()*0.5, rect.width()*0.25, rect.height()*0.5).translated(rect.topLeft()));
27514 painter->drawLine(QLineF(rect.width()*0.75, rect.height()*0.5, rect.width(), rect.height()*0.5).translated(rect.topLeft()));
27515 painter->drawRect(QRectF(rect.width()*0.25, rect.height()*0.25, rect.width()*0.5, rect.height()*0.5).translated(rect.topLeft()));
27516 }
27517 }
27518}
27519
27520/*! \internal
27521
27522 Draws the data from \a begin to \a end-1 as OHLC bars with the provided \a painter.
27523
27524 This method is a helper function for \ref draw. It is used when the chart style is \ref csOhlc.
27525*/
27526void QCPFinancial::drawOhlcPlot(QCPPainter *painter, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, bool isSelected)
27527{
27528 QCPAxis *keyAxis = mKeyAxis.data();
27529 QCPAxis *valueAxis = mValueAxis.data();
27530 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
27531
27532 if (keyAxis->orientation() == Qt::Horizontal)
27533 {
27534 for (QCPFinancialDataContainer::const_iterator it = begin; it != end; ++it)
27535 {
27536 if (isSelected && mSelectionDecorator)
27537 mSelectionDecorator->applyPen(painter);
27538 else if (mTwoColored)
27539 painter->setPen(it->close >= it->open ? mPenPositive : mPenNegative);
27540 else
27541 painter->setPen(mPen);
27542 double keyPixel = keyAxis->coordToPixel(it->key);
27543 double openPixel = valueAxis->coordToPixel(it->open);
27544 double closePixel = valueAxis->coordToPixel(it->close);
27545 // draw backbone:
27546 painter->drawLine(QPointF(keyPixel, valueAxis->coordToPixel(it->high)), QPointF(keyPixel, valueAxis->coordToPixel(it->low)));
27547 // draw open:
27548 double pixelWidth = getPixelWidth(it->key, keyPixel); // sign of this makes sure open/close are on correct sides
27550 // draw close:
27552 }
27553 } else
27554 {
27555 for (QCPFinancialDataContainer::const_iterator it = begin; it != end; ++it)
27556 {
27557 if (isSelected && mSelectionDecorator)
27558 mSelectionDecorator->applyPen(painter);
27559 else if (mTwoColored)
27560 painter->setPen(it->close >= it->open ? mPenPositive : mPenNegative);
27561 else
27562 painter->setPen(mPen);
27563 double keyPixel = keyAxis->coordToPixel(it->key);
27564 double openPixel = valueAxis->coordToPixel(it->open);
27565 double closePixel = valueAxis->coordToPixel(it->close);
27566 // draw backbone:
27567 painter->drawLine(QPointF(valueAxis->coordToPixel(it->high), keyPixel), QPointF(valueAxis->coordToPixel(it->low), keyPixel));
27568 // draw open:
27569 double pixelWidth = getPixelWidth(it->key, keyPixel); // sign of this makes sure open/close are on correct sides
27571 // draw close:
27573 }
27574 }
27575}
27576
27577/*! \internal
27578
27579 Draws the data from \a begin to \a end-1 as Candlesticks with the provided \a painter.
27580
27581 This method is a helper function for \ref draw. It is used when the chart style is \ref csCandlestick.
27582*/
27583void QCPFinancial::drawCandlestickPlot(QCPPainter *painter, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, bool isSelected)
27584{
27585 QCPAxis *keyAxis = mKeyAxis.data();
27586 QCPAxis *valueAxis = mValueAxis.data();
27587 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
27588
27589 if (keyAxis->orientation() == Qt::Horizontal)
27590 {
27591 for (QCPFinancialDataContainer::const_iterator it = begin; it != end; ++it)
27592 {
27593 if (isSelected && mSelectionDecorator)
27594 {
27595 mSelectionDecorator->applyPen(painter);
27596 mSelectionDecorator->applyBrush(painter);
27597 } else if (mTwoColored)
27598 {
27599 painter->setPen(it->close >= it->open ? mPenPositive : mPenNegative);
27600 painter->setBrush(it->close >= it->open ? mBrushPositive : mBrushNegative);
27601 } else
27602 {
27603 painter->setPen(mPen);
27604 painter->setBrush(mBrush);
27605 }
27606 double keyPixel = keyAxis->coordToPixel(it->key);
27607 double openPixel = valueAxis->coordToPixel(it->open);
27608 double closePixel = valueAxis->coordToPixel(it->close);
27609 // draw high:
27610 painter->drawLine(QPointF(keyPixel, valueAxis->coordToPixel(it->high)), QPointF(keyPixel, valueAxis->coordToPixel(qMax(it->open, it->close))));
27611 // draw low:
27612 painter->drawLine(QPointF(keyPixel, valueAxis->coordToPixel(it->low)), QPointF(keyPixel, valueAxis->coordToPixel(qMin(it->open, it->close))));
27613 // draw open-close box:
27614 double pixelWidth = getPixelWidth(it->key, keyPixel);
27616 }
27617 } else // keyAxis->orientation() == Qt::Vertical
27618 {
27619 for (QCPFinancialDataContainer::const_iterator it = begin; it != end; ++it)
27620 {
27621 if (isSelected && mSelectionDecorator)
27622 {
27623 mSelectionDecorator->applyPen(painter);
27624 mSelectionDecorator->applyBrush(painter);
27625 } else if (mTwoColored)
27626 {
27627 painter->setPen(it->close >= it->open ? mPenPositive : mPenNegative);
27628 painter->setBrush(it->close >= it->open ? mBrushPositive : mBrushNegative);
27629 } else
27630 {
27631 painter->setPen(mPen);
27632 painter->setBrush(mBrush);
27633 }
27634 double keyPixel = keyAxis->coordToPixel(it->key);
27635 double openPixel = valueAxis->coordToPixel(it->open);
27636 double closePixel = valueAxis->coordToPixel(it->close);
27637 // draw high:
27638 painter->drawLine(QPointF(valueAxis->coordToPixel(it->high), keyPixel), QPointF(valueAxis->coordToPixel(qMax(it->open, it->close)), keyPixel));
27639 // draw low:
27640 painter->drawLine(QPointF(valueAxis->coordToPixel(it->low), keyPixel), QPointF(valueAxis->coordToPixel(qMin(it->open, it->close)), keyPixel));
27641 // draw open-close box:
27642 double pixelWidth = getPixelWidth(it->key, keyPixel);
27644 }
27645 }
27646}
27647
27648/*! \internal
27649
27650 This function is used to determine the width of the bar at coordinate \a key, according to the
27651 specified width (\ref setWidth) and width type (\ref setWidthType). Provide the pixel position of
27652 \a key in \a keyPixel (because usually this was already calculated via \ref QCPAxis::coordToPixel
27653 when this function is called).
27654
27655 It returns the number of pixels the bar extends to higher keys, relative to the \a key
27656 coordinate. So with a non-reversed horizontal axis, the return value is positive. With a reversed
27657 horizontal axis, the return value is negative. This is important so the open/close flags on the
27658 \ref csOhlc bar are drawn to the correct side.
27659*/
27660double QCPFinancial::getPixelWidth(double key, double keyPixel) const
27661{
27662 double result = 0;
27663 switch (mWidthType)
27664 {
27665 case wtAbsolute:
27666 {
27667 if (mKeyAxis)
27668 result = mWidth*0.5*mKeyAxis.data()->pixelOrientation();
27669 break;
27670 }
27671 case wtAxisRectRatio:
27672 {
27673 if (mKeyAxis && mKeyAxis.data()->axisRect())
27674 {
27675 if (mKeyAxis.data()->orientation() == Qt::Horizontal)
27676 result = mKeyAxis.data()->axisRect()->width()*mWidth*0.5*mKeyAxis.data()->pixelOrientation();
27677 else
27678 result = mKeyAxis.data()->axisRect()->height()*mWidth*0.5*mKeyAxis.data()->pixelOrientation();
27679 } else
27680 qDebug() << Q_FUNC_INFO << "No key axis or axis rect defined";
27681 break;
27682 }
27683 case wtPlotCoords:
27684 {
27685 if (mKeyAxis)
27686 result = mKeyAxis.data()->coordToPixel(key+mWidth*0.5)-keyPixel;
27687 else
27688 qDebug() << Q_FUNC_INFO << "No key axis defined";
27689 break;
27690 }
27691 }
27692 return result;
27693}
27694
27695/*! \internal
27696
27697 This method is a helper function for \ref selectTest. It is used to test for selection when the
27698 chart style is \ref csOhlc. It only tests against the data points between \a begin and \a end.
27699
27700 Like \ref selectTest, this method returns the shortest distance of \a pos to the graphical
27701 representation of the plottable, and \a closestDataPoint will point to the respective data point.
27702*/
27703double QCPFinancial::ohlcSelectTest(const QPointF &pos, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, QCPFinancialDataContainer::const_iterator &closestDataPoint) const
27704{
27705 closestDataPoint = mDataContainer->constEnd();
27706 QCPAxis *keyAxis = mKeyAxis.data();
27707 QCPAxis *valueAxis = mValueAxis.data();
27708 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return -1; }
27709
27710 double minDistSqr = (std::numeric_limits<double>::max)();
27711 if (keyAxis->orientation() == Qt::Horizontal)
27712 {
27713 for (QCPFinancialDataContainer::const_iterator it=begin; it!=end; ++it)
27714 {
27715 double keyPixel = keyAxis->coordToPixel(it->key);
27716 // calculate distance to backbone:
27719 {
27722 }
27723 }
27724 } else // keyAxis->orientation() == Qt::Vertical
27725 {
27726 for (QCPFinancialDataContainer::const_iterator it=begin; it!=end; ++it)
27727 {
27728 double keyPixel = keyAxis->coordToPixel(it->key);
27729 // calculate distance to backbone:
27732 {
27735 }
27736 }
27737 }
27738 return qSqrt(minDistSqr);
27739}
27740
27741/*! \internal
27742
27743 This method is a helper function for \ref selectTest. It is used to test for selection when the
27744 chart style is \ref csCandlestick. It only tests against the data points between \a begin and \a
27745 end.
27746
27747 Like \ref selectTest, this method returns the shortest distance of \a pos to the graphical
27748 representation of the plottable, and \a closestDataPoint will point to the respective data point.
27749*/
27750double QCPFinancial::candlestickSelectTest(const QPointF &pos, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, QCPFinancialDataContainer::const_iterator &closestDataPoint) const
27751{
27752 closestDataPoint = mDataContainer->constEnd();
27753 QCPAxis *keyAxis = mKeyAxis.data();
27754 QCPAxis *valueAxis = mValueAxis.data();
27755 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return -1; }
27756
27757 double minDistSqr = (std::numeric_limits<double>::max)();
27758 if (keyAxis->orientation() == Qt::Horizontal)
27759 {
27760 for (QCPFinancialDataContainer::const_iterator it=begin; it!=end; ++it)
27761 {
27762 double currentDistSqr;
27763 // determine whether pos is in open-close-box:
27764 QCPRange boxKeyRange(it->key-mWidth*0.5, it->key+mWidth*0.5);
27765 QCPRange boxValueRange(it->close, it->open);
27766 double posKey, posValue;
27768 if (boxKeyRange.contains(posKey) && boxValueRange.contains(posValue)) // is in open-close-box
27769 {
27770 currentDistSqr = mParentPlot->selectionTolerance()*0.99 * mParentPlot->selectionTolerance()*0.99;
27771 } else
27772 {
27773 // calculate distance to high/low lines:
27774 double keyPixel = keyAxis->coordToPixel(it->key);
27775 double highLineDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(keyPixel, valueAxis->coordToPixel(it->high)), QCPVector2D(keyPixel, valueAxis->coordToPixel(qMax(it->open, it->close))));
27776 double lowLineDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(keyPixel, valueAxis->coordToPixel(it->low)), QCPVector2D(keyPixel, valueAxis->coordToPixel(qMin(it->open, it->close))));
27778 }
27780 {
27783 }
27784 }
27785 } else // keyAxis->orientation() == Qt::Vertical
27786 {
27787 for (QCPFinancialDataContainer::const_iterator it=begin; it!=end; ++it)
27788 {
27789 double currentDistSqr;
27790 // determine whether pos is in open-close-box:
27791 QCPRange boxKeyRange(it->key-mWidth*0.5, it->key+mWidth*0.5);
27792 QCPRange boxValueRange(it->close, it->open);
27793 double posKey, posValue;
27795 if (boxKeyRange.contains(posKey) && boxValueRange.contains(posValue)) // is in open-close-box
27796 {
27797 currentDistSqr = mParentPlot->selectionTolerance()*0.99 * mParentPlot->selectionTolerance()*0.99;
27798 } else
27799 {
27800 // calculate distance to high/low lines:
27801 double keyPixel = keyAxis->coordToPixel(it->key);
27802 double highLineDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(valueAxis->coordToPixel(it->high), keyPixel), QCPVector2D(valueAxis->coordToPixel(qMax(it->open, it->close)), keyPixel));
27803 double lowLineDistSqr = QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(valueAxis->coordToPixel(it->low), keyPixel), QCPVector2D(valueAxis->coordToPixel(qMin(it->open, it->close)), keyPixel));
27805 }
27807 {
27810 }
27811 }
27812 }
27813 return qSqrt(minDistSqr);
27814}
27815
27816/*! \internal
27817
27818 called by the drawing methods to determine which data (key) range is visible at the current key
27819 axis range setting, so only that needs to be processed.
27820
27821 \a begin returns an iterator to the lowest data point that needs to be taken into account when
27822 plotting. Note that in order to get a clean plot all the way to the edge of the axis rect, \a
27823 begin may still be just outside the visible range.
27824
27825 \a end returns the iterator just above the highest data point that needs to be taken into
27826 account. Same as before, \a end may also lie just outside of the visible range
27827
27828 if the plottable contains no data, both \a begin and \a end point to \c constEnd.
27829*/
27830void QCPFinancial::getVisibleDataBounds(QCPFinancialDataContainer::const_iterator &begin, QCPFinancialDataContainer::const_iterator &end) const
27831{
27832 if (!mKeyAxis)
27833 {
27834 qDebug() << Q_FUNC_INFO << "invalid key axis";
27835 begin = mDataContainer->constEnd();
27836 end = mDataContainer->constEnd();
27837 return;
27838 }
27839 begin = mDataContainer->findBegin(mKeyAxis.data()->range().lower-mWidth*0.5); // subtract half width of ohlc/candlestick to include partially visible data points
27840 end = mDataContainer->findEnd(mKeyAxis.data()->range().upper+mWidth*0.5); // add half width of ohlc/candlestick to include partially visible data points
27841}
27842
27843/*! \internal
27844
27845 Returns the hit box in pixel coordinates that will be used for data selection with the selection
27846 rect (\ref selectTestRect), of the data point given by \a it.
27847*/
27848QRectF QCPFinancial::selectionHitBox(QCPFinancialDataContainer::const_iterator it) const
27849{
27850 QCPAxis *keyAxis = mKeyAxis.data();
27851 QCPAxis *valueAxis = mValueAxis.data();
27852 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return {}; }
27853
27854 double keyPixel = keyAxis->coordToPixel(it->key);
27855 double highPixel = valueAxis->coordToPixel(it->high);
27856 double lowPixel = valueAxis->coordToPixel(it->low);
27857 double keyWidthPixels = keyPixel-keyAxis->coordToPixel(it->key-mWidth*0.5);
27858 if (keyAxis->orientation() == Qt::Horizontal)
27860 else
27862}
27863/* end of 'src/plottables/plottable-financial.cpp' */
27864
27865
27866/* including file 'src/plottables/plottable-errorbar.cpp' */
27867/* modified 2021-03-29T02:30:44, size 37679 */
27868
27869////////////////////////////////////////////////////////////////////////////////////////////////////
27870//////////////////// QCPErrorBarsData
27871////////////////////////////////////////////////////////////////////////////////////////////////////
27872
27873/*! \class QCPErrorBarsData
27874 \brief Holds the data of one single error bar for QCPErrorBars.
27875
27876 The stored data is:
27877 \li \a errorMinus: how much the error bar extends towards negative coordinates from the data
27878 point position
27879 \li \a errorPlus: how much the error bar extends towards positive coordinates from the data point
27880 position
27881
27882 The container for storing the error bar information is \ref QCPErrorBarsDataContainer. It is a
27883 typedef for <tt>QVector<\ref QCPErrorBarsData></tt>.
27884
27885 \see QCPErrorBarsDataContainer
27886*/
27887
27888/*!
27889 Constructs an error bar with errors set to zero.
27890*/
27892 errorMinus(0),
27893 errorPlus(0)
27894{
27895}
27896
27897/*!
27898 Constructs an error bar with equal \a error in both negative and positive direction.
27899*/
27901 errorMinus(error),
27902 errorPlus(error)
27903{
27904}
27905
27906/*!
27907 Constructs an error bar with negative and positive errors set to \a errorMinus and \a errorPlus,
27908 respectively.
27909*/
27910QCPErrorBarsData::QCPErrorBarsData(double errorMinus, double errorPlus) :
27911 errorMinus(errorMinus),
27912 errorPlus(errorPlus)
27913{
27914}
27915
27916
27917////////////////////////////////////////////////////////////////////////////////////////////////////
27918//////////////////// QCPErrorBars
27919////////////////////////////////////////////////////////////////////////////////////////////////////
27920
27921/*! \class QCPErrorBars
27922 \brief A plottable that adds a set of error bars to other plottables.
27923
27924 \image html QCPErrorBars.png
27925
27926 The \ref QCPErrorBars plottable can be attached to other one-dimensional plottables (e.g. \ref
27927 QCPGraph, \ref QCPCurve, \ref QCPBars, etc.) and equips them with error bars.
27928
27929 Use \ref setDataPlottable to define for which plottable the \ref QCPErrorBars shall display the
27930 error bars. The orientation of the error bars can be controlled with \ref setErrorType.
27931
27932 By using \ref setData, you can supply the actual error data, either as symmetric error or
27933 plus/minus asymmetric errors. \ref QCPErrorBars only stores the error data. The absolute
27934 key/value position of each error bar will be adopted from the configured data plottable. The
27935 error data of the \ref QCPErrorBars are associated one-to-one via their index to the data points
27936 of the data plottable. You can directly access and manipulate the error bar data via \ref data.
27937
27938 Set either of the plus/minus errors to NaN (<tt>qQNaN()</tt> or
27939 <tt>std::numeric_limits<double>::quiet_NaN()</tt>) to not show the respective error bar on the data point at
27940 that index.
27941
27942 \section qcperrorbars-appearance Changing the appearance
27943
27944 The appearance of the error bars is defined by the pen (\ref setPen), and the width of the
27945 whiskers (\ref setWhiskerWidth). Further, the error bar backbones may leave a gap around the data
27946 point center to prevent that error bars are drawn too close to or even through scatter points.
27947 This gap size can be controlled via \ref setSymbolGap.
27948*/
27949
27950/* start of documentation of inline functions */
27951
27952/*! \fn QSharedPointer<QCPErrorBarsDataContainer> QCPErrorBars::data() const
27953
27954 Returns a shared pointer to the internal data storage of type \ref QCPErrorBarsDataContainer. You
27955 may use it to directly manipulate the error values, which may be more convenient and faster than
27956 using the regular \ref setData methods.
27957*/
27958
27959/* end of documentation of inline functions */
27960
27961/*!
27962 Constructs an error bars plottable which uses \a keyAxis as its key axis ("x") and \a valueAxis as its value
27963 axis ("y"). \a keyAxis and \a valueAxis must reside in the same QCustomPlot instance and not have
27964 the same orientation. If either of these restrictions is violated, a corresponding message is
27965 printed to the debug output (qDebug), the construction is not aborted, though.
27966
27967 It is also important that the \a keyAxis and \a valueAxis are the same for the error bars
27968 plottable and the data plottable that the error bars shall be drawn on (\ref setDataPlottable).
27969
27970 The created \ref QCPErrorBars is automatically registered with the QCustomPlot instance inferred
27971 from \a keyAxis. This QCustomPlot instance takes ownership of the \ref QCPErrorBars, so do not
27972 delete it manually but use \ref QCustomPlot::removePlottable() instead.
27973*/
27975 QCPAbstractPlottable(keyAxis, valueAxis),
27976 mDataContainer(new QVector<QCPErrorBarsData>),
27977 mErrorType(etValueError),
27978 mWhiskerWidth(9),
27979 mSymbolGap(10)
27980{
27981 setPen(QPen(Qt::black, 0));
27983}
27984
27985QCPErrorBars::~QCPErrorBars()
27986{
27987}
27988
27989/*! \overload
27990
27991 Replaces the current data container with the provided \a data container.
27992
27993 Since a QSharedPointer is used, multiple \ref QCPErrorBars instances may share the same data
27994 container safely. Modifying the data in the container will then affect all \ref QCPErrorBars
27995 instances that share the container. Sharing can be achieved by simply exchanging the data
27996 containers wrapped in shared pointers:
27997 \snippet documentation/doc-code-snippets/mainwindow.cpp qcperrorbars-datasharing-1
27998
27999 If you do not wish to share containers, but create a copy from an existing container, assign the
28000 data containers directly:
28001 \snippet documentation/doc-code-snippets/mainwindow.cpp qcperrorbars-datasharing-2
28002 (This uses different notation compared with other plottables, because the \ref QCPErrorBars
28003 uses a \c QVector<QCPErrorBarsData> as its data container, instead of a \ref QCPDataContainer.)
28004
28005 \see addData
28006*/
28008{
28009 mDataContainer = data;
28010}
28011
28012/*! \overload
28013
28014 Sets symmetrical error values as specified in \a error. The errors will be associated one-to-one
28015 by the data point index to the associated data plottable (\ref setDataPlottable).
28016
28017 You can directly access and manipulate the error bar data via \ref data.
28018
28019 \see addData
28020*/
28022{
28023 mDataContainer->clear();
28024 addData(error);
28025}
28026
28027/*! \overload
28028
28029 Sets asymmetrical errors as specified in \a errorMinus and \a errorPlus. The errors will be
28030 associated one-to-one by the data point index to the associated data plottable (\ref
28031 setDataPlottable).
28032
28033 You can directly access and manipulate the error bar data via \ref data.
28034
28035 \see addData
28036*/
28037void QCPErrorBars::setData(const QVector<double> &errorMinus, const QVector<double> &errorPlus)
28038{
28039 mDataContainer->clear();
28040 addData(errorMinus, errorPlus);
28041}
28042
28043/*!
28044 Sets the data plottable to which the error bars will be applied. The error values specified e.g.
28045 via \ref setData will be associated one-to-one by the data point index to the data points of \a
28046 plottable. This means that the error bars will adopt the key/value coordinates of the data point
28047 with the same index.
28048
28049 The passed \a plottable must be a one-dimensional plottable, i.e. it must implement the \ref
28050 QCPPlottableInterface1D. Further, it must not be a \ref QCPErrorBars instance itself. If either
28051 of these restrictions is violated, a corresponding qDebug output is generated, and the data
28052 plottable of this \ref QCPErrorBars instance is set to zero.
28053
28054 For proper display, care must also be taken that the key and value axes of the \a plottable match
28055 those configured for this \ref QCPErrorBars instance.
28056*/
28058{
28059 if (plottable && qobject_cast<QCPErrorBars*>(plottable))
28060 {
28061 mDataPlottable = nullptr;
28062 qDebug() << Q_FUNC_INFO << "can't set another QCPErrorBars instance as data plottable";
28063 return;
28064 }
28065 if (plottable && !plottable->interface1D())
28066 {
28067 mDataPlottable = nullptr;
28068 qDebug() << Q_FUNC_INFO << "passed plottable doesn't implement 1d interface, can't associate with QCPErrorBars";
28069 return;
28070 }
28071
28072 mDataPlottable = plottable;
28073}
28074
28075/*!
28076 Sets in which orientation the error bars shall appear on the data points. If your data needs both
28077 error dimensions, create two \ref QCPErrorBars with different \a type.
28078*/
28080{
28081 mErrorType = type;
28082}
28083
28084/*!
28085 Sets the width of the whiskers (the short bars at the end of the actual error bar backbones) to
28086 \a pixels.
28087*/
28089{
28090 mWhiskerWidth = pixels;
28091}
28092
28093/*!
28094 Sets the gap diameter around the data points that will be left out when drawing the error bar
28095 backbones. This gap prevents that error bars are drawn too close to or even through scatter
28096 points.
28097*/
28099{
28100 mSymbolGap = pixels;
28101}
28102
28103/*! \overload
28104
28105 Adds symmetrical error values as specified in \a error. The errors will be associated one-to-one
28106 by the data point index to the associated data plottable (\ref setDataPlottable).
28107
28108 You can directly access and manipulate the error bar data via \ref data.
28109
28110 \see setData
28111*/
28113{
28114 addData(error, error);
28115}
28116
28117/*! \overload
28118
28119 Adds asymmetrical errors as specified in \a errorMinus and \a errorPlus. The errors will be
28120 associated one-to-one by the data point index to the associated data plottable (\ref
28121 setDataPlottable).
28122
28123 You can directly access and manipulate the error bar data via \ref data.
28124
28125 \see setData
28126*/
28127void QCPErrorBars::addData(const QVector<double> &errorMinus, const QVector<double> &errorPlus)
28128{
28129 if (errorMinus.size() != errorPlus.size())
28130 qDebug() << Q_FUNC_INFO << "minus and plus error vectors have different sizes:" << errorMinus.size() << errorPlus.size();
28131 const int n = qMin(errorMinus.size(), errorPlus.size());
28132 mDataContainer->reserve(n);
28133 for (int i=0; i<n; ++i)
28134 mDataContainer->append(QCPErrorBarsData(errorMinus.at(i), errorPlus.at(i)));
28135}
28136
28137/*! \overload
28138
28139 Adds a single symmetrical error bar as specified in \a error. The errors will be associated
28140 one-to-one by the data point index to the associated data plottable (\ref setDataPlottable).
28141
28142 You can directly access and manipulate the error bar data via \ref data.
28143
28144 \see setData
28145*/
28146void QCPErrorBars::addData(double error)
28147{
28148 mDataContainer->append(QCPErrorBarsData(error));
28149}
28150
28151/*! \overload
28152
28153 Adds a single asymmetrical error bar as specified in \a errorMinus and \a errorPlus. The errors
28154 will be associated one-to-one by the data point index to the associated data plottable (\ref
28155 setDataPlottable).
28156
28157 You can directly access and manipulate the error bar data via \ref data.
28158
28159 \see setData
28160*/
28161void QCPErrorBars::addData(double errorMinus, double errorPlus)
28162{
28163 mDataContainer->append(QCPErrorBarsData(errorMinus, errorPlus));
28164}
28165
28166/* inherits documentation from base class */
28168{
28169 return mDataContainer->size();
28170}
28171
28172/* inherits documentation from base class */
28173double QCPErrorBars::dataMainKey(int index) const
28174{
28175 if (mDataPlottable)
28176 return mDataPlottable->interface1D()->dataMainKey(index);
28177 else
28178 qDebug() << Q_FUNC_INFO << "no data plottable set";
28179 return 0;
28180}
28181
28182/* inherits documentation from base class */
28183double QCPErrorBars::dataSortKey(int index) const
28184{
28185 if (mDataPlottable)
28186 return mDataPlottable->interface1D()->dataSortKey(index);
28187 else
28188 qDebug() << Q_FUNC_INFO << "no data plottable set";
28189 return 0;
28190}
28191
28192/* inherits documentation from base class */
28193double QCPErrorBars::dataMainValue(int index) const
28194{
28195 if (mDataPlottable)
28196 return mDataPlottable->interface1D()->dataMainValue(index);
28197 else
28198 qDebug() << Q_FUNC_INFO << "no data plottable set";
28199 return 0;
28200}
28201
28202/* inherits documentation from base class */
28204{
28205 if (mDataPlottable)
28206 {
28207 const double value = mDataPlottable->interface1D()->dataMainValue(index);
28208 if (index >= 0 && index < mDataContainer->size() && mErrorType == etValueError)
28209 return {value-mDataContainer->at(index).errorMinus, value+mDataContainer->at(index).errorPlus};
28210 else
28211 return {value, value};
28212 } else
28213 {
28214 qDebug() << Q_FUNC_INFO << "no data plottable set";
28215 return {};
28216 }
28217}
28218
28219/* inherits documentation from base class */
28221{
28222 if (mDataPlottable)
28223 return mDataPlottable->interface1D()->dataPixelPosition(index);
28224 else
28225 qDebug() << Q_FUNC_INFO << "no data plottable set";
28226 return {};
28227}
28228
28229/* inherits documentation from base class */
28231{
28232 if (mDataPlottable)
28233 {
28234 return mDataPlottable->interface1D()->sortKeyIsMainKey();
28235 } else
28236 {
28237 qDebug() << Q_FUNC_INFO << "no data plottable set";
28238 return true;
28239 }
28240}
28241
28242/*!
28243 \copydoc QCPPlottableInterface1D::selectTestRect
28244*/
28246{
28247 QCPDataSelection result;
28248 if (!mDataPlottable)
28249 return result;
28250 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
28251 return result;
28252 if (!mKeyAxis || !mValueAxis)
28253 return result;
28254
28257
28260 {
28261 backbones.clear();
28262 whiskers.clear();
28264 foreach (const QLineF &backbone, backbones)
28265 {
28266 if (rectIntersectsLine(rect, backbone))
28267 {
28268 result.addDataRange(QCPDataRange(int(it-mDataContainer->constBegin()), int(it-mDataContainer->constBegin()+1)), false);
28269 break;
28270 }
28271 }
28272 }
28273 result.simplify();
28274 return result;
28275}
28276
28277/* inherits documentation from base class */
28278int QCPErrorBars::findBegin(double sortKey, bool expandedRange) const
28279{
28280 if (mDataPlottable)
28281 {
28282 if (mDataContainer->isEmpty())
28283 return 0;
28284 int beginIndex = mDataPlottable->interface1D()->findBegin(sortKey, expandedRange);
28285 if (beginIndex >= mDataContainer->size())
28286 beginIndex = mDataContainer->size()-1;
28287 return beginIndex;
28288 } else
28289 qDebug() << Q_FUNC_INFO << "no data plottable set";
28290 return 0;
28291}
28292
28293/* inherits documentation from base class */
28294int QCPErrorBars::findEnd(double sortKey, bool expandedRange) const
28295{
28296 if (mDataPlottable)
28297 {
28298 if (mDataContainer->isEmpty())
28299 return 0;
28300 int endIndex = mDataPlottable->interface1D()->findEnd(sortKey, expandedRange);
28301 if (endIndex > mDataContainer->size())
28302 endIndex = mDataContainer->size();
28303 return endIndex;
28304 } else
28305 qDebug() << Q_FUNC_INFO << "no data plottable set";
28306 return 0;
28307}
28308
28309/*!
28310 Implements a selectTest specific to this plottable's point geometry.
28311
28312 If \a details is not 0, it will be set to a \ref QCPDataSelection, describing the closest data
28313 point to \a pos.
28314
28315 \seebaseclassmethod \ref QCPAbstractPlottable::selectTest
28316*/
28317double QCPErrorBars::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
28318{
28319 if (!mDataPlottable) return -1;
28320
28321 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
28322 return -1;
28323 if (!mKeyAxis || !mValueAxis)
28324 return -1;
28325
28326 if (mKeyAxis.data()->axisRect()->rect().contains(pos.toPoint()) || mParentPlot->interactions().testFlag(QCP::iSelectPlottablesBeyondAxisRect))
28327 {
28329 double result = pointDistance(pos, closestDataPoint);
28330 if (details)
28331 {
28332 int pointIndex = int(closestDataPoint-mDataContainer->constBegin());
28333 details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
28334 }
28335 return result;
28336 } else
28337 return -1;
28338}
28339
28340/* inherits documentation from base class */
28342{
28343 if (!mDataPlottable) return;
28344 if (!mKeyAxis || !mValueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
28345 if (mKeyAxis.data()->range().size() <= 0 || mDataContainer->isEmpty()) return;
28346
28347 // if the sort key isn't the main key, we must check the visibility for each data point/error bar individually
28348 // (getVisibleDataBounds applies range restriction, but otherwise can only return full data range):
28349 bool checkPointVisibility = !mDataPlottable->interface1D()->sortKeyIsMainKey();
28350
28351 // check data validity if flag set:
28352#ifdef QCUSTOMPLOT_CHECK_DATA
28354 for (it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
28355 {
28356 if (QCP::isInvalidData(it->errorMinus, it->errorPlus))
28357 qDebug() << Q_FUNC_INFO << "Data point at index" << it-mDataContainer->constBegin() << "invalid." << "Plottable name:" << name();
28358 }
28359#endif
28360
28362 painter->setBrush(Qt::NoBrush);
28363 // loop over and draw segments of unselected/selected data:
28368 for (int i=0; i<allSegments.size(); ++i)
28369 {
28371 getVisibleDataBounds(begin, end, allSegments.at(i));
28372 if (begin == end)
28373 continue;
28374
28375 bool isSelectedSegment = i >= unselectedSegments.size();
28376 if (isSelectedSegment && mSelectionDecorator)
28377 mSelectionDecorator->applyPen(painter);
28378 else
28379 painter->setPen(mPen);
28380 if (painter->pen().capStyle() == Qt::SquareCap)
28381 {
28382 QPen capFixPen(painter->pen());
28383 capFixPen.setCapStyle(Qt::FlatCap);
28384 painter->setPen(capFixPen);
28385 }
28386 backbones.clear();
28387 whiskers.clear();
28389 {
28390 if (!checkPointVisibility || errorBarVisible(int(it-mDataContainer->constBegin())))
28392 }
28393 painter->drawLines(backbones);
28394 painter->drawLines(whiskers);
28395 }
28396
28397 // draw other selection decoration that isn't just line/scatter pens and brushes:
28398 if (mSelectionDecorator)
28399 mSelectionDecorator->drawDecoration(painter, selection());
28400}
28401
28402/* inherits documentation from base class */
28403void QCPErrorBars::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
28404{
28406 painter->setPen(mPen);
28407 if (mErrorType == etValueError && mValueAxis && mValueAxis->orientation() == Qt::Vertical)
28408 {
28409 painter->drawLine(QLineF(rect.center().x(), rect.top()+2, rect.center().x(), rect.bottom()-1));
28410 painter->drawLine(QLineF(rect.center().x()-4, rect.top()+2, rect.center().x()+4, rect.top()+2));
28411 painter->drawLine(QLineF(rect.center().x()-4, rect.bottom()-1, rect.center().x()+4, rect.bottom()-1));
28412 } else
28413 {
28414 painter->drawLine(QLineF(rect.left()+2, rect.center().y(), rect.right()-2, rect.center().y()));
28415 painter->drawLine(QLineF(rect.left()+2, rect.center().y()-4, rect.left()+2, rect.center().y()+4));
28416 painter->drawLine(QLineF(rect.right()-2, rect.center().y()-4, rect.right()-2, rect.center().y()+4));
28417 }
28418}
28419
28420/* inherits documentation from base class */
28422{
28423 if (!mDataPlottable)
28424 {
28425 foundRange = false;
28426 return {};
28427 }
28428
28429 QCPRange range;
28430 bool haveLower = false;
28431 bool haveUpper = false;
28433 for (it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
28434 {
28435 if (mErrorType == etValueError)
28436 {
28437 // error bar doesn't extend in key dimension (except whisker but we ignore that here), so only use data point center
28438 const double current = mDataPlottable->interface1D()->dataMainKey(int(it-mDataContainer->constBegin()));
28439 if (qIsNaN(current)) continue;
28440 if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
28441 {
28442 if (current < range.lower || !haveLower)
28443 {
28444 range.lower = current;
28445 haveLower = true;
28446 }
28447 if (current > range.upper || !haveUpper)
28448 {
28449 range.upper = current;
28450 haveUpper = true;
28451 }
28452 }
28453 } else // mErrorType == etKeyError
28454 {
28455 const double dataKey = mDataPlottable->interface1D()->dataMainKey(int(it-mDataContainer->constBegin()));
28456 if (qIsNaN(dataKey)) continue;
28457 // plus error:
28458 double current = dataKey + (qIsNaN(it->errorPlus) ? 0 : it->errorPlus);
28459 if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
28460 {
28461 if (current > range.upper || !haveUpper)
28462 {
28463 range.upper = current;
28464 haveUpper = true;
28465 }
28466 }
28467 // minus error:
28468 current = dataKey - (qIsNaN(it->errorMinus) ? 0 : it->errorMinus);
28469 if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
28470 {
28471 if (current < range.lower || !haveLower)
28472 {
28473 range.lower = current;
28474 haveLower = true;
28475 }
28476 }
28477 }
28478 }
28479
28480 if (haveUpper && !haveLower)
28481 {
28482 range.lower = range.upper;
28483 haveLower = true;
28484 } else if (haveLower && !haveUpper)
28485 {
28486 range.upper = range.lower;
28487 haveUpper = true;
28488 }
28489
28491 return range;
28492}
28493
28494/* inherits documentation from base class */
28496{
28497 if (!mDataPlottable)
28498 {
28499 foundRange = false;
28500 return {};
28501 }
28502
28503 QCPRange range;
28504 const bool restrictKeyRange = inKeyRange != QCPRange();
28505 bool haveLower = false;
28506 bool haveUpper = false;
28507 QCPErrorBarsDataContainer::const_iterator itBegin = mDataContainer->constBegin();
28508 QCPErrorBarsDataContainer::const_iterator itEnd = mDataContainer->constEnd();
28509 if (mDataPlottable->interface1D()->sortKeyIsMainKey() && restrictKeyRange)
28510 {
28511 itBegin = mDataContainer->constBegin()+findBegin(inKeyRange.lower, false);
28512 itEnd = mDataContainer->constBegin()+findEnd(inKeyRange.upper, false);
28513 }
28515 {
28516 if (restrictKeyRange)
28517 {
28518 const double dataKey = mDataPlottable->interface1D()->dataMainKey(int(it-mDataContainer->constBegin()));
28520 continue;
28521 }
28522 if (mErrorType == etValueError)
28523 {
28524 const double dataValue = mDataPlottable->interface1D()->dataMainValue(int(it-mDataContainer->constBegin()));
28525 if (qIsNaN(dataValue)) continue;
28526 // plus error:
28527 double current = dataValue + (qIsNaN(it->errorPlus) ? 0 : it->errorPlus);
28528 if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
28529 {
28530 if (current > range.upper || !haveUpper)
28531 {
28532 range.upper = current;
28533 haveUpper = true;
28534 }
28535 }
28536 // minus error:
28537 current = dataValue - (qIsNaN(it->errorMinus) ? 0 : it->errorMinus);
28538 if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
28539 {
28540 if (current < range.lower || !haveLower)
28541 {
28542 range.lower = current;
28543 haveLower = true;
28544 }
28545 }
28546 } else // mErrorType == etKeyError
28547 {
28548 // error bar doesn't extend in value dimension (except whisker but we ignore that here), so only use data point center
28549 const double current = mDataPlottable->interface1D()->dataMainValue(int(it-mDataContainer->constBegin()));
28550 if (qIsNaN(current)) continue;
28551 if (inSignDomain == QCP::sdBoth || (inSignDomain == QCP::sdNegative && current < 0) || (inSignDomain == QCP::sdPositive && current > 0))
28552 {
28553 if (current < range.lower || !haveLower)
28554 {
28555 range.lower = current;
28556 haveLower = true;
28557 }
28558 if (current > range.upper || !haveUpper)
28559 {
28560 range.upper = current;
28561 haveUpper = true;
28562 }
28563 }
28564 }
28565 }
28566
28567 if (haveUpper && !haveLower)
28568 {
28569 range.lower = range.upper;
28570 haveLower = true;
28571 } else if (haveLower && !haveUpper)
28572 {
28573 range.upper = range.lower;
28574 haveUpper = true;
28575 }
28576
28578 return range;
28579}
28580
28581/*! \internal
28582
28583 Calculates the lines that make up the error bar belonging to the data point \a it.
28584
28585 The resulting lines are added to \a backbones and \a whiskers. The vectors are not cleared, so
28586 calling this method with different \a it but the same \a backbones and \a whiskers allows to
28587 accumulate lines for multiple data points.
28588
28589 This method assumes that \a it is a valid iterator within the bounds of this \ref QCPErrorBars
28590 instance and within the bounds of the associated data plottable.
28591*/
28593{
28594 if (!mDataPlottable) return;
28595
28596 int index = int(it-mDataContainer->constBegin());
28597 QPointF centerPixel = mDataPlottable->interface1D()->dataPixelPosition(index);
28598 if (qIsNaN(centerPixel.x()) || qIsNaN(centerPixel.y()))
28599 return;
28600 QCPAxis *errorAxis = mErrorType == etValueError ? mValueAxis.data() : mKeyAxis.data();
28601 QCPAxis *orthoAxis = mErrorType == etValueError ? mKeyAxis.data() : mValueAxis.data();
28602 const double centerErrorAxisPixel = errorAxis->orientation() == Qt::Horizontal ? centerPixel.x() : centerPixel.y();
28603 const double centerOrthoAxisPixel = orthoAxis->orientation() == Qt::Horizontal ? centerPixel.x() : centerPixel.y();
28604 const double centerErrorAxisCoord = errorAxis->pixelToCoord(centerErrorAxisPixel); // depending on plottable, this might be different from just mDataPlottable->interface1D()->dataMainKey/Value
28605 const double symbolGap = mSymbolGap*0.5*errorAxis->pixelOrientation();
28606 // plus error:
28607 double errorStart, errorEnd;
28608 if (!qIsNaN(it->errorPlus))
28609 {
28610 errorStart = centerErrorAxisPixel+symbolGap;
28611 errorEnd = errorAxis->coordToPixel(centerErrorAxisCoord+it->errorPlus);
28612 if (errorAxis->orientation() == Qt::Vertical)
28613 {
28614 if ((errorStart > errorEnd) != errorAxis->rangeReversed())
28616 whiskers.append(QLineF(centerOrthoAxisPixel-mWhiskerWidth*0.5, errorEnd, centerOrthoAxisPixel+mWhiskerWidth*0.5, errorEnd));
28617 } else
28618 {
28619 if ((errorStart < errorEnd) != errorAxis->rangeReversed())
28621 whiskers.append(QLineF(errorEnd, centerOrthoAxisPixel-mWhiskerWidth*0.5, errorEnd, centerOrthoAxisPixel+mWhiskerWidth*0.5));
28622 }
28623 }
28624 // minus error:
28625 if (!qIsNaN(it->errorMinus))
28626 {
28627 errorStart = centerErrorAxisPixel-symbolGap;
28628 errorEnd = errorAxis->coordToPixel(centerErrorAxisCoord-it->errorMinus);
28629 if (errorAxis->orientation() == Qt::Vertical)
28630 {
28631 if ((errorStart < errorEnd) != errorAxis->rangeReversed())
28633 whiskers.append(QLineF(centerOrthoAxisPixel-mWhiskerWidth*0.5, errorEnd, centerOrthoAxisPixel+mWhiskerWidth*0.5, errorEnd));
28634 } else
28635 {
28636 if ((errorStart > errorEnd) != errorAxis->rangeReversed())
28638 whiskers.append(QLineF(errorEnd, centerOrthoAxisPixel-mWhiskerWidth*0.5, errorEnd, centerOrthoAxisPixel+mWhiskerWidth*0.5));
28639 }
28640 }
28641}
28642
28643/*! \internal
28644
28645 This method outputs the currently visible data range via \a begin and \a end. The returned range
28646 will also never exceed \a rangeRestriction.
28647
28648 Since error bars with type \ref etKeyError may extend to arbitrarily positive and negative key
28649 coordinates relative to their data point key, this method checks all outer error bars whether
28650 they truly don't reach into the visible portion of the axis rect, by calling \ref
28651 errorBarVisible. On the other hand error bars with type \ref etValueError that are associated
28652 with data plottables whose sort key is equal to the main key (see \ref qcpdatacontainer-datatype
28653 "QCPDataContainer DataType") can be handled very efficiently by finding the visible range of
28654 error bars through binary search (\ref QCPPlottableInterface1D::findBegin and \ref
28655 QCPPlottableInterface1D::findEnd).
28656
28657 If the plottable's sort key is not equal to the main key, this method returns the full data
28658 range, only restricted by \a rangeRestriction. Drawing optimization then has to be done on a
28659 point-by-point basis in the \ref draw method.
28660*/
28662{
28663 QCPAxis *keyAxis = mKeyAxis.data();
28664 QCPAxis *valueAxis = mValueAxis.data();
28665 if (!keyAxis || !valueAxis)
28666 {
28667 qDebug() << Q_FUNC_INFO << "invalid key or value axis";
28668 end = mDataContainer->constEnd();
28669 begin = end;
28670 return;
28671 }
28672 if (!mDataPlottable || rangeRestriction.isEmpty())
28673 {
28674 end = mDataContainer->constEnd();
28675 begin = end;
28676 return;
28677 }
28678 if (!mDataPlottable->interface1D()->sortKeyIsMainKey())
28679 {
28680 // if the sort key isn't the main key, it's not possible to find a contiguous range of visible
28681 // data points, so this method then only applies the range restriction and otherwise returns
28682 // the full data range. Visibility checks must be done on a per-datapoin-basis during drawing
28683 QCPDataRange dataRange(0, mDataContainer->size());
28684 dataRange = dataRange.bounded(rangeRestriction);
28685 begin = mDataContainer->constBegin()+dataRange.begin();
28686 end = mDataContainer->constBegin()+dataRange.end();
28687 return;
28688 }
28689
28690 // get visible data range via interface from data plottable, and then restrict to available error data points:
28691 const int n = qMin(mDataContainer->size(), mDataPlottable->interface1D()->dataCount());
28692 int beginIndex = mDataPlottable->interface1D()->findBegin(keyAxis->range().lower);
28693 int endIndex = mDataPlottable->interface1D()->findEnd(keyAxis->range().upper);
28694 int i = beginIndex;
28695 while (i > 0 && i < n && i > rangeRestriction.begin())
28696 {
28697 if (errorBarVisible(i))
28698 beginIndex = i;
28699 --i;
28700 }
28701 i = endIndex;
28702 while (i >= 0 && i < n && i < rangeRestriction.end())
28703 {
28704 if (errorBarVisible(i))
28705 endIndex = i+1;
28706 ++i;
28707 }
28708 QCPDataRange dataRange(beginIndex, endIndex);
28709 dataRange = dataRange.bounded(rangeRestriction.bounded(QCPDataRange(0, mDataContainer->size())));
28710 begin = mDataContainer->constBegin()+dataRange.begin();
28711 end = mDataContainer->constBegin()+dataRange.end();
28712}
28713
28714/*! \internal
28715
28716 Calculates the minimum distance in pixels the error bars' representation has from the given \a
28717 pixelPoint. This is used to determine whether the error bar was clicked or not, e.g. in \ref
28718 selectTest. The closest data point to \a pixelPoint is returned in \a closestData.
28719*/
28721{
28722 closestData = mDataContainer->constEnd();
28723 if (!mDataPlottable || mDataContainer->isEmpty())
28724 return -1.0;
28725 if (!mKeyAxis || !mValueAxis)
28726 {
28727 qDebug() << Q_FUNC_INFO << "invalid key or value axis";
28728 return -1.0;
28729 }
28730
28732 getVisibleDataBounds(begin, end, QCPDataRange(0, dataCount()));
28733
28734 // calculate minimum distances to error backbones (whiskers are ignored for speed) and find closestData iterator:
28735 double minDistSqr = (std::numeric_limits<double>::max)();
28738 {
28740 foreach (const QLineF &backbone, backbones)
28741 {
28744 {
28746 closestData = it;
28747 }
28748 }
28749 }
28750 return qSqrt(minDistSqr);
28751}
28752
28753/*! \internal
28754
28755 \note This method is identical to \ref QCPAbstractPlottable1D::getDataSegments but needs to be
28756 reproduced here since the \ref QCPErrorBars plottable, as a special case that doesn't have its
28757 own key/value data coordinates, doesn't derive from \ref QCPAbstractPlottable1D. See the
28758 documentation there for details.
28759*/
28761{
28762 selectedSegments.clear();
28763 unselectedSegments.clear();
28764 if (mSelectable == QCP::stWhole) // stWhole selection type draws the entire plottable with selected style if mSelection isn't empty
28765 {
28766 if (selected())
28768 else
28770 } else
28771 {
28773 sel.simplify();
28774 selectedSegments = sel.dataRanges();
28775 unselectedSegments = sel.inverse(QCPDataRange(0, dataCount())).dataRanges();
28776 }
28777}
28778
28779/*! \internal
28780
28781 Returns whether the error bar at the specified \a index is visible within the current key axis
28782 range.
28783
28784 This method assumes for performance reasons without checking that the key axis, the value axis,
28785 and the data plottable (\ref setDataPlottable) are not \c nullptr and that \a index is within
28786 valid bounds of this \ref QCPErrorBars instance and the bounds of the data plottable.
28787*/
28789{
28790 QPointF centerPixel = mDataPlottable->interface1D()->dataPixelPosition(index);
28791 const double centerKeyPixel = mKeyAxis->orientation() == Qt::Horizontal ? centerPixel.x() : centerPixel.y();
28792 if (qIsNaN(centerKeyPixel))
28793 return false;
28794
28795 double keyMin, keyMax;
28796 if (mErrorType == etKeyError)
28797 {
28798 const double centerKey = mKeyAxis->pixelToCoord(centerKeyPixel);
28799 const double errorPlus = mDataContainer->at(index).errorPlus;
28800 const double errorMinus = mDataContainer->at(index).errorMinus;
28801 keyMax = centerKey+(qIsNaN(errorPlus) ? 0 : errorPlus);
28802 keyMin = centerKey-(qIsNaN(errorMinus) ? 0 : errorMinus);
28803 } else // mErrorType == etValueError
28804 {
28805 keyMax = mKeyAxis->pixelToCoord(centerKeyPixel+mWhiskerWidth*0.5*mKeyAxis->pixelOrientation());
28806 keyMin = mKeyAxis->pixelToCoord(centerKeyPixel-mWhiskerWidth*0.5*mKeyAxis->pixelOrientation());
28807 }
28808 return ((keyMax > mKeyAxis->range().lower) && (keyMin < mKeyAxis->range().upper));
28809}
28810
28811/*! \internal
28812
28813 Returns whether \a line intersects (or is contained in) \a pixelRect.
28814
28815 \a line is assumed to be either perfectly horizontal or perfectly vertical, as is the case for
28816 error bar lines.
28817*/
28819{
28820 if (pixelRect.left() > line.x1() && pixelRect.left() > line.x2())
28821 return false;
28822 else if (pixelRect.right() < line.x1() && pixelRect.right() < line.x2())
28823 return false;
28824 else if (pixelRect.top() > line.y1() && pixelRect.top() > line.y2())
28825 return false;
28826 else if (pixelRect.bottom() < line.y1() && pixelRect.bottom() < line.y2())
28827 return false;
28828 else
28829 return true;
28830}
28831/* end of 'src/plottables/plottable-errorbar.cpp' */
28832
28833
28834/* including file 'src/items/item-straightline.cpp' */
28835/* modified 2021-03-29T02:30:44, size 7596 */
28836
28837////////////////////////////////////////////////////////////////////////////////////////////////////
28838//////////////////// QCPItemStraightLine
28839////////////////////////////////////////////////////////////////////////////////////////////////////
28840
28841/*! \class QCPItemStraightLine
28842 \brief A straight line that spans infinitely in both directions
28843
28844 \image html QCPItemStraightLine.png "Straight line example. Blue dotted circles are anchors, solid blue discs are positions."
28845
28846 It has two positions, \a point1 and \a point2, which define the straight line.
28847*/
28848
28849/*!
28850 Creates a straight line item and sets default values.
28851
28852 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
28853 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
28854*/
28856 QCPAbstractItem(parentPlot),
28857 point1(createPosition(QLatin1String("point1"))),
28858 point2(createPosition(QLatin1String("point2")))
28859{
28860 point1->setCoords(0, 0);
28861 point2->setCoords(1, 1);
28862
28865}
28866
28867QCPItemStraightLine::~QCPItemStraightLine()
28868{
28869}
28870
28871/*!
28872 Sets the pen that will be used to draw the line
28873
28874 \see setSelectedPen
28875*/
28877{
28878 mPen = pen;
28879}
28880
28881/*!
28882 Sets the pen that will be used to draw the line when selected
28883
28884 \see setPen, setSelected
28885*/
28887{
28888 mSelectedPen = pen;
28889}
28890
28891/* inherits documentation from base class */
28892double QCPItemStraightLine::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
28893{
28894 Q_UNUSED(details)
28895 if (onlySelectable && !mSelectable)
28896 return -1;
28897
28898 return QCPVector2D(pos).distanceToStraightLine(point1->pixelPosition(), point2->pixelPosition()-point1->pixelPosition());
28899}
28900
28901/* inherits documentation from base class */
28903{
28904 QCPVector2D start(point1->pixelPosition());
28905 QCPVector2D end(point2->pixelPosition());
28906 // get visible segment of straight line inside clipRect:
28907 int clipPad = qCeil(mainPen().widthF());
28908 QLineF line = getRectClippedStraightLine(start, end-start, clipRect().adjusted(-clipPad, -clipPad, clipPad, clipPad));
28909 // paint visible segment, if existent:
28910 if (!line.isNull())
28911 {
28912 painter->setPen(mainPen());
28913 painter->drawLine(line);
28914 }
28915}
28916
28917/*! \internal
28918
28919 Returns the section of the straight line defined by \a base and direction vector \a
28920 vec, that is visible in the specified \a rect.
28921
28922 This is a helper function for \ref draw.
28923*/
28925{
28926 double bx, by;
28927 double gamma;
28928 QLineF result;
28929 if (vec.x() == 0 && vec.y() == 0)
28930 return result;
28931 if (qFuzzyIsNull(vec.x())) // line is vertical
28932 {
28933 // check top of rect:
28934 bx = rect.left();
28935 by = rect.top();
28936 gamma = base.x()-bx + (by-base.y())*vec.x()/vec.y();
28937 if (gamma >= 0 && gamma <= rect.width())
28938 result.setLine(bx+gamma, rect.top(), bx+gamma, rect.bottom()); // no need to check bottom because we know line is vertical
28939 } else if (qFuzzyIsNull(vec.y())) // line is horizontal
28940 {
28941 // check left of rect:
28942 bx = rect.left();
28943 by = rect.top();
28944 gamma = base.y()-by + (bx-base.x())*vec.y()/vec.x();
28945 if (gamma >= 0 && gamma <= rect.height())
28946 result.setLine(rect.left(), by+gamma, rect.right(), by+gamma); // no need to check right because we know line is horizontal
28947 } else // line is skewed
28948 {
28950 // check top of rect:
28951 bx = rect.left();
28952 by = rect.top();
28953 gamma = base.x()-bx + (by-base.y())*vec.x()/vec.y();
28954 if (gamma >= 0 && gamma <= rect.width())
28955 pointVectors.append(QCPVector2D(bx+gamma, by));
28956 // check bottom of rect:
28957 bx = rect.left();
28958 by = rect.bottom();
28959 gamma = base.x()-bx + (by-base.y())*vec.x()/vec.y();
28960 if (gamma >= 0 && gamma <= rect.width())
28961 pointVectors.append(QCPVector2D(bx+gamma, by));
28962 // check left of rect:
28963 bx = rect.left();
28964 by = rect.top();
28965 gamma = base.y()-by + (bx-base.x())*vec.y()/vec.x();
28966 if (gamma >= 0 && gamma <= rect.height())
28967 pointVectors.append(QCPVector2D(bx, by+gamma));
28968 // check right of rect:
28969 bx = rect.right();
28970 by = rect.top();
28971 gamma = base.y()-by + (bx-base.x())*vec.y()/vec.x();
28972 if (gamma >= 0 && gamma <= rect.height())
28973 pointVectors.append(QCPVector2D(bx, by+gamma));
28974
28975 // evaluate points:
28976 if (pointVectors.size() == 2)
28977 {
28978 result.setPoints(pointVectors.at(0).toPointF(), pointVectors.at(1).toPointF());
28979 } else if (pointVectors.size() > 2)
28980 {
28981 // line probably goes through corner of rect, and we got two points there. single out the point pair with greatest distance:
28982 double distSqrMax = 0;
28984 for (int i=0; i<pointVectors.size()-1; ++i)
28985 {
28986 for (int k=i+1; k<pointVectors.size(); ++k)
28987 {
28988 double distSqr = (pointVectors.at(i)-pointVectors.at(k)).lengthSquared();
28989 if (distSqr > distSqrMax)
28990 {
28991 pv1 = pointVectors.at(i);
28992 pv2 = pointVectors.at(k);
28994 }
28995 }
28996 }
28997 result.setPoints(pv1.toPointF(), pv2.toPointF());
28998 }
28999 }
29000 return result;
29001}
29002
29003/*! \internal
29004
29005 Returns the pen that should be used for drawing lines. Returns mPen when the
29006 item is not selected and mSelectedPen when it is.
29007*/
29009{
29010 return mSelected ? mSelectedPen : mPen;
29011}
29012/* end of 'src/items/item-straightline.cpp' */
29013
29014
29015/* including file 'src/items/item-line.cpp' */
29016/* modified 2021-03-29T02:30:44, size 8525 */
29017
29018////////////////////////////////////////////////////////////////////////////////////////////////////
29019//////////////////// QCPItemLine
29020////////////////////////////////////////////////////////////////////////////////////////////////////
29021
29022/*! \class QCPItemLine
29023 \brief A line from one point to another
29024
29025 \image html QCPItemLine.png "Line example. Blue dotted circles are anchors, solid blue discs are positions."
29026
29027 It has two positions, \a start and \a end, which define the end points of the line.
29028
29029 With \ref setHead and \ref setTail you may set different line ending styles, e.g. to create an arrow.
29030*/
29031
29032/*!
29033 Creates a line item and sets default values.
29034
29035 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
29036 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
29037*/
29039 QCPAbstractItem(parentPlot),
29040 start(createPosition(QLatin1String("start"))),
29041 end(createPosition(QLatin1String("end")))
29042{
29043 start->setCoords(0, 0);
29044 end->setCoords(1, 1);
29045
29048}
29049
29050QCPItemLine::~QCPItemLine()
29051{
29052}
29053
29054/*!
29055 Sets the pen that will be used to draw the line
29056
29057 \see setSelectedPen
29058*/
29060{
29061 mPen = pen;
29062}
29063
29064/*!
29065 Sets the pen that will be used to draw the line when selected
29066
29067 \see setPen, setSelected
29068*/
29070{
29071 mSelectedPen = pen;
29072}
29073
29074/*!
29075 Sets the line ending style of the head. The head corresponds to the \a end position.
29076
29077 Note that due to the overloaded QCPLineEnding constructor, you may directly specify
29078 a QCPLineEnding::EndingStyle here, e.g. \code setHead(QCPLineEnding::esSpikeArrow) \endcode
29079
29080 \see setTail
29081*/
29083{
29084 mHead = head;
29085}
29086
29087/*!
29088 Sets the line ending style of the tail. The tail corresponds to the \a start position.
29089
29090 Note that due to the overloaded QCPLineEnding constructor, you may directly specify
29091 a QCPLineEnding::EndingStyle here, e.g. \code setTail(QCPLineEnding::esSpikeArrow) \endcode
29092
29093 \see setHead
29094*/
29096{
29097 mTail = tail;
29098}
29099
29100/* inherits documentation from base class */
29101double QCPItemLine::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
29102{
29103 Q_UNUSED(details)
29104 if (onlySelectable && !mSelectable)
29105 return -1;
29106
29107 return qSqrt(QCPVector2D(pos).distanceSquaredToLine(start->pixelPosition(), end->pixelPosition()));
29108}
29109
29110/* inherits documentation from base class */
29112{
29115 if (qFuzzyIsNull((startVec-endVec).lengthSquared()))
29116 return;
29117 // get visible segment of straight line inside clipRect:
29118 int clipPad = int(qMax(mHead.boundingDistance(), mTail.boundingDistance()));
29119 clipPad = qMax(clipPad, qCeil(mainPen().widthF()));
29121 // paint visible segment, if existent:
29122 if (!line.isNull())
29123 {
29124 painter->setPen(mainPen());
29125 painter->drawLine(line);
29126 painter->setBrush(Qt::SolidPattern);
29127 if (mTail.style() != QCPLineEnding::esNone)
29128 mTail.draw(painter, startVec, startVec-endVec);
29129 if (mHead.style() != QCPLineEnding::esNone)
29130 mHead.draw(painter, endVec, endVec-startVec);
29131 }
29132}
29133
29134/*! \internal
29135
29136 Returns the section of the line defined by \a start and \a end, that is visible in the specified
29137 \a rect.
29138
29139 This is a helper function for \ref draw.
29140*/
29141QLineF QCPItemLine::getRectClippedLine(const QCPVector2D &start, const QCPVector2D &end, const QRect &rect) const
29142{
29143 bool containsStart = rect.contains(qRound(start.x()), qRound(start.y()));
29144 bool containsEnd = rect.contains(qRound(end.x()), qRound(end.y()));
29146 return {start.toPointF(), end.toPointF()};
29147
29148 QCPVector2D base = start;
29149 QCPVector2D vec = end-start;
29150 double bx, by;
29151 double gamma, mu;
29152 QLineF result;
29154
29155 if (!qFuzzyIsNull(vec.y())) // line is not horizontal
29156 {
29157 // check top of rect:
29158 bx = rect.left();
29159 by = rect.top();
29160 mu = (by-base.y())/vec.y();
29161 if (mu >= 0 && mu <= 1)
29162 {
29163 gamma = base.x()-bx + mu*vec.x();
29164 if (gamma >= 0 && gamma <= rect.width())
29165 pointVectors.append(QCPVector2D(bx+gamma, by));
29166 }
29167 // check bottom of rect:
29168 bx = rect.left();
29169 by = rect.bottom();
29170 mu = (by-base.y())/vec.y();
29171 if (mu >= 0 && mu <= 1)
29172 {
29173 gamma = base.x()-bx + mu*vec.x();
29174 if (gamma >= 0 && gamma <= rect.width())
29175 pointVectors.append(QCPVector2D(bx+gamma, by));
29176 }
29177 }
29178 if (!qFuzzyIsNull(vec.x())) // line is not vertical
29179 {
29180 // check left of rect:
29181 bx = rect.left();
29182 by = rect.top();
29183 mu = (bx-base.x())/vec.x();
29184 if (mu >= 0 && mu <= 1)
29185 {
29186 gamma = base.y()-by + mu*vec.y();
29187 if (gamma >= 0 && gamma <= rect.height())
29188 pointVectors.append(QCPVector2D(bx, by+gamma));
29189 }
29190 // check right of rect:
29191 bx = rect.right();
29192 by = rect.top();
29193 mu = (bx-base.x())/vec.x();
29194 if (mu >= 0 && mu <= 1)
29195 {
29196 gamma = base.y()-by + mu*vec.y();
29197 if (gamma >= 0 && gamma <= rect.height())
29198 pointVectors.append(QCPVector2D(bx, by+gamma));
29199 }
29200 }
29201
29202 if (containsStart)
29203 pointVectors.append(start);
29204 if (containsEnd)
29205 pointVectors.append(end);
29206
29207 // evaluate points:
29208 if (pointVectors.size() == 2)
29209 {
29210 result.setPoints(pointVectors.at(0).toPointF(), pointVectors.at(1).toPointF());
29211 } else if (pointVectors.size() > 2)
29212 {
29213 // line probably goes through corner of rect, and we got two points there. single out the point pair with greatest distance:
29214 double distSqrMax = 0;
29216 for (int i=0; i<pointVectors.size()-1; ++i)
29217 {
29218 for (int k=i+1; k<pointVectors.size(); ++k)
29219 {
29220 double distSqr = (pointVectors.at(i)-pointVectors.at(k)).lengthSquared();
29221 if (distSqr > distSqrMax)
29222 {
29223 pv1 = pointVectors.at(i);
29224 pv2 = pointVectors.at(k);
29226 }
29227 }
29228 }
29229 result.setPoints(pv1.toPointF(), pv2.toPointF());
29230 }
29231 return result;
29232}
29233
29234/*! \internal
29235
29236 Returns the pen that should be used for drawing lines. Returns mPen when the
29237 item is not selected and mSelectedPen when it is.
29238*/
29240{
29241 return mSelected ? mSelectedPen : mPen;
29242}
29243/* end of 'src/items/item-line.cpp' */
29244
29245
29246/* including file 'src/items/item-curve.cpp' */
29247/* modified 2021-03-29T02:30:44, size 7273 */
29248
29249////////////////////////////////////////////////////////////////////////////////////////////////////
29250//////////////////// QCPItemCurve
29251////////////////////////////////////////////////////////////////////////////////////////////////////
29252
29253/*! \class QCPItemCurve
29254 \brief A curved line from one point to another
29255
29256 \image html QCPItemCurve.png "Curve example. Blue dotted circles are anchors, solid blue discs are positions."
29257
29258 It has four positions, \a start and \a end, which define the end points of the line, and two
29259 control points which define the direction the line exits from the start and the direction from
29260 which it approaches the end: \a startDir and \a endDir.
29261
29262 With \ref setHead and \ref setTail you may set different line ending styles, e.g. to create an
29263 arrow.
29264
29265 Often it is desirable for the control points to stay at fixed relative positions to the start/end
29266 point. This can be achieved by setting the parent anchor e.g. of \a startDir simply to \a start,
29267 and then specify the desired pixel offset with QCPItemPosition::setCoords on \a startDir.
29268*/
29269
29270/*!
29271 Creates a curve item and sets default values.
29272
29273 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
29274 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
29275*/
29277 QCPAbstractItem(parentPlot),
29278 start(createPosition(QLatin1String("start"))),
29279 startDir(createPosition(QLatin1String("startDir"))),
29280 endDir(createPosition(QLatin1String("endDir"))),
29281 end(createPosition(QLatin1String("end")))
29282{
29283 start->setCoords(0, 0);
29284 startDir->setCoords(0.5, 0);
29285 endDir->setCoords(0, 0.5);
29286 end->setCoords(1, 1);
29287
29290}
29291
29292QCPItemCurve::~QCPItemCurve()
29293{
29294}
29295
29296/*!
29297 Sets the pen that will be used to draw the line
29298
29299 \see setSelectedPen
29300*/
29302{
29303 mPen = pen;
29304}
29305
29306/*!
29307 Sets the pen that will be used to draw the line when selected
29308
29309 \see setPen, setSelected
29310*/
29312{
29313 mSelectedPen = pen;
29314}
29315
29316/*!
29317 Sets the line ending style of the head. The head corresponds to the \a end position.
29318
29319 Note that due to the overloaded QCPLineEnding constructor, you may directly specify
29320 a QCPLineEnding::EndingStyle here, e.g. \code setHead(QCPLineEnding::esSpikeArrow) \endcode
29321
29322 \see setTail
29323*/
29325{
29326 mHead = head;
29327}
29328
29329/*!
29330 Sets the line ending style of the tail. The tail corresponds to the \a start position.
29331
29332 Note that due to the overloaded QCPLineEnding constructor, you may directly specify
29333 a QCPLineEnding::EndingStyle here, e.g. \code setTail(QCPLineEnding::esSpikeArrow) \endcode
29334
29335 \see setHead
29336*/
29338{
29339 mTail = tail;
29340}
29341
29342/* inherits documentation from base class */
29343double QCPItemCurve::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
29344{
29345 Q_UNUSED(details)
29346 if (onlySelectable && !mSelectable)
29347 return -1;
29348
29349 QPointF startVec(start->pixelPosition());
29350 QPointF startDirVec(startDir->pixelPosition());
29351 QPointF endDirVec(endDir->pixelPosition());
29353
29356
29357 QList<QPolygonF> polygons = cubicPath.toSubpathPolygons();
29358 if (polygons.isEmpty())
29359 return -1;
29360 const QPolygonF polygon = polygons.first();
29361 QCPVector2D p(pos);
29362 double minDistSqr = (std::numeric_limits<double>::max)();
29363 for (int i=1; i<polygon.size(); ++i)
29364 {
29365 double distSqr = p.distanceSquaredToLine(polygon.at(i-1), polygon.at(i));
29366 if (distSqr < minDistSqr)
29368 }
29369 return qSqrt(minDistSqr);
29370}
29371
29372/* inherits documentation from base class */
29374{
29379 if ((endVec-startVec).length() > 1e10) // too large curves cause crash
29380 return;
29381
29382 QPainterPath cubicPath(startVec.toPointF());
29383 cubicPath.cubicTo(startDirVec.toPointF(), endDirVec.toPointF(), endVec.toPointF());
29384
29385 // paint visible segment, if existent:
29386 const int clipEnlarge = qCeil(mainPen().widthF());
29388 QRect cubicRect = cubicPath.controlPointRect().toRect();
29389 if (cubicRect.isEmpty()) // may happen when start and end exactly on same x or y position
29390 cubicRect.adjust(0, 0, 1, 1);
29391 if (clip.intersects(cubicRect))
29392 {
29393 painter->setPen(mainPen());
29394 painter->drawPath(cubicPath);
29395 painter->setBrush(Qt::SolidPattern);
29396 if (mTail.style() != QCPLineEnding::esNone)
29397 mTail.draw(painter, startVec, M_PI-cubicPath.angleAtPercent(0)/180.0*M_PI);
29398 if (mHead.style() != QCPLineEnding::esNone)
29399 mHead.draw(painter, endVec, -cubicPath.angleAtPercent(1)/180.0*M_PI);
29400 }
29401}
29402
29403/*! \internal
29404
29405 Returns the pen that should be used for drawing lines. Returns mPen when the
29406 item is not selected and mSelectedPen when it is.
29407*/
29409{
29410 return mSelected ? mSelectedPen : mPen;
29411}
29412/* end of 'src/items/item-curve.cpp' */
29413
29414
29415/* including file 'src/items/item-rect.cpp' */
29416/* modified 2021-03-29T02:30:44, size 6472 */
29417
29418////////////////////////////////////////////////////////////////////////////////////////////////////
29419//////////////////// QCPItemRect
29420////////////////////////////////////////////////////////////////////////////////////////////////////
29421
29422/*! \class QCPItemRect
29423 \brief A rectangle
29424
29425 \image html QCPItemRect.png "Rectangle example. Blue dotted circles are anchors, solid blue discs are positions."
29426
29427 It has two positions, \a topLeft and \a bottomRight, which define the rectangle.
29428*/
29429
29430/*!
29431 Creates a rectangle item and sets default values.
29432
29433 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
29434 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
29435*/
29437 QCPAbstractItem(parentPlot),
29438 topLeft(createPosition(QLatin1String("topLeft"))),
29439 bottomRight(createPosition(QLatin1String("bottomRight"))),
29440 top(createAnchor(QLatin1String("top"), aiTop)),
29441 topRight(createAnchor(QLatin1String("topRight"), aiTopRight)),
29442 right(createAnchor(QLatin1String("right"), aiRight)),
29443 bottom(createAnchor(QLatin1String("bottom"), aiBottom)),
29444 bottomLeft(createAnchor(QLatin1String("bottomLeft"), aiBottomLeft)),
29445 left(createAnchor(QLatin1String("left"), aiLeft))
29446{
29447 topLeft->setCoords(0, 1);
29448 bottomRight->setCoords(1, 0);
29449
29454}
29455
29456QCPItemRect::~QCPItemRect()
29457{
29458}
29459
29460/*!
29461 Sets the pen that will be used to draw the line of the rectangle
29462
29463 \see setSelectedPen, setBrush
29464*/
29466{
29467 mPen = pen;
29468}
29469
29470/*!
29471 Sets the pen that will be used to draw the line of the rectangle when selected
29472
29473 \see setPen, setSelected
29474*/
29476{
29477 mSelectedPen = pen;
29478}
29479
29480/*!
29481 Sets the brush that will be used to fill the rectangle. To disable filling, set \a brush to
29482 Qt::NoBrush.
29483
29484 \see setSelectedBrush, setPen
29485*/
29487{
29488 mBrush = brush;
29489}
29490
29491/*!
29492 Sets the brush that will be used to fill the rectangle when selected. To disable filling, set \a
29493 brush to Qt::NoBrush.
29494
29495 \see setBrush
29496*/
29498{
29499 mSelectedBrush = brush;
29500}
29501
29502/* inherits documentation from base class */
29503double QCPItemRect::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
29504{
29505 Q_UNUSED(details)
29506 if (onlySelectable && !mSelectable)
29507 return -1;
29508
29509 QRectF rect = QRectF(topLeft->pixelPosition(), bottomRight->pixelPosition()).normalized();
29510 bool filledRect = mBrush.style() != Qt::NoBrush && mBrush.color().alpha() != 0;
29511 return rectDistance(rect, pos, filledRect);
29512}
29513
29514/* inherits documentation from base class */
29516{
29517 QPointF p1 = topLeft->pixelPosition();
29518 QPointF p2 = bottomRight->pixelPosition();
29519 if (p1.toPoint() == p2.toPoint())
29520 return;
29521 QRectF rect = QRectF(p1, p2).normalized();
29522 double clipPad = mainPen().widthF();
29523 QRectF boundingRect = rect.adjusted(-clipPad, -clipPad, clipPad, clipPad);
29524 if (boundingRect.intersects(clipRect())) // only draw if bounding rect of rect item is visible in cliprect
29525 {
29526 painter->setPen(mainPen());
29527 painter->setBrush(mainBrush());
29528 painter->drawRect(rect);
29529 }
29530}
29531
29532/* inherits documentation from base class */
29534{
29535 QRectF rect = QRectF(topLeft->pixelPosition(), bottomRight->pixelPosition());
29536 switch (anchorId)
29537 {
29538 case aiTop: return (rect.topLeft()+rect.topRight())*0.5;
29539 case aiTopRight: return rect.topRight();
29540 case aiRight: return (rect.topRight()+rect.bottomRight())*0.5;
29541 case aiBottom: return (rect.bottomLeft()+rect.bottomRight())*0.5;
29542 case aiBottomLeft: return rect.bottomLeft();
29543 case aiLeft: return (rect.topLeft()+rect.bottomLeft())*0.5;
29544 }
29545
29546 qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
29547 return {};
29548}
29549
29550/*! \internal
29551
29552 Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
29553 and mSelectedPen when it is.
29554*/
29556{
29557 return mSelected ? mSelectedPen : mPen;
29558}
29559
29560/*! \internal
29561
29562 Returns the brush that should be used for drawing fills of the item. Returns mBrush when the item
29563 is not selected and mSelectedBrush when it is.
29564*/
29566{
29567 return mSelected ? mSelectedBrush : mBrush;
29568}
29569/* end of 'src/items/item-rect.cpp' */
29570
29571
29572/* including file 'src/items/item-text.cpp' */
29573/* modified 2021-03-29T02:30:44, size 13335 */
29574
29575////////////////////////////////////////////////////////////////////////////////////////////////////
29576//////////////////// QCPItemText
29577////////////////////////////////////////////////////////////////////////////////////////////////////
29578
29579/*! \class QCPItemText
29580 \brief A text label
29581
29582 \image html QCPItemText.png "Text example. Blue dotted circles are anchors, solid blue discs are positions."
29583
29584 Its position is defined by the member \a position and the setting of \ref setPositionAlignment.
29585 The latter controls which part of the text rect shall be aligned with \a position.
29586
29587 The text alignment itself (i.e. left, center, right) can be controlled with \ref
29588 setTextAlignment.
29589
29590 The text may be rotated around the \a position point with \ref setRotation.
29591*/
29592
29593/*!
29594 Creates a text item and sets default values.
29595
29596 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
29597 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
29598*/
29600 QCPAbstractItem(parentPlot),
29601 position(createPosition(QLatin1String("position"))),
29602 topLeft(createAnchor(QLatin1String("topLeft"), aiTopLeft)),
29603 top(createAnchor(QLatin1String("top"), aiTop)),
29604 topRight(createAnchor(QLatin1String("topRight"), aiTopRight)),
29605 right(createAnchor(QLatin1String("right"), aiRight)),
29606 bottomRight(createAnchor(QLatin1String("bottomRight"), aiBottomRight)),
29607 bottom(createAnchor(QLatin1String("bottom"), aiBottom)),
29608 bottomLeft(createAnchor(QLatin1String("bottomLeft"), aiBottomLeft)),
29609 left(createAnchor(QLatin1String("left"), aiLeft)),
29610 mText(QLatin1String("text")),
29611 mPositionAlignment(Qt::AlignCenter),
29612 mTextAlignment(Qt::AlignTop|Qt::AlignHCenter),
29613 mRotation(0)
29614{
29615 position->setCoords(0, 0);
29616
29623}
29624
29625QCPItemText::~QCPItemText()
29626{
29627}
29628
29629/*!
29630 Sets the color of the text.
29631*/
29633{
29634 mColor = color;
29635}
29636
29637/*!
29638 Sets the color of the text that will be used when the item is selected.
29639*/
29641{
29642 mSelectedColor = color;
29643}
29644
29645/*!
29646 Sets the pen that will be used do draw a rectangular border around the text. To disable the
29647 border, set \a pen to Qt::NoPen.
29648
29649 \see setSelectedPen, setBrush, setPadding
29650*/
29652{
29653 mPen = pen;
29654}
29655
29656/*!
29657 Sets the pen that will be used do draw a rectangular border around the text, when the item is
29658 selected. To disable the border, set \a pen to Qt::NoPen.
29659
29660 \see setPen
29661*/
29663{
29664 mSelectedPen = pen;
29665}
29666
29667/*!
29668 Sets the brush that will be used do fill the background of the text. To disable the
29669 background, set \a brush to Qt::NoBrush.
29670
29671 \see setSelectedBrush, setPen, setPadding
29672*/
29674{
29675 mBrush = brush;
29676}
29677
29678/*!
29679 Sets the brush that will be used do fill the background of the text, when the item is selected. To disable the
29680 background, set \a brush to Qt::NoBrush.
29681
29682 \see setBrush
29683*/
29685{
29686 mSelectedBrush = brush;
29687}
29688
29689/*!
29690 Sets the font of the text.
29691
29692 \see setSelectedFont, setColor
29693*/
29695{
29696 mFont = font;
29697}
29698
29699/*!
29700 Sets the font of the text that will be used when the item is selected.
29701
29702 \see setFont
29703*/
29705{
29706 mSelectedFont = font;
29707}
29708
29709/*!
29710 Sets the text that will be displayed. Multi-line texts are supported by inserting a line break
29711 character, e.g. '\n'.
29712
29713 \see setFont, setColor, setTextAlignment
29714*/
29716{
29717 mText = text;
29718}
29719
29720/*!
29721 Sets which point of the text rect shall be aligned with \a position.
29722
29723 Examples:
29724 \li If \a alignment is <tt>Qt::AlignHCenter | Qt::AlignTop</tt>, the text will be positioned such
29725 that the top of the text rect will be horizontally centered on \a position.
29726 \li If \a alignment is <tt>Qt::AlignLeft | Qt::AlignBottom</tt>, \a position will indicate the
29727 bottom left corner of the text rect.
29728
29729 If you want to control the alignment of (multi-lined) text within the text rect, use \ref
29730 setTextAlignment.
29731*/
29733{
29734 mPositionAlignment = alignment;
29735}
29736
29737/*!
29738 Controls how (multi-lined) text is aligned inside the text rect (typically Qt::AlignLeft, Qt::AlignCenter or Qt::AlignRight).
29739*/
29741{
29742 mTextAlignment = alignment;
29743}
29744
29745/*!
29746 Sets the angle in degrees by which the text (and the text rectangle, if visible) will be rotated
29747 around \a position.
29748*/
29750{
29751 mRotation = degrees;
29752}
29753
29754/*!
29755 Sets the distance between the border of the text rectangle and the text. The appearance (and
29756 visibility) of the text rectangle can be controlled with \ref setPen and \ref setBrush.
29757*/
29759{
29760 mPadding = padding;
29761}
29762
29763/* inherits documentation from base class */
29764double QCPItemText::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
29765{
29766 Q_UNUSED(details)
29767 if (onlySelectable && !mSelectable)
29768 return -1;
29769
29770 // The rect may be rotated, so we transform the actual clicked pos to the rotated
29771 // coordinate system, so we can use the normal rectDistance function for non-rotated rects:
29774 inputTransform.translate(positionPixels.x(), positionPixels.y());
29775 inputTransform.rotate(-mRotation);
29776 inputTransform.translate(-positionPixels.x(), -positionPixels.y());
29778 QFontMetrics fontMetrics(mFont);
29779 QRect textRect = fontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip|mTextAlignment, mText);
29780 QRect textBoxRect = textRect.adjusted(-mPadding.left(), -mPadding.top(), mPadding.right(), mPadding.bottom());
29782 textBoxRect.moveTopLeft(textPos.toPoint());
29783
29784 return rectDistance(textBoxRect, rotatedPos, true);
29785}
29786
29787/* inherits documentation from base class */
29789{
29790 QPointF pos(position->pixelPosition());
29791 QTransform transform = painter->transform();
29792 transform.translate(pos.x(), pos.y());
29793 if (!qFuzzyIsNull(mRotation))
29794 transform.rotate(mRotation);
29795 painter->setFont(mainFont());
29796 QRect textRect = painter->fontMetrics().boundingRect(0, 0, 0, 0, Qt::TextDontClip|mTextAlignment, mText);
29797 QRect textBoxRect = textRect.adjusted(-mPadding.left(), -mPadding.top(), mPadding.right(), mPadding.bottom());
29798 QPointF textPos = getTextDrawPoint(QPointF(0, 0), textBoxRect, mPositionAlignment); // 0, 0 because the transform does the translation
29799 textRect.moveTopLeft(textPos.toPoint()+QPoint(mPadding.left(), mPadding.top()));
29800 textBoxRect.moveTopLeft(textPos.toPoint());
29801 int clipPad = qCeil(mainPen().widthF());
29802 QRect boundingRect = textBoxRect.adjusted(-clipPad, -clipPad, clipPad, clipPad);
29803 if (transform.mapRect(boundingRect).intersects(painter->transform().mapRect(clipRect())))
29804 {
29805 painter->setTransform(transform);
29806 if ((mainBrush().style() != Qt::NoBrush && mainBrush().color().alpha() != 0) ||
29807 (mainPen().style() != Qt::NoPen && mainPen().color().alpha() != 0))
29808 {
29809 painter->setPen(mainPen());
29810 painter->setBrush(mainBrush());
29811 painter->drawRect(textBoxRect);
29812 }
29813 painter->setBrush(Qt::NoBrush);
29814 painter->setPen(QPen(mainColor()));
29815 painter->drawText(textRect, Qt::TextDontClip|mTextAlignment, mText);
29816 }
29817}
29818
29819/* inherits documentation from base class */
29821{
29822 // get actual rect points (pretty much copied from draw function):
29823 QPointF pos(position->pixelPosition());
29824 QTransform transform;
29825 transform.translate(pos.x(), pos.y());
29826 if (!qFuzzyIsNull(mRotation))
29827 transform.rotate(mRotation);
29828 QFontMetrics fontMetrics(mainFont());
29829 QRect textRect = fontMetrics.boundingRect(0, 0, 0, 0, Qt::TextDontClip|mTextAlignment, mText);
29830 QRectF textBoxRect = textRect.adjusted(-mPadding.left(), -mPadding.top(), mPadding.right(), mPadding.bottom());
29831 QPointF textPos = getTextDrawPoint(QPointF(0, 0), textBoxRect, mPositionAlignment); // 0, 0 because the transform does the translation
29832 textBoxRect.moveTopLeft(textPos.toPoint());
29833 QPolygonF rectPoly = transform.map(QPolygonF(textBoxRect));
29834
29835 switch (anchorId)
29836 {
29837 case aiTopLeft: return rectPoly.at(0);
29838 case aiTop: return (rectPoly.at(0)+rectPoly.at(1))*0.5;
29839 case aiTopRight: return rectPoly.at(1);
29840 case aiRight: return (rectPoly.at(1)+rectPoly.at(2))*0.5;
29841 case aiBottomRight: return rectPoly.at(2);
29842 case aiBottom: return (rectPoly.at(2)+rectPoly.at(3))*0.5;
29843 case aiBottomLeft: return rectPoly.at(3);
29844 case aiLeft: return (rectPoly.at(3)+rectPoly.at(0))*0.5;
29845 }
29846
29847 qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
29848 return {};
29849}
29850
29851/*! \internal
29852
29853 Returns the point that must be given to the QPainter::drawText function (which expects the top
29854 left point of the text rect), according to the position \a pos, the text bounding box \a rect and
29855 the requested \a positionAlignment.
29856
29857 For example, if \a positionAlignment is <tt>Qt::AlignLeft | Qt::AlignBottom</tt> the returned point
29858 will be shifted upward by the height of \a rect, starting from \a pos. So if the text is finally
29859 drawn at that point, the lower left corner of the resulting text rect is at \a pos.
29860*/
29861QPointF QCPItemText::getTextDrawPoint(const QPointF &pos, const QRectF &rect, Qt::Alignment positionAlignment) const
29862{
29863 if (positionAlignment == 0 || positionAlignment == (Qt::AlignLeft|Qt::AlignTop))
29864 return pos;
29865
29866 QPointF result = pos; // start at top left
29867 if (positionAlignment.testFlag(Qt::AlignHCenter))
29868 result.rx() -= rect.width()/2.0;
29869 else if (positionAlignment.testFlag(Qt::AlignRight))
29870 result.rx() -= rect.width();
29871 if (positionAlignment.testFlag(Qt::AlignVCenter))
29872 result.ry() -= rect.height()/2.0;
29873 else if (positionAlignment.testFlag(Qt::AlignBottom))
29874 result.ry() -= rect.height();
29875 return result;
29876}
29877
29878/*! \internal
29879
29880 Returns the font that should be used for drawing text. Returns mFont when the item is not selected
29881 and mSelectedFont when it is.
29882*/
29884{
29885 return mSelected ? mSelectedFont : mFont;
29886}
29887
29888/*! \internal
29889
29890 Returns the color that should be used for drawing text. Returns mColor when the item is not
29891 selected and mSelectedColor when it is.
29892*/
29894{
29895 return mSelected ? mSelectedColor : mColor;
29896}
29897
29898/*! \internal
29899
29900 Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
29901 and mSelectedPen when it is.
29902*/
29904{
29905 return mSelected ? mSelectedPen : mPen;
29906}
29907
29908/*! \internal
29909
29910 Returns the brush that should be used for drawing fills of the item. Returns mBrush when the item
29911 is not selected and mSelectedBrush when it is.
29912*/
29914{
29915 return mSelected ? mSelectedBrush : mBrush;
29916}
29917/* end of 'src/items/item-text.cpp' */
29918
29919
29920/* including file 'src/items/item-ellipse.cpp' */
29921/* modified 2021-03-29T02:30:44, size 7881 */
29922
29923////////////////////////////////////////////////////////////////////////////////////////////////////
29924//////////////////// QCPItemEllipse
29925////////////////////////////////////////////////////////////////////////////////////////////////////
29926
29927/*! \class QCPItemEllipse
29928 \brief An ellipse
29929
29930 \image html QCPItemEllipse.png "Ellipse example. Blue dotted circles are anchors, solid blue discs are positions."
29931
29932 It has two positions, \a topLeft and \a bottomRight, which define the rect the ellipse will be drawn in.
29933*/
29934
29935/*!
29936 Creates an ellipse item and sets default values.
29937
29938 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
29939 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
29940*/
29942 QCPAbstractItem(parentPlot),
29943 topLeft(createPosition(QLatin1String("topLeft"))),
29944 bottomRight(createPosition(QLatin1String("bottomRight"))),
29945 topLeftRim(createAnchor(QLatin1String("topLeftRim"), aiTopLeftRim)),
29946 top(createAnchor(QLatin1String("top"), aiTop)),
29947 topRightRim(createAnchor(QLatin1String("topRightRim"), aiTopRightRim)),
29948 right(createAnchor(QLatin1String("right"), aiRight)),
29949 bottomRightRim(createAnchor(QLatin1String("bottomRightRim"), aiBottomRightRim)),
29950 bottom(createAnchor(QLatin1String("bottom"), aiBottom)),
29951 bottomLeftRim(createAnchor(QLatin1String("bottomLeftRim"), aiBottomLeftRim)),
29952 left(createAnchor(QLatin1String("left"), aiLeft)),
29953 center(createAnchor(QLatin1String("center"), aiCenter))
29954{
29955 topLeft->setCoords(0, 1);
29956 bottomRight->setCoords(1, 0);
29957
29962}
29963
29964QCPItemEllipse::~QCPItemEllipse()
29965{
29966}
29967
29968/*!
29969 Sets the pen that will be used to draw the line of the ellipse
29970
29971 \see setSelectedPen, setBrush
29972*/
29974{
29975 mPen = pen;
29976}
29977
29978/*!
29979 Sets the pen that will be used to draw the line of the ellipse when selected
29980
29981 \see setPen, setSelected
29982*/
29984{
29985 mSelectedPen = pen;
29986}
29987
29988/*!
29989 Sets the brush that will be used to fill the ellipse. To disable filling, set \a brush to
29990 Qt::NoBrush.
29991
29992 \see setSelectedBrush, setPen
29993*/
29995{
29996 mBrush = brush;
29997}
29998
29999/*!
30000 Sets the brush that will be used to fill the ellipse when selected. To disable filling, set \a
30001 brush to Qt::NoBrush.
30002
30003 \see setBrush
30004*/
30006{
30007 mSelectedBrush = brush;
30008}
30009
30010/* inherits documentation from base class */
30011double QCPItemEllipse::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
30012{
30013 Q_UNUSED(details)
30014 if (onlySelectable && !mSelectable)
30015 return -1;
30016
30017 QPointF p1 = topLeft->pixelPosition();
30018 QPointF p2 = bottomRight->pixelPosition();
30019 QPointF center((p1+p2)/2.0);
30020 double a = qAbs(p1.x()-p2.x())/2.0;
30021 double b = qAbs(p1.y()-p2.y())/2.0;
30022 double x = pos.x()-center.x();
30023 double y = pos.y()-center.y();
30024
30025 // distance to border:
30026 double c = 1.0/qSqrt(x*x/(a*a)+y*y/(b*b));
30027 double result = qAbs(c-1)*qSqrt(x*x+y*y);
30028 // filled ellipse, allow click inside to count as hit:
30029 if (result > mParentPlot->selectionTolerance()*0.99 && mBrush.style() != Qt::NoBrush && mBrush.color().alpha() != 0)
30030 {
30031 if (x*x/(a*a) + y*y/(b*b) <= 1)
30032 result = mParentPlot->selectionTolerance()*0.99;
30033 }
30034 return result;
30035}
30036
30037/* inherits documentation from base class */
30039{
30040 QPointF p1 = topLeft->pixelPosition();
30041 QPointF p2 = bottomRight->pixelPosition();
30042 if (p1.toPoint() == p2.toPoint())
30043 return;
30044 QRectF ellipseRect = QRectF(p1, p2).normalized();
30045 const int clipEnlarge = qCeil(mainPen().widthF());
30047 if (ellipseRect.intersects(clip)) // only draw if bounding rect of ellipse is visible in cliprect
30048 {
30049 painter->setPen(mainPen());
30050 painter->setBrush(mainBrush());
30051#ifdef __EXCEPTIONS
30052 try // drawEllipse sometimes throws exceptions if ellipse is too big
30053 {
30054#endif
30055 painter->drawEllipse(ellipseRect);
30056#ifdef __EXCEPTIONS
30057 } catch (...)
30058 {
30059 qDebug() << Q_FUNC_INFO << "Item too large for memory, setting invisible";
30060 setVisible(false);
30061 }
30062#endif
30063 }
30064}
30065
30066/* inherits documentation from base class */
30068{
30069 QRectF rect = QRectF(topLeft->pixelPosition(), bottomRight->pixelPosition());
30070 switch (anchorId)
30071 {
30072 case aiTopLeftRim: return rect.center()+(rect.topLeft()-rect.center())*1/qSqrt(2);
30073 case aiTop: return (rect.topLeft()+rect.topRight())*0.5;
30074 case aiTopRightRim: return rect.center()+(rect.topRight()-rect.center())*1/qSqrt(2);
30075 case aiRight: return (rect.topRight()+rect.bottomRight())*0.5;
30076 case aiBottomRightRim: return rect.center()+(rect.bottomRight()-rect.center())*1/qSqrt(2);
30077 case aiBottom: return (rect.bottomLeft()+rect.bottomRight())*0.5;
30078 case aiBottomLeftRim: return rect.center()+(rect.bottomLeft()-rect.center())*1/qSqrt(2);
30079 case aiLeft: return (rect.topLeft()+rect.bottomLeft())*0.5;
30080 case aiCenter: return (rect.topLeft()+rect.bottomRight())*0.5;
30081 }
30082
30083 qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
30084 return {};
30085}
30086
30087/*! \internal
30088
30089 Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
30090 and mSelectedPen when it is.
30091*/
30093{
30094 return mSelected ? mSelectedPen : mPen;
30095}
30096
30097/*! \internal
30098
30099 Returns the brush that should be used for drawing fills of the item. Returns mBrush when the item
30100 is not selected and mSelectedBrush when it is.
30101*/
30103{
30104 return mSelected ? mSelectedBrush : mBrush;
30105}
30106/* end of 'src/items/item-ellipse.cpp' */
30107
30108
30109/* including file 'src/items/item-pixmap.cpp' */
30110/* modified 2021-03-29T02:30:44, size 10622 */
30111
30112////////////////////////////////////////////////////////////////////////////////////////////////////
30113//////////////////// QCPItemPixmap
30114////////////////////////////////////////////////////////////////////////////////////////////////////
30115
30116/*! \class QCPItemPixmap
30117 \brief An arbitrary pixmap
30118
30119 \image html QCPItemPixmap.png "Pixmap example. Blue dotted circles are anchors, solid blue discs are positions."
30120
30121 It has two positions, \a topLeft and \a bottomRight, which define the rectangle the pixmap will
30122 be drawn in. Depending on the scale setting (\ref setScaled), the pixmap will be either scaled to
30123 fit the rectangle or be drawn aligned to the topLeft position.
30124
30125 If scaling is enabled and \a topLeft is further to the bottom/right than \a bottomRight (as shown
30126 on the right side of the example image), the pixmap will be flipped in the respective
30127 orientations.
30128*/
30129
30130/*!
30131 Creates a rectangle item and sets default values.
30132
30133 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
30134 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
30135*/
30137 QCPAbstractItem(parentPlot),
30138 topLeft(createPosition(QLatin1String("topLeft"))),
30139 bottomRight(createPosition(QLatin1String("bottomRight"))),
30140 top(createAnchor(QLatin1String("top"), aiTop)),
30141 topRight(createAnchor(QLatin1String("topRight"), aiTopRight)),
30142 right(createAnchor(QLatin1String("right"), aiRight)),
30143 bottom(createAnchor(QLatin1String("bottom"), aiBottom)),
30144 bottomLeft(createAnchor(QLatin1String("bottomLeft"), aiBottomLeft)),
30145 left(createAnchor(QLatin1String("left"), aiLeft)),
30146 mScaled(false),
30147 mScaledPixmapInvalidated(true),
30148 mAspectRatioMode(Qt::KeepAspectRatio),
30149 mTransformationMode(Qt::SmoothTransformation)
30150{
30151 topLeft->setCoords(0, 1);
30152 bottomRight->setCoords(1, 0);
30153
30156}
30157
30158QCPItemPixmap::~QCPItemPixmap()
30159{
30160}
30161
30162/*!
30163 Sets the pixmap that will be displayed.
30164*/
30166{
30167 mPixmap = pixmap;
30168 mScaledPixmapInvalidated = true;
30169 if (mPixmap.isNull())
30170 qDebug() << Q_FUNC_INFO << "pixmap is null";
30171}
30172
30173/*!
30174 Sets whether the pixmap will be scaled to fit the rectangle defined by the \a topLeft and \a
30175 bottomRight positions.
30176*/
30177void QCPItemPixmap::setScaled(bool scaled, Qt::AspectRatioMode aspectRatioMode, Qt::TransformationMode transformationMode)
30178{
30179 mScaled = scaled;
30180 mAspectRatioMode = aspectRatioMode;
30181 mTransformationMode = transformationMode;
30182 mScaledPixmapInvalidated = true;
30183}
30184
30185/*!
30186 Sets the pen that will be used to draw a border around the pixmap.
30187
30188 \see setSelectedPen, setBrush
30189*/
30191{
30192 mPen = pen;
30193}
30194
30195/*!
30196 Sets the pen that will be used to draw a border around the pixmap when selected
30197
30198 \see setPen, setSelected
30199*/
30201{
30202 mSelectedPen = pen;
30203}
30204
30205/* inherits documentation from base class */
30206double QCPItemPixmap::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
30207{
30208 Q_UNUSED(details)
30209 if (onlySelectable && !mSelectable)
30210 return -1;
30211
30212 return rectDistance(getFinalRect(), pos, true);
30213}
30214
30215/* inherits documentation from base class */
30217{
30218 bool flipHorz = false;
30219 bool flipVert = false;
30221 int clipPad = mainPen().style() == Qt::NoPen ? 0 : qCeil(mainPen().widthF());
30222 QRect boundingRect = rect.adjusted(-clipPad, -clipPad, clipPad, clipPad);
30223 if (boundingRect.intersects(clipRect()))
30224 {
30226 painter->drawPixmap(rect.topLeft(), mScaled ? mScaledPixmap : mPixmap);
30227 QPen pen = mainPen();
30228 if (pen.style() != Qt::NoPen)
30229 {
30230 painter->setPen(pen);
30231 painter->setBrush(Qt::NoBrush);
30232 painter->drawRect(rect);
30233 }
30234 }
30235}
30236
30237/* inherits documentation from base class */
30239{
30240 bool flipHorz = false;
30241 bool flipVert = false;
30243 // we actually want denormal rects (negative width/height) here, so restore
30244 // the flipped state:
30245 if (flipHorz)
30246 rect.adjust(rect.width(), 0, -rect.width(), 0);
30247 if (flipVert)
30248 rect.adjust(0, rect.height(), 0, -rect.height());
30249
30250 switch (anchorId)
30251 {
30252 case aiTop: return (rect.topLeft()+rect.topRight())*0.5;
30253 case aiTopRight: return rect.topRight();
30254 case aiRight: return (rect.topRight()+rect.bottomRight())*0.5;
30255 case aiBottom: return (rect.bottomLeft()+rect.bottomRight())*0.5;
30256 case aiBottomLeft: return rect.bottomLeft();
30257 case aiLeft: return (rect.topLeft()+rect.bottomLeft())*0.5;
30258 }
30259
30260 qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
30261 return {};
30262}
30263
30264/*! \internal
30265
30266 Creates the buffered scaled image (\a mScaledPixmap) to fit the specified \a finalRect. The
30267 parameters \a flipHorz and \a flipVert control whether the resulting image shall be flipped
30268 horizontally or vertically. (This is used when \a topLeft is further to the bottom/right than \a
30269 bottomRight.)
30270
30271 This function only creates the scaled pixmap when the buffered pixmap has a different size than
30272 the expected result, so calling this function repeatedly, e.g. in the \ref draw function, does
30273 not cause expensive rescaling every time.
30274
30275 If scaling is disabled, sets mScaledPixmap to a null QPixmap.
30276*/
30278{
30279 if (mPixmap.isNull())
30280 return;
30281
30282 if (mScaled)
30283 {
30284#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
30285 double devicePixelRatio = mPixmap.devicePixelRatio();
30286#else
30287 double devicePixelRatio = 1.0;
30288#endif
30289 if (finalRect.isNull())
30291 if (mScaledPixmapInvalidated || finalRect.size() != mScaledPixmap.size()/devicePixelRatio)
30292 {
30293 mScaledPixmap = mPixmap.scaled(finalRect.size()*devicePixelRatio, mAspectRatioMode, mTransformationMode);
30294 if (flipHorz || flipVert)
30295 mScaledPixmap = QPixmap::fromImage(mScaledPixmap.toImage().mirrored(flipHorz, flipVert));
30296#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
30297 mScaledPixmap.setDevicePixelRatio(devicePixelRatio);
30298#endif
30299 }
30300 } else if (!mScaledPixmap.isNull())
30301 mScaledPixmap = QPixmap();
30302 mScaledPixmapInvalidated = false;
30303}
30304
30305/*! \internal
30306
30307 Returns the final (tight) rect the pixmap is drawn in, depending on the current item positions
30308 and scaling settings.
30309
30310 The output parameters \a flippedHorz and \a flippedVert return whether the pixmap should be drawn
30311 flipped horizontally or vertically in the returned rect. (The returned rect itself is always
30312 normalized, i.e. the top left corner of the rect is actually further to the top/left than the
30313 bottom right corner). This is the case when the item position \a topLeft is further to the
30314 bottom/right than \a bottomRight.
30315
30316 If scaling is disabled, returns a rect with size of the original pixmap and the top left corner
30317 aligned with the item position \a topLeft. The position \a bottomRight is ignored.
30318*/
30320{
30321 QRect result;
30322 bool flipHorz = false;
30323 bool flipVert = false;
30324 QPoint p1 = topLeft->pixelPosition().toPoint();
30325 QPoint p2 = bottomRight->pixelPosition().toPoint();
30326 if (p1 == p2)
30327 return {p1, QSize(0, 0)};
30328 if (mScaled)
30329 {
30330 QSize newSize = QSize(p2.x()-p1.x(), p2.y()-p1.y());
30331 QPoint topLeft = p1;
30332 if (newSize.width() < 0)
30333 {
30334 flipHorz = true;
30335 newSize.rwidth() *= -1;
30336 topLeft.setX(p2.x());
30337 }
30338 if (newSize.height() < 0)
30339 {
30340 flipVert = true;
30341 newSize.rheight() *= -1;
30342 topLeft.setY(p2.y());
30343 }
30344 QSize scaledSize = mPixmap.size();
30345#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
30346 scaledSize /= mPixmap.devicePixelRatio();
30347 scaledSize.scale(newSize*mPixmap.devicePixelRatio(), mAspectRatioMode);
30348#else
30349 scaledSize.scale(newSize, mAspectRatioMode);
30350#endif
30351 result = QRect(topLeft, scaledSize);
30352 } else
30353 {
30354#ifdef QCP_DEVICEPIXELRATIO_SUPPORTED
30355 result = QRect(p1, mPixmap.size()/mPixmap.devicePixelRatio());
30356#else
30357 result = QRect(p1, mPixmap.size());
30358#endif
30359 }
30360 if (flippedHorz)
30362 if (flippedVert)
30364 return result;
30365}
30366
30367/*! \internal
30368
30369 Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
30370 and mSelectedPen when it is.
30371*/
30373{
30374 return mSelected ? mSelectedPen : mPen;
30375}
30376/* end of 'src/items/item-pixmap.cpp' */
30377
30378
30379/* including file 'src/items/item-tracer.cpp' */
30380/* modified 2021-03-29T02:30:44, size 14645 */
30381
30382////////////////////////////////////////////////////////////////////////////////////////////////////
30383//////////////////// QCPItemTracer
30384////////////////////////////////////////////////////////////////////////////////////////////////////
30385
30386/*! \class QCPItemTracer
30387 \brief Item that sticks to QCPGraph data points
30388
30389 \image html QCPItemTracer.png "Tracer example. Blue dotted circles are anchors, solid blue discs are positions."
30390
30391 The tracer can be connected with a QCPGraph via \ref setGraph. Then it will automatically adopt
30392 the coordinate axes of the graph and update its \a position to be on the graph's data. This means
30393 the key stays controllable via \ref setGraphKey, but the value will follow the graph data. If a
30394 QCPGraph is connected, note that setting the coordinates of the tracer item directly via \a
30395 position will have no effect because they will be overriden in the next redraw (this is when the
30396 coordinate update happens).
30397
30398 If the specified key in \ref setGraphKey is outside the key bounds of the graph, the tracer will
30399 stay at the corresponding end of the graph.
30400
30401 With \ref setInterpolating you may specify whether the tracer may only stay exactly on data
30402 points or whether it interpolates data points linearly, if given a key that lies between two data
30403 points of the graph.
30404
30405 The tracer has different visual styles, see \ref setStyle. It is also possible to make the tracer
30406 have no own visual appearance (set the style to \ref tsNone), and just connect other item
30407 positions to the tracer \a position (used as an anchor) via \ref
30408 QCPItemPosition::setParentAnchor.
30409
30410 \note The tracer position is only automatically updated upon redraws. So when the data of the
30411 graph changes and immediately afterwards (without a redraw) the position coordinates of the
30412 tracer are retrieved, they will not reflect the updated data of the graph. In this case \ref
30413 updatePosition must be called manually, prior to reading the tracer coordinates.
30414*/
30415
30416/*!
30417 Creates a tracer item and sets default values.
30418
30419 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
30420 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
30421*/
30423 QCPAbstractItem(parentPlot),
30424 position(createPosition(QLatin1String("position"))),
30425 mSize(6),
30426 mStyle(tsCrosshair),
30427 mGraph(nullptr),
30428 mGraphKey(0),
30429 mInterpolating(false)
30430{
30431 position->setCoords(0, 0);
30432
30437}
30438
30439QCPItemTracer::~QCPItemTracer()
30440{
30441}
30442
30443/*!
30444 Sets the pen that will be used to draw the line of the tracer
30445
30446 \see setSelectedPen, setBrush
30447*/
30449{
30450 mPen = pen;
30451}
30452
30453/*!
30454 Sets the pen that will be used to draw the line of the tracer when selected
30455
30456 \see setPen, setSelected
30457*/
30459{
30460 mSelectedPen = pen;
30461}
30462
30463/*!
30464 Sets the brush that will be used to draw any fills of the tracer
30465
30466 \see setSelectedBrush, setPen
30467*/
30469{
30470 mBrush = brush;
30471}
30472
30473/*!
30474 Sets the brush that will be used to draw any fills of the tracer, when selected.
30475
30476 \see setBrush, setSelected
30477*/
30479{
30480 mSelectedBrush = brush;
30481}
30482
30483/*!
30484 Sets the size of the tracer in pixels, if the style supports setting a size (e.g. \ref tsSquare
30485 does, \ref tsCrosshair does not).
30486*/
30487void QCPItemTracer::setSize(double size)
30488{
30489 mSize = size;
30490}
30491
30492/*!
30493 Sets the style/visual appearance of the tracer.
30494
30495 If you only want to use the tracer \a position as an anchor for other items, set \a style to
30496 \ref tsNone.
30497*/
30499{
30500 mStyle = style;
30501}
30502
30503/*!
30504 Sets the QCPGraph this tracer sticks to. The tracer \a position will be set to type
30505 QCPItemPosition::ptPlotCoords and the axes will be set to the axes of \a graph.
30506
30507 To free the tracer from any graph, set \a graph to \c nullptr. The tracer \a position can then be
30508 placed freely like any other item position. This is the state the tracer will assume when its
30509 graph gets deleted while still attached to it.
30510
30511 \see setGraphKey
30512*/
30514{
30515 if (graph)
30516 {
30517 if (graph->parentPlot() == mParentPlot)
30518 {
30520 position->setAxes(graph->keyAxis(), graph->valueAxis());
30521 mGraph = graph;
30523 } else
30524 qDebug() << Q_FUNC_INFO << "graph isn't in same QCustomPlot instance as this item";
30525 } else
30526 {
30527 mGraph = nullptr;
30528 }
30529}
30530
30531/*!
30532 Sets the key of the graph's data point the tracer will be positioned at. This is the only free
30533 coordinate of a tracer when attached to a graph.
30534
30535 Depending on \ref setInterpolating, the tracer will be either positioned on the data point
30536 closest to \a key, or will stay exactly at \a key and interpolate the value linearly.
30537
30538 \see setGraph, setInterpolating
30539*/
30541{
30542 mGraphKey = key;
30543}
30544
30545/*!
30546 Sets whether the value of the graph's data points shall be interpolated, when positioning the
30547 tracer.
30548
30549 If \a enabled is set to false and a key is given with \ref setGraphKey, the tracer is placed on
30550 the data point of the graph which is closest to the key, but which is not necessarily exactly
30551 there. If \a enabled is true, the tracer will be positioned exactly at the specified key, and
30552 the appropriate value will be interpolated from the graph's data points linearly.
30553
30554 \see setGraph, setGraphKey
30555*/
30557{
30558 mInterpolating = enabled;
30559}
30560
30561/* inherits documentation from base class */
30562double QCPItemTracer::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
30563{
30564 Q_UNUSED(details)
30565 if (onlySelectable && !mSelectable)
30566 return -1;
30567
30568 QPointF center(position->pixelPosition());
30569 double w = mSize/2.0;
30570 QRect clip = clipRect();
30571 switch (mStyle)
30572 {
30573 case tsNone: return -1;
30574 case tsPlus:
30575 {
30576 if (clipRect().intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
30577 return qSqrt(qMin(QCPVector2D(pos).distanceSquaredToLine(center+QPointF(-w, 0), center+QPointF(w, 0)),
30578 QCPVector2D(pos).distanceSquaredToLine(center+QPointF(0, -w), center+QPointF(0, w))));
30579 break;
30580 }
30581 case tsCrosshair:
30582 {
30583 return qSqrt(qMin(QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(clip.left(), center.y()), QCPVector2D(clip.right(), center.y())),
30584 QCPVector2D(pos).distanceSquaredToLine(QCPVector2D(center.x(), clip.top()), QCPVector2D(center.x(), clip.bottom()))));
30585 }
30586 case tsCircle:
30587 {
30588 if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
30589 {
30590 // distance to border:
30591 double centerDist = QCPVector2D(center-pos).length();
30592 double circleLine = w;
30593 double result = qAbs(centerDist-circleLine);
30594 // filled ellipse, allow click inside to count as hit:
30595 if (result > mParentPlot->selectionTolerance()*0.99 && mBrush.style() != Qt::NoBrush && mBrush.color().alpha() != 0)
30596 {
30597 if (centerDist <= circleLine)
30598 result = mParentPlot->selectionTolerance()*0.99;
30599 }
30600 return result;
30601 }
30602 break;
30603 }
30604 case tsSquare:
30605 {
30606 if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
30607 {
30608 QRectF rect = QRectF(center-QPointF(w, w), center+QPointF(w, w));
30609 bool filledRect = mBrush.style() != Qt::NoBrush && mBrush.color().alpha() != 0;
30610 return rectDistance(rect, pos, filledRect);
30611 }
30612 break;
30613 }
30614 }
30615 return -1;
30616}
30617
30618/* inherits documentation from base class */
30620{
30622 if (mStyle == tsNone)
30623 return;
30624
30625 painter->setPen(mainPen());
30626 painter->setBrush(mainBrush());
30627 QPointF center(position->pixelPosition());
30628 double w = mSize/2.0;
30629 QRect clip = clipRect();
30630 switch (mStyle)
30631 {
30632 case tsNone: return;
30633 case tsPlus:
30634 {
30635 if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
30636 {
30637 painter->drawLine(QLineF(center+QPointF(-w, 0), center+QPointF(w, 0)));
30638 painter->drawLine(QLineF(center+QPointF(0, -w), center+QPointF(0, w)));
30639 }
30640 break;
30641 }
30642 case tsCrosshair:
30643 {
30644 if (center.y() > clip.top() && center.y() < clip.bottom())
30645 painter->drawLine(QLineF(clip.left(), center.y(), clip.right(), center.y()));
30646 if (center.x() > clip.left() && center.x() < clip.right())
30647 painter->drawLine(QLineF(center.x(), clip.top(), center.x(), clip.bottom()));
30648 break;
30649 }
30650 case tsCircle:
30651 {
30652 if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
30653 painter->drawEllipse(center, w, w);
30654 break;
30655 }
30656 case tsSquare:
30657 {
30658 if (clip.intersects(QRectF(center-QPointF(w, w), center+QPointF(w, w)).toRect()))
30659 painter->drawRect(QRectF(center-QPointF(w, w), center+QPointF(w, w)));
30660 break;
30661 }
30662 }
30663}
30664
30665/*!
30666 If the tracer is connected with a graph (\ref setGraph), this function updates the tracer's \a
30667 position to reside on the graph data, depending on the configured key (\ref setGraphKey).
30668
30669 It is called automatically on every redraw and normally doesn't need to be called manually. One
30670 exception is when you want to read the tracer coordinates via \a position and are not sure that
30671 the graph's data (or the tracer key with \ref setGraphKey) hasn't changed since the last redraw.
30672 In that situation, call this function before accessing \a position, to make sure you don't get
30673 out-of-date coordinates.
30674
30675 If there is no graph set on this tracer, this function does nothing.
30676*/
30678{
30679 if (mGraph)
30680 {
30681 if (mParentPlot->hasPlottable(mGraph))
30682 {
30683 if (mGraph->data()->size() > 1)
30684 {
30685 QCPGraphDataContainer::const_iterator first = mGraph->data()->constBegin();
30686 QCPGraphDataContainer::const_iterator last = mGraph->data()->constEnd()-1;
30687 if (mGraphKey <= first->key)
30688 position->setCoords(first->key, first->value);
30689 else if (mGraphKey >= last->key)
30690 position->setCoords(last->key, last->value);
30691 else
30692 {
30693 QCPGraphDataContainer::const_iterator it = mGraph->data()->findBegin(mGraphKey);
30694 if (it != mGraph->data()->constEnd()) // mGraphKey is not exactly on last iterator, but somewhere between iterators
30695 {
30697 ++it; // won't advance to constEnd because we handled that case (mGraphKey >= last->key) before
30698 if (mInterpolating)
30699 {
30700 // interpolate between iterators around mGraphKey:
30701 double slope = 0;
30702 if (!qFuzzyCompare(double(it->key), double(prevIt->key)))
30703 slope = (it->value-prevIt->value)/(it->key-prevIt->key);
30704 position->setCoords(mGraphKey, (mGraphKey-prevIt->key)*slope+prevIt->value);
30705 } else
30706 {
30707 // find iterator with key closest to mGraphKey:
30708 if (mGraphKey < (prevIt->key+it->key)*0.5)
30709 position->setCoords(prevIt->key, prevIt->value);
30710 else
30711 position->setCoords(it->key, it->value);
30712 }
30713 } else // mGraphKey is exactly on last iterator (should actually be caught when comparing first/last keys, but this is a failsafe for fp uncertainty)
30714 position->setCoords(it->key, it->value);
30715 }
30716 } else if (mGraph->data()->size() == 1)
30717 {
30718 QCPGraphDataContainer::const_iterator it = mGraph->data()->constBegin();
30719 position->setCoords(it->key, it->value);
30720 } else
30721 qDebug() << Q_FUNC_INFO << "graph has no data";
30722 } else
30723 qDebug() << Q_FUNC_INFO << "graph not contained in QCustomPlot instance (anymore)";
30724 }
30725}
30726
30727/*! \internal
30728
30729 Returns the pen that should be used for drawing lines. Returns mPen when the item is not selected
30730 and mSelectedPen when it is.
30731*/
30733{
30734 return mSelected ? mSelectedPen : mPen;
30735}
30736
30737/*! \internal
30738
30739 Returns the brush that should be used for drawing fills of the item. Returns mBrush when the item
30740 is not selected and mSelectedBrush when it is.
30741*/
30743{
30744 return mSelected ? mSelectedBrush : mBrush;
30745}
30746/* end of 'src/items/item-tracer.cpp' */
30747
30748
30749/* including file 'src/items/item-bracket.cpp' */
30750/* modified 2021-03-29T02:30:44, size 10705 */
30751
30752////////////////////////////////////////////////////////////////////////////////////////////////////
30753//////////////////// QCPItemBracket
30754////////////////////////////////////////////////////////////////////////////////////////////////////
30755
30756/*! \class QCPItemBracket
30757 \brief A bracket for referencing/highlighting certain parts in the plot.
30758
30759 \image html QCPItemBracket.png "Bracket example. Blue dotted circles are anchors, solid blue discs are positions."
30760
30761 It has two positions, \a left and \a right, which define the span of the bracket. If \a left is
30762 actually farther to the left than \a right, the bracket is opened to the bottom, as shown in the
30763 example image.
30764
30765 The bracket supports multiple styles via \ref setStyle. The length, i.e. how far the bracket
30766 stretches away from the embraced span, can be controlled with \ref setLength.
30767
30768 \image html QCPItemBracket-length.png
30769 <center>Demonstrating the effect of different values for \ref setLength, for styles \ref
30770 bsCalligraphic and \ref bsSquare. Anchors and positions are displayed for reference.</center>
30771
30772 It provides an anchor \a center, to allow connection of other items, e.g. an arrow (QCPItemLine
30773 or QCPItemCurve) or a text label (QCPItemText), to the bracket.
30774*/
30775
30776/*!
30777 Creates a bracket item and sets default values.
30778
30779 The created item is automatically registered with \a parentPlot. This QCustomPlot instance takes
30780 ownership of the item, so do not delete it manually but use QCustomPlot::removeItem() instead.
30781*/
30783 QCPAbstractItem(parentPlot),
30784 left(createPosition(QLatin1String("left"))),
30785 right(createPosition(QLatin1String("right"))),
30786 center(createAnchor(QLatin1String("center"), aiCenter)),
30787 mLength(8),
30788 mStyle(bsCalligraphic)
30789{
30790 left->setCoords(0, 0);
30791 right->setCoords(1, 1);
30792
30795}
30796
30797QCPItemBracket::~QCPItemBracket()
30798{
30799}
30800
30801/*!
30802 Sets the pen that will be used to draw the bracket.
30803
30804 Note that when the style is \ref bsCalligraphic, only the color will be taken from the pen, the
30805 stroke and width are ignored. To change the apparent stroke width of a calligraphic bracket, use
30806 \ref setLength, which has a similar effect.
30807
30808 \see setSelectedPen
30809*/
30811{
30812 mPen = pen;
30813}
30814
30815/*!
30816 Sets the pen that will be used to draw the bracket when selected
30817
30818 \see setPen, setSelected
30819*/
30821{
30822 mSelectedPen = pen;
30823}
30824
30825/*!
30826 Sets the \a length in pixels how far the bracket extends in the direction towards the embraced
30827 span of the bracket (i.e. perpendicular to the <i>left</i>-<i>right</i>-direction)
30828
30829 \image html QCPItemBracket-length.png
30830 <center>Demonstrating the effect of different values for \ref setLength, for styles \ref
30831 bsCalligraphic and \ref bsSquare. Anchors and positions are displayed for reference.</center>
30832*/
30833void QCPItemBracket::setLength(double length)
30834{
30835 mLength = length;
30836}
30837
30838/*!
30839 Sets the style of the bracket, i.e. the shape/visual appearance.
30840
30841 \see setPen
30842*/
30844{
30845 mStyle = style;
30846}
30847
30848/* inherits documentation from base class */
30849double QCPItemBracket::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
30850{
30851 Q_UNUSED(details)
30852 if (onlySelectable && !mSelectable)
30853 return -1;
30854
30855 QCPVector2D p(pos);
30858 if (leftVec.toPoint() == rightVec.toPoint())
30859 return -1;
30860
30862 QCPVector2D lengthVec = widthVec.perpendicular().normalized()*mLength;
30864
30865 switch (mStyle)
30866 {
30869 {
30873 return qSqrt(qMin(qMin(a, b), c));
30874 }
30877 {
30882 return qSqrt(qMin(qMin(a, b), qMin(c, d)));
30883 }
30884 }
30885 return -1;
30886}
30887
30888/* inherits documentation from base class */
30890{
30893 if (leftVec.toPoint() == rightVec.toPoint())
30894 return;
30895
30897 QCPVector2D lengthVec = widthVec.perpendicular().normalized()*mLength;
30899
30901 boundingPoly << leftVec.toPoint() << rightVec.toPoint()
30902 << (rightVec-lengthVec).toPoint() << (leftVec-lengthVec).toPoint();
30903 const int clipEnlarge = qCeil(mainPen().widthF());
30905 if (clip.intersects(boundingPoly.boundingRect()))
30906 {
30907 painter->setPen(mainPen());
30908 switch (mStyle)
30909 {
30910 case bsSquare:
30911 {
30912 painter->drawLine((centerVec+widthVec).toPointF(), (centerVec-widthVec).toPointF());
30913 painter->drawLine((centerVec+widthVec).toPointF(), (centerVec+widthVec+lengthVec).toPointF());
30914 painter->drawLine((centerVec-widthVec).toPointF(), (centerVec-widthVec+lengthVec).toPointF());
30915 break;
30916 }
30917 case bsRound:
30918 {
30919 painter->setBrush(Qt::NoBrush);
30920 QPainterPath path;
30921 path.moveTo((centerVec+widthVec+lengthVec).toPointF());
30922 path.cubicTo((centerVec+widthVec).toPointF(), (centerVec+widthVec).toPointF(), centerVec.toPointF());
30923 path.cubicTo((centerVec-widthVec).toPointF(), (centerVec-widthVec).toPointF(), (centerVec-widthVec+lengthVec).toPointF());
30924 painter->drawPath(path);
30925 break;
30926 }
30927 case bsCurly:
30928 {
30929 painter->setBrush(Qt::NoBrush);
30930 QPainterPath path;
30931 path.moveTo((centerVec+widthVec+lengthVec).toPointF());
30932 path.cubicTo((centerVec+widthVec-lengthVec*0.8).toPointF(), (centerVec+0.4*widthVec+lengthVec).toPointF(), centerVec.toPointF());
30933 path.cubicTo((centerVec-0.4*widthVec+lengthVec).toPointF(), (centerVec-widthVec-lengthVec*0.8).toPointF(), (centerVec-widthVec+lengthVec).toPointF());
30934 painter->drawPath(path);
30935 break;
30936 }
30937 case bsCalligraphic:
30938 {
30939 painter->setPen(Qt::NoPen);
30940 painter->setBrush(QBrush(mainPen().color()));
30941 QPainterPath path;
30942 path.moveTo((centerVec+widthVec+lengthVec).toPointF());
30943
30944 path.cubicTo((centerVec+widthVec-lengthVec*0.8).toPointF(), (centerVec+0.4*widthVec+0.8*lengthVec).toPointF(), centerVec.toPointF());
30945 path.cubicTo((centerVec-0.4*widthVec+0.8*lengthVec).toPointF(), (centerVec-widthVec-lengthVec*0.8).toPointF(), (centerVec-widthVec+lengthVec).toPointF());
30946
30947 path.cubicTo((centerVec-widthVec-lengthVec*0.5).toPointF(), (centerVec-0.2*widthVec+1.2*lengthVec).toPointF(), (centerVec+lengthVec*0.2).toPointF());
30948 path.cubicTo((centerVec+0.2*widthVec+1.2*lengthVec).toPointF(), (centerVec+widthVec-lengthVec*0.5).toPointF(), (centerVec+widthVec+lengthVec).toPointF());
30949
30950 painter->drawPath(path);
30951 break;
30952 }
30953 }
30954 }
30955}
30956
30957/* inherits documentation from base class */
30959{
30962 if (leftVec.toPoint() == rightVec.toPoint())
30963 return leftVec.toPointF();
30964
30966 QCPVector2D lengthVec = widthVec.perpendicular().normalized()*mLength;
30968
30969 switch (anchorId)
30970 {
30971 case aiCenter:
30972 return centerVec.toPointF();
30973 }
30974 qDebug() << Q_FUNC_INFO << "invalid anchorId" << anchorId;
30975 return {};
30976}
30977
30978/*! \internal
30979
30980 Returns the pen that should be used for drawing lines. Returns mPen when the
30981 item is not selected and mSelectedPen when it is.
30982*/
30984{
30985 return mSelected ? mSelectedPen : mPen;
30986}
30987/* end of 'src/items/item-bracket.cpp' */
30988
30989
30990/* including file 'src/polar/radialaxis.cpp' */
30991/* modified 2021-03-29T02:30:44, size 49415 */
30992
30993
30994
30995////////////////////////////////////////////////////////////////////////////////////////////////////
30996//////////////////// QCPPolarAxisRadial
30997////////////////////////////////////////////////////////////////////////////////////////////////////
30998
30999/*! \class QCPPolarAxisRadial
31000 \brief The radial axis inside a radial plot
31001
31002 \warning In this QCustomPlot version, polar plots are a tech preview. Expect documentation and
31003 functionality to be incomplete, as well as changing public interfaces in the future.
31004
31005 Each axis holds an instance of QCPAxisTicker which is used to generate the tick coordinates and
31006 tick labels. You can access the currently installed \ref ticker or set a new one (possibly one of
31007 the specialized subclasses, or your own subclass) via \ref setTicker. For details, see the
31008 documentation of QCPAxisTicker.
31009*/
31010
31011/* start of documentation of inline functions */
31012
31013/*! \fn QSharedPointer<QCPAxisTicker> QCPPolarAxisRadial::ticker() const
31014
31015 Returns a modifiable shared pointer to the currently installed axis ticker. The axis ticker is
31016 responsible for generating the tick positions and tick labels of this axis. You can access the
31017 \ref QCPAxisTicker with this method and modify basic properties such as the approximate tick count
31018 (\ref QCPAxisTicker::setTickCount).
31019
31020 You can gain more control over the axis ticks by setting a different \ref QCPAxisTicker subclass, see
31021 the documentation there. A new axis ticker can be set with \ref setTicker.
31022
31023 Since the ticker is stored in the axis as a shared pointer, multiple axes may share the same axis
31024 ticker simply by passing the same shared pointer to multiple axes.
31025
31026 \see setTicker
31027*/
31028
31029/* end of documentation of inline functions */
31030/* start of documentation of signals */
31031
31032/*! \fn void QCPPolarAxisRadial::rangeChanged(const QCPRange &newRange)
31033
31034 This signal is emitted when the range of this axis has changed. You can connect it to the \ref
31035 setRange slot of another axis to communicate the new range to the other axis, in order for it to
31036 be synchronized.
31037
31038 You may also manipulate/correct the range with \ref setRange in a slot connected to this signal.
31039 This is useful if for example a maximum range span shall not be exceeded, or if the lower/upper
31040 range shouldn't go beyond certain values (see \ref QCPRange::bounded). For example, the following
31041 slot would limit the x axis to ranges between 0 and 10:
31042 \code
31043 customPlot->xAxis->setRange(newRange.bounded(0, 10))
31044 \endcode
31045*/
31046
31047/*! \fn void QCPPolarAxisRadial::rangeChanged(const QCPRange &newRange, const QCPRange &oldRange)
31048 \overload
31049
31050 Additionally to the new range, this signal also provides the previous range held by the axis as
31051 \a oldRange.
31052*/
31053
31054/*! \fn void QCPPolarAxisRadial::scaleTypeChanged(QCPPolarAxisRadial::ScaleType scaleType);
31055
31056 This signal is emitted when the scale type changes, by calls to \ref setScaleType
31057*/
31058
31059/*! \fn void QCPPolarAxisRadial::selectionChanged(QCPPolarAxisRadial::SelectableParts selection)
31060
31061 This signal is emitted when the selection state of this axis has changed, either by user interaction
31062 or by a direct call to \ref setSelectedParts.
31063*/
31064
31065/*! \fn void QCPPolarAxisRadial::selectableChanged(const QCPPolarAxisRadial::SelectableParts &parts);
31066
31067 This signal is emitted when the selectability changes, by calls to \ref setSelectableParts
31068*/
31069
31070/* end of documentation of signals */
31071
31072/*!
31073 Constructs an Axis instance of Type \a type for the axis rect \a parent.
31074
31075 Usually it isn't necessary to instantiate axes directly, because you can let QCustomPlot create
31076 them for you with \ref QCPAxisRect::addAxis. If you want to use own QCPAxis-subclasses however,
31077 create them manually and then inject them also via \ref QCPAxisRect::addAxis.
31078*/
31080 QCPLayerable(parent->parentPlot(), QString(), parent),
31081 mRangeDrag(true),
31082 mRangeZoom(true),
31083 mRangeZoomFactor(0.85),
31084 // axis base:
31085 mAngularAxis(parent),
31086 mAngle(45),
31087 mAngleReference(arAngularAxis),
31088 mSelectableParts(spAxis | spTickLabels | spAxisLabel),
31089 mSelectedParts(spNone),
31090 mBasePen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
31091 mSelectedBasePen(QPen(Qt::blue, 2)),
31092 // axis label:
31093 mLabelPadding(0),
31094 mLabel(),
31095 mLabelFont(mParentPlot->font()),
31096 mSelectedLabelFont(QFont(mLabelFont.family(), mLabelFont.pointSize(), QFont::Bold)),
31097 mLabelColor(Qt::black),
31098 mSelectedLabelColor(Qt::blue),
31099 // tick labels:
31100 // mTickLabelPadding(0), in label painter
31101 mTickLabels(true),
31102 // mTickLabelRotation(0), in label painter
31103 mTickLabelFont(mParentPlot->font()),
31104 mSelectedTickLabelFont(QFont(mTickLabelFont.family(), mTickLabelFont.pointSize(), QFont::Bold)),
31105 mTickLabelColor(Qt::black),
31106 mSelectedTickLabelColor(Qt::blue),
31107 mNumberPrecision(6),
31108 mNumberFormatChar('g'),
31109 mNumberBeautifulPowers(true),
31110 mNumberMultiplyCross(false),
31111 // ticks and subticks:
31112 mTicks(true),
31113 mSubTicks(true),
31114 mTickLengthIn(5),
31115 mTickLengthOut(0),
31116 mSubTickLengthIn(2),
31117 mSubTickLengthOut(0),
31118 mTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
31119 mSelectedTickPen(QPen(Qt::blue, 2)),
31120 mSubTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
31121 mSelectedSubTickPen(QPen(Qt::blue, 2)),
31122 // scale and range:
31123 mRange(0, 5),
31124 mRangeReversed(false),
31125 mScaleType(stLinear),
31126 // internal members:
31127 mRadius(1), // non-zero initial value, will be overwritten in ::update() according to inner rect
31128 mTicker(new QCPAxisTicker),
31129 mLabelPainter(mParentPlot)
31130{
31132 setAntialiased(true);
31133
31136 setTickLabelMode(lmUpright);
31137 mLabelPainter.setAnchorReferenceType(QCPLabelPainterPrivate::artTangent);
31138 mLabelPainter.setAbbreviateDecimalPowers(false);
31139}
31140
31141QCPPolarAxisRadial::~QCPPolarAxisRadial()
31142{
31143}
31144
31145QCPPolarAxisRadial::LabelMode QCPPolarAxisRadial::tickLabelMode() const
31146{
31147 switch (mLabelPainter.anchorMode())
31148 {
31149 case QCPLabelPainterPrivate::amSkewedUpright: return lmUpright;
31150 case QCPLabelPainterPrivate::amSkewedRotated: return lmRotated;
31151 default: qDebug() << Q_FUNC_INFO << "invalid mode for polar axis"; break;
31152 }
31153 return lmUpright;
31154}
31155
31156/* No documentation as it is a property getter */
31157QString QCPPolarAxisRadial::numberFormat() const
31158{
31159 QString result;
31160 result.append(mNumberFormatChar);
31161 if (mNumberBeautifulPowers)
31162 {
31163 result.append(QLatin1Char('b'));
31164 if (mNumberMultiplyCross)
31165 result.append(QLatin1Char('c'));
31166 }
31167 return result;
31168}
31169
31170/* No documentation as it is a property getter */
31171int QCPPolarAxisRadial::tickLengthIn() const
31172{
31173 return mTickLengthIn;
31174}
31175
31176/* No documentation as it is a property getter */
31177int QCPPolarAxisRadial::tickLengthOut() const
31178{
31179 return mTickLengthOut;
31180}
31181
31182/* No documentation as it is a property getter */
31183int QCPPolarAxisRadial::subTickLengthIn() const
31184{
31185 return mSubTickLengthIn;
31186}
31187
31188/* No documentation as it is a property getter */
31189int QCPPolarAxisRadial::subTickLengthOut() const
31190{
31191 return mSubTickLengthOut;
31192}
31193
31194/* No documentation as it is a property getter */
31195int QCPPolarAxisRadial::labelPadding() const
31196{
31197 return mLabelPadding;
31198}
31199
31200void QCPPolarAxisRadial::setRangeDrag(bool enabled)
31201{
31202 mRangeDrag = enabled;
31203}
31204
31205void QCPPolarAxisRadial::setRangeZoom(bool enabled)
31206{
31207 mRangeZoom = enabled;
31208}
31209
31210void QCPPolarAxisRadial::setRangeZoomFactor(double factor)
31211{
31212 mRangeZoomFactor = factor;
31213}
31214
31215/*!
31216 Sets whether the axis uses a linear scale or a logarithmic scale.
31217
31218 Note that this method controls the coordinate transformation. For logarithmic scales, you will
31219 likely also want to use a logarithmic tick spacing and labeling, which can be achieved by setting
31220 the axis ticker to an instance of \ref QCPAxisTickerLog :
31221
31222 \snippet documentation/doc-code-snippets/mainwindow.cpp qcpaxisticker-log-creation
31223
31224 See the documentation of \ref QCPAxisTickerLog about the details of logarithmic axis tick
31225 creation.
31226
31227 \ref setNumberPrecision
31228*/
31230{
31231 if (mScaleType != type)
31232 {
31233 mScaleType = type;
31234 if (mScaleType == stLogarithmic)
31236 //mCachedMarginValid = false;
31237 emit scaleTypeChanged(mScaleType);
31238 }
31239}
31240
31241/*!
31242 Sets the range of the axis.
31243
31244 This slot may be connected with the \ref rangeChanged signal of another axis so this axis
31245 is always synchronized with the other axis range, when it changes.
31246
31247 To invert the direction of an axis, use \ref setRangeReversed.
31248*/
31250{
31251 if (range.lower == mRange.lower && range.upper == mRange.upper)
31252 return;
31253
31254 if (!QCPRange::validRange(range)) return;
31255 QCPRange oldRange = mRange;
31256 if (mScaleType == stLogarithmic)
31257 {
31258 mRange = range.sanitizedForLogScale();
31259 } else
31260 {
31261 mRange = range.sanitizedForLinScale();
31262 }
31263 emit rangeChanged(mRange);
31264 emit rangeChanged(mRange, oldRange);
31265}
31266
31267/*!
31268 Sets whether the user can (de-)select the parts in \a selectable by clicking on the QCustomPlot surface.
31269 (When \ref QCustomPlot::setInteractions contains iSelectAxes.)
31270
31271 However, even when \a selectable is set to a value not allowing the selection of a specific part,
31272 it is still possible to set the selection of this part manually, by calling \ref setSelectedParts
31273 directly.
31274
31275 \see SelectablePart, setSelectedParts
31276*/
31278{
31279 if (mSelectableParts != selectable)
31280 {
31281 mSelectableParts = selectable;
31282 emit selectableChanged(mSelectableParts);
31283 }
31284}
31285
31286/*!
31287 Sets the selected state of the respective axis parts described by \ref SelectablePart. When a part
31288 is selected, it uses a different pen/font.
31289
31290 The entire selection mechanism for axes is handled automatically when \ref
31291 QCustomPlot::setInteractions contains iSelectAxes. You only need to call this function when you
31292 wish to change the selection state manually.
31293
31294 This function can change the selection state of a part, independent of the \ref setSelectableParts setting.
31295
31296 emits the \ref selectionChanged signal when \a selected is different from the previous selection state.
31297
31298 \see SelectablePart, setSelectableParts, selectTest, setSelectedBasePen, setSelectedTickPen, setSelectedSubTickPen,
31299 setSelectedTickLabelFont, setSelectedLabelFont, setSelectedTickLabelColor, setSelectedLabelColor
31300*/
31302{
31303 if (mSelectedParts != selected)
31304 {
31305 mSelectedParts = selected;
31306 emit selectionChanged(mSelectedParts);
31307 }
31308}
31309
31310/*!
31311 \overload
31312
31313 Sets the lower and upper bound of the axis range.
31314
31315 To invert the direction of an axis, use \ref setRangeReversed.
31316
31317 There is also a slot to set a range, see \ref setRange(const QCPRange &range).
31318*/
31319void QCPPolarAxisRadial::setRange(double lower, double upper)
31320{
31321 if (lower == mRange.lower && upper == mRange.upper)
31322 return;
31323
31324 if (!QCPRange::validRange(lower, upper)) return;
31325 QCPRange oldRange = mRange;
31326 mRange.lower = lower;
31327 mRange.upper = upper;
31328 if (mScaleType == stLogarithmic)
31329 {
31330 mRange = mRange.sanitizedForLogScale();
31331 } else
31332 {
31333 mRange = mRange.sanitizedForLinScale();
31334 }
31335 emit rangeChanged(mRange);
31336 emit rangeChanged(mRange, oldRange);
31337}
31338
31339/*!
31340 \overload
31341
31342 Sets the range of the axis.
31343
31344 The \a position coordinate indicates together with the \a alignment parameter, where the new
31345 range will be positioned. \a size defines the size of the new axis range. \a alignment may be
31346 Qt::AlignLeft, Qt::AlignRight or Qt::AlignCenter. This will cause the left border, right border,
31347 or center of the range to be aligned with \a position. Any other values of \a alignment will
31348 default to Qt::AlignCenter.
31349*/
31350void QCPPolarAxisRadial::setRange(double position, double size, Qt::AlignmentFlag alignment)
31351{
31352 if (alignment == Qt::AlignLeft)
31353 setRange(position, position+size);
31354 else if (alignment == Qt::AlignRight)
31355 setRange(position-size, position);
31356 else // alignment == Qt::AlignCenter
31357 setRange(position-size/2.0, position+size/2.0);
31358}
31359
31360/*!
31361 Sets the lower bound of the axis range. The upper bound is not changed.
31362 \see setRange
31363*/
31365{
31366 if (mRange.lower == lower)
31367 return;
31368
31369 QCPRange oldRange = mRange;
31370 mRange.lower = lower;
31371 if (mScaleType == stLogarithmic)
31372 {
31373 mRange = mRange.sanitizedForLogScale();
31374 } else
31375 {
31376 mRange = mRange.sanitizedForLinScale();
31377 }
31378 emit rangeChanged(mRange);
31379 emit rangeChanged(mRange, oldRange);
31380}
31381
31382/*!
31383 Sets the upper bound of the axis range. The lower bound is not changed.
31384 \see setRange
31385*/
31387{
31388 if (mRange.upper == upper)
31389 return;
31390
31391 QCPRange oldRange = mRange;
31392 mRange.upper = upper;
31393 if (mScaleType == stLogarithmic)
31394 {
31395 mRange = mRange.sanitizedForLogScale();
31396 } else
31397 {
31398 mRange = mRange.sanitizedForLinScale();
31399 }
31400 emit rangeChanged(mRange);
31401 emit rangeChanged(mRange, oldRange);
31402}
31403
31404/*!
31405 Sets whether the axis range (direction) is displayed reversed. Normally, the values on horizontal
31406 axes increase left to right, on vertical axes bottom to top. When \a reversed is set to true, the
31407 direction of increasing values is inverted.
31408
31409 Note that the range and data interface stays the same for reversed axes, e.g. the \a lower part
31410 of the \ref setRange interface will still reference the mathematically smaller number than the \a
31411 upper part.
31412*/
31414{
31415 mRangeReversed = reversed;
31416}
31417
31418void QCPPolarAxisRadial::setAngle(double degrees)
31419{
31420 mAngle = degrees;
31421}
31422
31423void QCPPolarAxisRadial::setAngleReference(AngleReference reference)
31424{
31425 mAngleReference = reference;
31426}
31427
31428/*!
31429 The axis ticker is responsible for generating the tick positions and tick labels. See the
31430 documentation of QCPAxisTicker for details on how to work with axis tickers.
31431
31432 You can change the tick positioning/labeling behaviour of this axis by setting a different
31433 QCPAxisTicker subclass using this method. If you only wish to modify the currently installed axis
31434 ticker, access it via \ref ticker.
31435
31436 Since the ticker is stored in the axis as a shared pointer, multiple axes may share the same axis
31437 ticker simply by passing the same shared pointer to multiple axes.
31438
31439 \see ticker
31440*/
31442{
31443 if (ticker)
31444 mTicker = ticker;
31445 else
31446 qDebug() << Q_FUNC_INFO << "can not set 0 as axis ticker";
31447 // no need to invalidate margin cache here because produced tick labels are checked for changes in setupTickVector
31448}
31449
31450/*!
31451 Sets whether tick marks are displayed.
31452
31453 Note that setting \a show to false does not imply that tick labels are invisible, too. To achieve
31454 that, see \ref setTickLabels.
31455
31456 \see setSubTicks
31457*/
31459{
31460 if (mTicks != show)
31461 {
31462 mTicks = show;
31463 //mCachedMarginValid = false;
31464 }
31465}
31466
31467/*!
31468 Sets whether tick labels are displayed. Tick labels are the numbers drawn next to tick marks.
31469*/
31471{
31472 if (mTickLabels != show)
31473 {
31474 mTickLabels = show;
31475 //mCachedMarginValid = false;
31476 if (!mTickLabels)
31477 mTickVectorLabels.clear();
31478 }
31479}
31480
31481/*!
31482 Sets the distance between the axis base line (including any outward ticks) and the tick labels.
31483 \see setLabelPadding, setPadding
31484*/
31486{
31487 mLabelPainter.setPadding(padding);
31488}
31489
31490/*!
31491 Sets the font of the tick labels.
31492
31493 \see setTickLabels, setTickLabelColor
31494*/
31496{
31497 if (font != mTickLabelFont)
31498 {
31499 mTickLabelFont = font;
31500 //mCachedMarginValid = false;
31501 }
31502}
31503
31504/*!
31505 Sets the color of the tick labels.
31506
31507 \see setTickLabels, setTickLabelFont
31508*/
31510{
31511 mTickLabelColor = color;
31512}
31513
31514/*!
31515 Sets the rotation of the tick labels. If \a degrees is zero, the labels are drawn normally. Else,
31516 the tick labels are drawn rotated by \a degrees clockwise. The specified angle is bound to values
31517 from -90 to 90 degrees.
31518
31519 If \a degrees is exactly -90, 0 or 90, the tick labels are centered on the tick coordinate. For
31520 other angles, the label is drawn with an offset such that it seems to point toward or away from
31521 the tick mark.
31522*/
31524{
31525 mLabelPainter.setRotation(degrees);
31526}
31527
31528void QCPPolarAxisRadial::setTickLabelMode(LabelMode mode)
31529{
31530 switch (mode)
31531 {
31532 case lmUpright: mLabelPainter.setAnchorMode(QCPLabelPainterPrivate::amSkewedUpright); break;
31533 case lmRotated: mLabelPainter.setAnchorMode(QCPLabelPainterPrivate::amSkewedRotated); break;
31534 }
31535}
31536
31537/*!
31538 Sets the number format for the numbers in tick labels. This \a formatCode is an extended version
31539 of the format code used e.g. by QString::number() and QLocale::toString(). For reference about
31540 that, see the "Argument Formats" section in the detailed description of the QString class.
31541
31542 \a formatCode is a string of one, two or three characters. The first character is identical to
31543 the normal format code used by Qt. In short, this means: 'e'/'E' scientific format, 'f' fixed
31544 format, 'g'/'G' scientific or fixed, whichever is shorter.
31545
31546 The second and third characters are optional and specific to QCustomPlot:\n
31547 If the first char was 'e' or 'g', numbers are/might be displayed in the scientific format, e.g.
31548 "5.5e9", which is ugly in a plot. So when the second char of \a formatCode is set to 'b' (for
31549 "beautiful"), those exponential numbers are formatted in a more natural way, i.e. "5.5
31550 [multiplication sign] 10 [superscript] 9". By default, the multiplication sign is a centered dot.
31551 If instead a cross should be shown (as is usual in the USA), the third char of \a formatCode can
31552 be set to 'c'. The inserted multiplication signs are the UTF-8 characters 215 (0xD7) for the
31553 cross and 183 (0xB7) for the dot.
31554
31555 Examples for \a formatCode:
31556 \li \c g normal format code behaviour. If number is small, fixed format is used, if number is large,
31557 normal scientific format is used
31558 \li \c gb If number is small, fixed format is used, if number is large, scientific format is used with
31559 beautifully typeset decimal powers and a dot as multiplication sign
31560 \li \c ebc All numbers are in scientific format with beautifully typeset decimal power and a cross as
31561 multiplication sign
31562 \li \c fb illegal format code, since fixed format doesn't support (or need) beautifully typeset decimal
31563 powers. Format code will be reduced to 'f'.
31564 \li \c hello illegal format code, since first char is not 'e', 'E', 'f', 'g' or 'G'. Current format
31565 code will not be changed.
31566*/
31568{
31569 if (formatCode.isEmpty())
31570 {
31571 qDebug() << Q_FUNC_INFO << "Passed formatCode is empty";
31572 return;
31573 }
31574 //mCachedMarginValid = false;
31575
31576 // interpret first char as number format char:
31578 if (allowedFormatChars.contains(formatCode.at(0)))
31579 {
31580 mNumberFormatChar = QLatin1Char(formatCode.at(0).toLatin1());
31581 } else
31582 {
31583 qDebug() << Q_FUNC_INFO << "Invalid number format code (first char not in 'eEfgG'):" << formatCode;
31584 return;
31585 }
31586
31587 if (formatCode.length() < 2)
31588 {
31589 mNumberBeautifulPowers = false;
31590 mNumberMultiplyCross = false;
31591 } else
31592 {
31593 // interpret second char as indicator for beautiful decimal powers:
31594 if (formatCode.at(1) == QLatin1Char('b') && (mNumberFormatChar == QLatin1Char('e') || mNumberFormatChar == QLatin1Char('g')))
31595 mNumberBeautifulPowers = true;
31596 else
31597 qDebug() << Q_FUNC_INFO << "Invalid number format code (second char not 'b' or first char neither 'e' nor 'g'):" << formatCode;
31598
31599 if (formatCode.length() < 3)
31600 {
31601 mNumberMultiplyCross = false;
31602 } else
31603 {
31604 // interpret third char as indicator for dot or cross multiplication symbol:
31605 if (formatCode.at(2) == QLatin1Char('c'))
31606 mNumberMultiplyCross = true;
31607 else if (formatCode.at(2) == QLatin1Char('d'))
31608 mNumberMultiplyCross = false;
31609 else
31610 qDebug() << Q_FUNC_INFO << "Invalid number format code (third char neither 'c' nor 'd'):" << formatCode;
31611 }
31612 }
31613 mLabelPainter.setSubstituteExponent(mNumberBeautifulPowers);
31614 mLabelPainter.setMultiplicationSymbol(mNumberMultiplyCross ? QCPLabelPainterPrivate::SymbolCross : QCPLabelPainterPrivate::SymbolDot);
31615}
31616
31617/*!
31618 Sets the precision of the tick label numbers. See QLocale::toString(double i, char f, int prec)
31619 for details. The effect of precisions are most notably for number Formats starting with 'e', see
31620 \ref setNumberFormat
31621*/
31623{
31624 if (mNumberPrecision != precision)
31625 {
31626 mNumberPrecision = precision;
31627 //mCachedMarginValid = false;
31628 }
31629}
31630
31631/*!
31632 Sets the length of the ticks in pixels. \a inside is the length the ticks will reach inside the
31633 plot and \a outside is the length they will reach outside the plot. If \a outside is greater than
31634 zero, the tick labels and axis label will increase their distance to the axis accordingly, so
31635 they won't collide with the ticks.
31636
31637 \see setSubTickLength, setTickLengthIn, setTickLengthOut
31638*/
31640{
31641 setTickLengthIn(inside);
31643}
31644
31645/*!
31646 Sets the length of the inward ticks in pixels. \a inside is the length the ticks will reach
31647 inside the plot.
31648
31649 \see setTickLengthOut, setTickLength, setSubTickLength
31650*/
31652{
31653 if (mTickLengthIn != inside)
31654 {
31655 mTickLengthIn = inside;
31656 }
31657}
31658
31659/*!
31660 Sets the length of the outward ticks in pixels. \a outside is the length the ticks will reach
31661 outside the plot. If \a outside is greater than zero, the tick labels and axis label will
31662 increase their distance to the axis accordingly, so they won't collide with the ticks.
31663
31664 \see setTickLengthIn, setTickLength, setSubTickLength
31665*/
31667{
31668 if (mTickLengthOut != outside)
31669 {
31670 mTickLengthOut = outside;
31671 //mCachedMarginValid = false; // only outside tick length can change margin
31672 }
31673}
31674
31675/*!
31676 Sets whether sub tick marks are displayed.
31677
31678 Sub ticks are only potentially visible if (major) ticks are also visible (see \ref setTicks)
31679
31680 \see setTicks
31681*/
31683{
31684 if (mSubTicks != show)
31685 {
31686 mSubTicks = show;
31687 //mCachedMarginValid = false;
31688 }
31689}
31690
31691/*!
31692 Sets the length of the subticks in pixels. \a inside is the length the subticks will reach inside
31693 the plot and \a outside is the length they will reach outside the plot. If \a outside is greater
31694 than zero, the tick labels and axis label will increase their distance to the axis accordingly,
31695 so they won't collide with the ticks.
31696
31697 \see setTickLength, setSubTickLengthIn, setSubTickLengthOut
31698*/
31700{
31701 setSubTickLengthIn(inside);
31703}
31704
31705/*!
31706 Sets the length of the inward subticks in pixels. \a inside is the length the subticks will reach inside
31707 the plot.
31708
31709 \see setSubTickLengthOut, setSubTickLength, setTickLength
31710*/
31712{
31713 if (mSubTickLengthIn != inside)
31714 {
31715 mSubTickLengthIn = inside;
31716 }
31717}
31718
31719/*!
31720 Sets the length of the outward subticks in pixels. \a outside is the length the subticks will reach
31721 outside the plot. If \a outside is greater than zero, the tick labels will increase their
31722 distance to the axis accordingly, so they won't collide with the ticks.
31723
31724 \see setSubTickLengthIn, setSubTickLength, setTickLength
31725*/
31727{
31728 if (mSubTickLengthOut != outside)
31729 {
31730 mSubTickLengthOut = outside;
31731 //mCachedMarginValid = false; // only outside tick length can change margin
31732 }
31733}
31734
31735/*!
31736 Sets the pen, the axis base line is drawn with.
31737
31738 \see setTickPen, setSubTickPen
31739*/
31741{
31742 mBasePen = pen;
31743}
31744
31745/*!
31746 Sets the pen, tick marks will be drawn with.
31747
31748 \see setTickLength, setBasePen
31749*/
31751{
31752 mTickPen = pen;
31753}
31754
31755/*!
31756 Sets the pen, subtick marks will be drawn with.
31757
31758 \see setSubTickCount, setSubTickLength, setBasePen
31759*/
31761{
31762 mSubTickPen = pen;
31763}
31764
31765/*!
31766 Sets the font of the axis label.
31767
31768 \see setLabelColor
31769*/
31771{
31772 if (mLabelFont != font)
31773 {
31774 mLabelFont = font;
31775 //mCachedMarginValid = false;
31776 }
31777}
31778
31779/*!
31780 Sets the color of the axis label.
31781
31782 \see setLabelFont
31783*/
31785{
31786 mLabelColor = color;
31787}
31788
31789/*!
31790 Sets the text of the axis label that will be shown below/above or next to the axis, depending on
31791 its orientation. To disable axis labels, pass an empty string as \a str.
31792*/
31794{
31795 if (mLabel != str)
31796 {
31797 mLabel = str;
31798 //mCachedMarginValid = false;
31799 }
31800}
31801
31802/*!
31803 Sets the distance between the tick labels and the axis label.
31804
31805 \see setTickLabelPadding, setPadding
31806*/
31808{
31809 if (mLabelPadding != padding)
31810 {
31811 mLabelPadding = padding;
31812 //mCachedMarginValid = false;
31813 }
31814}
31815
31816/*!
31817 Sets the font that is used for tick labels when they are selected.
31818
31819 \see setTickLabelFont, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
31820*/
31822{
31823 if (font != mSelectedTickLabelFont)
31824 {
31825 mSelectedTickLabelFont = font;
31826 // don't set mCachedMarginValid to false here because margin calculation is always done with non-selected fonts
31827 }
31828}
31829
31830/*!
31831 Sets the font that is used for the axis label when it is selected.
31832
31833 \see setLabelFont, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
31834*/
31836{
31837 mSelectedLabelFont = font;
31838 // don't set mCachedMarginValid to false here because margin calculation is always done with non-selected fonts
31839}
31840
31841/*!
31842 Sets the color that is used for tick labels when they are selected.
31843
31844 \see setTickLabelColor, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
31845*/
31847{
31848 if (color != mSelectedTickLabelColor)
31849 {
31850 mSelectedTickLabelColor = color;
31851 }
31852}
31853
31854/*!
31855 Sets the color that is used for the axis label when it is selected.
31856
31857 \see setLabelColor, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
31858*/
31860{
31861 mSelectedLabelColor = color;
31862}
31863
31864/*!
31865 Sets the pen that is used to draw the axis base line when selected.
31866
31867 \see setBasePen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
31868*/
31870{
31871 mSelectedBasePen = pen;
31872}
31873
31874/*!
31875 Sets the pen that is used to draw the (major) ticks when selected.
31876
31877 \see setTickPen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
31878*/
31880{
31881 mSelectedTickPen = pen;
31882}
31883
31884/*!
31885 Sets the pen that is used to draw the subticks when selected.
31886
31887 \see setSubTickPen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
31888*/
31890{
31891 mSelectedSubTickPen = pen;
31892}
31893
31894/*!
31895 If the scale type (\ref setScaleType) is \ref stLinear, \a diff is added to the lower and upper
31896 bounds of the range. The range is simply moved by \a diff.
31897
31898 If the scale type is \ref stLogarithmic, the range bounds are multiplied by \a diff. This
31899 corresponds to an apparent "linear" move in logarithmic scaling by a distance of log(diff).
31900*/
31902{
31903 QCPRange oldRange = mRange;
31904 if (mScaleType == stLinear)
31905 {
31906 mRange.lower += diff;
31907 mRange.upper += diff;
31908 } else // mScaleType == stLogarithmic
31909 {
31910 mRange.lower *= diff;
31911 mRange.upper *= diff;
31912 }
31913 emit rangeChanged(mRange);
31914 emit rangeChanged(mRange, oldRange);
31915}
31916
31917/*!
31918 Scales the range of this axis by \a factor around the center of the current axis range. For
31919 example, if \a factor is 2.0, then the axis range will double its size, and the point at the axis
31920 range center won't have changed its position in the QCustomPlot widget (i.e. coordinates around
31921 the center will have moved symmetrically closer).
31922
31923 If you wish to scale around a different coordinate than the current axis range center, use the
31924 overload \ref scaleRange(double factor, double center).
31925*/
31927{
31928 scaleRange(factor, range().center());
31929}
31930
31931/*! \overload
31932
31933 Scales the range of this axis by \a factor around the coordinate \a center. For example, if \a
31934 factor is 2.0, \a center is 1.0, then the axis range will double its size, and the point at
31935 coordinate 1.0 won't have changed its position in the QCustomPlot widget (i.e. coordinates
31936 around 1.0 will have moved symmetrically closer to 1.0).
31937
31938 \see scaleRange(double factor)
31939*/
31940void QCPPolarAxisRadial::scaleRange(double factor, double center)
31941{
31942 QCPRange oldRange = mRange;
31943 if (mScaleType == stLinear)
31944 {
31946 newRange.lower = (mRange.lower-center)*factor + center;
31947 newRange.upper = (mRange.upper-center)*factor + center;
31949 mRange = newRange.sanitizedForLinScale();
31950 } else // mScaleType == stLogarithmic
31951 {
31952 if ((mRange.upper < 0 && center < 0) || (mRange.upper > 0 && center > 0)) // make sure center has same sign as range
31953 {
31955 newRange.lower = qPow(mRange.lower/center, factor)*center;
31956 newRange.upper = qPow(mRange.upper/center, factor)*center;
31958 mRange = newRange.sanitizedForLogScale();
31959 } else
31960 qDebug() << Q_FUNC_INFO << "Center of scaling operation doesn't lie in same logarithmic sign domain as range:" << center;
31961 }
31962 emit rangeChanged(mRange);
31963 emit rangeChanged(mRange, oldRange);
31964}
31965
31966/*!
31967 Changes the axis range such that all plottables associated with this axis are fully visible in
31968 that dimension.
31969
31970 \see QCPAbstractPlottable::rescaleAxes, QCustomPlot::rescaleAxes
31971*/
31973{
31975 /* TODO
31976 QList<QCPAbstractPlottable*> p = plottables();
31977 QCPRange newRange;
31978 bool haveRange = false;
31979 for (int i=0; i<p.size(); ++i)
31980 {
31981 if (!p.at(i)->realVisibility() && onlyVisiblePlottables)
31982 continue;
31983 QCPRange plottableRange;
31984 bool currentFoundRange;
31985 QCP::SignDomain signDomain = QCP::sdBoth;
31986 if (mScaleType == stLogarithmic)
31987 signDomain = (mRange.upper < 0 ? QCP::sdNegative : QCP::sdPositive);
31988 if (p.at(i)->keyAxis() == this)
31989 plottableRange = p.at(i)->getKeyRange(currentFoundRange, signDomain);
31990 else
31991 plottableRange = p.at(i)->getValueRange(currentFoundRange, signDomain);
31992 if (currentFoundRange)
31993 {
31994 if (!haveRange)
31995 newRange = plottableRange;
31996 else
31997 newRange.expand(plottableRange);
31998 haveRange = true;
31999 }
32000 }
32001 if (haveRange)
32002 {
32003 if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
32004 {
32005 double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
32006 if (mScaleType == stLinear)
32007 {
32008 newRange.lower = center-mRange.size()/2.0;
32009 newRange.upper = center+mRange.size()/2.0;
32010 } else // mScaleType == stLogarithmic
32011 {
32012 newRange.lower = center/qSqrt(mRange.upper/mRange.lower);
32013 newRange.upper = center*qSqrt(mRange.upper/mRange.lower);
32014 }
32015 }
32016 setRange(newRange);
32017 }
32018 */
32019}
32020
32021/*!
32022 Transforms \a value, in pixel coordinates of the QCustomPlot widget, to axis coordinates.
32023*/
32025{
32027 radiusCoord = radiusToCoord(posVector.length());
32028 angleCoord = mAngularAxis->angleRadToCoord(posVector.angle());
32029}
32030
32031/*!
32032 Transforms \a value, in coordinates of the axis, to pixel coordinates of the QCustomPlot widget.
32033*/
32035{
32036 const double radiusPixel = coordToRadius(radiusCoord);
32037 const double angleRad = mAngularAxis->coordToAngleRad(angleCoord);
32038 return QPointF(mCenter.x()+qCos(angleRad)*radiusPixel, mCenter.y()+qSin(angleRad)*radiusPixel);
32039}
32040
32041double QCPPolarAxisRadial::coordToRadius(double coord) const
32042{
32043 if (mScaleType == stLinear)
32044 {
32045 if (!mRangeReversed)
32046 return (coord-mRange.lower)/mRange.size()*mRadius;
32047 else
32048 return (mRange.upper-coord)/mRange.size()*mRadius;
32049 } else // mScaleType == stLogarithmic
32050 {
32051 if (coord >= 0.0 && mRange.upper < 0.0) // invalid value for logarithmic scale, just return outside visible range
32052 return !mRangeReversed ? mRadius+200 : mRadius-200;
32053 else if (coord <= 0.0 && mRange.upper >= 0.0) // invalid value for logarithmic scale, just return outside visible range
32054 return !mRangeReversed ? mRadius-200 :mRadius+200;
32055 else
32056 {
32057 if (!mRangeReversed)
32058 return qLn(coord/mRange.lower)/qLn(mRange.upper/mRange.lower)*mRadius;
32059 else
32060 return qLn(mRange.upper/coord)/qLn(mRange.upper/mRange.lower)*mRadius;
32061 }
32062 }
32063}
32064
32065double QCPPolarAxisRadial::radiusToCoord(double radius) const
32066{
32067 if (mScaleType == stLinear)
32068 {
32069 if (!mRangeReversed)
32070 return (radius)/mRadius*mRange.size()+mRange.lower;
32071 else
32072 return -(radius)/mRadius*mRange.size()+mRange.upper;
32073 } else // mScaleType == stLogarithmic
32074 {
32075 if (!mRangeReversed)
32076 return qPow(mRange.upper/mRange.lower, (radius)/mRadius)*mRange.lower;
32077 else
32078 return qPow(mRange.upper/mRange.lower, (-radius)/mRadius)*mRange.upper;
32079 }
32080}
32081
32082
32083/*!
32084 Returns the part of the axis that is hit by \a pos (in pixels). The return value of this function
32085 is independent of the user-selectable parts defined with \ref setSelectableParts. Further, this
32086 function does not change the current selection state of the axis.
32087
32088 If the axis is not visible (\ref setVisible), this function always returns \ref spNone.
32089
32090 \see setSelectedParts, setSelectableParts, QCustomPlot::setInteractions
32091*/
32093{
32094 Q_UNUSED(pos) // TODO remove later
32095 if (!mVisible)
32096 return spNone;
32097
32098 /*
32099 TODO:
32100 if (mAxisPainter->axisSelectionBox().contains(pos.toPoint()))
32101 return spAxis;
32102 else if (mAxisPainter->tickLabelsSelectionBox().contains(pos.toPoint()))
32103 return spTickLabels;
32104 else if (mAxisPainter->labelSelectionBox().contains(pos.toPoint()))
32105 return spAxisLabel;
32106 else */
32107 return spNone;
32108}
32109
32110/* inherits documentation from base class */
32111double QCPPolarAxisRadial::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
32112{
32113 if (!mParentPlot) return -1;
32114 SelectablePart part = getPartAt(pos);
32115 if ((onlySelectable && !mSelectableParts.testFlag(part)) || part == spNone)
32116 return -1;
32117
32118 if (details)
32119 details->setValue(part);
32120 return mParentPlot->selectionTolerance()*0.99;
32121}
32122
32123/* inherits documentation from base class */
32125{
32127 SelectablePart part = details.value<SelectablePart>();
32128 if (mSelectableParts.testFlag(part))
32129 {
32130 SelectableParts selBefore = mSelectedParts;
32131 setSelectedParts(additive ? mSelectedParts^part : part);
32133 *selectionStateChanged = mSelectedParts != selBefore;
32134 }
32135}
32136
32137/* inherits documentation from base class */
32139{
32140 SelectableParts selBefore = mSelectedParts;
32141 setSelectedParts(mSelectedParts & ~mSelectableParts);
32143 *selectionStateChanged = mSelectedParts != selBefore;
32144}
32145
32146/*! \internal
32147
32148 This mouse event reimplementation provides the functionality to let the user drag individual axes
32149 exclusively, by startig the drag on top of the axis.
32150
32151 For the axis to accept this event and perform the single axis drag, the parent \ref QCPAxisRect
32152 must be configured accordingly, i.e. it must allow range dragging in the orientation of this axis
32153 (\ref QCPAxisRect::setRangeDrag) and this axis must be a draggable axis (\ref
32154 QCPAxisRect::setRangeDragAxes)
32155
32156 \seebaseclassmethod
32157
32158 \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
32159 rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.
32160*/
32162{
32163 Q_UNUSED(details)
32164 if (!mParentPlot->interactions().testFlag(QCP::iRangeDrag))
32165 {
32166 event->ignore();
32167 return;
32168 }
32169
32170 if (event->buttons() & Qt::LeftButton)
32171 {
32172 mDragging = true;
32173 // initialize antialiasing backup in case we start dragging:
32174 if (mParentPlot->noAntialiasingOnDrag())
32175 {
32176 mAADragBackup = mParentPlot->antialiasedElements();
32177 mNotAADragBackup = mParentPlot->notAntialiasedElements();
32178 }
32179 // Mouse range dragging interaction:
32180 if (mParentPlot->interactions().testFlag(QCP::iRangeDrag))
32181 mDragStartRange = mRange;
32182 }
32183}
32184
32185/*! \internal
32186
32187 This mouse event reimplementation provides the functionality to let the user drag individual axes
32188 exclusively, by startig the drag on top of the axis.
32189
32190 \seebaseclassmethod
32191
32192 \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
32193 rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.
32194
32195 \see QCPAxis::mousePressEvent
32196*/
32198{
32199 Q_UNUSED(event) // TODO remove later
32200 Q_UNUSED(startPos) // TODO remove later
32201 if (mDragging)
32202 {
32203 /* TODO
32204 const double startPixel = orientation() == Qt::Horizontal ? startPos.x() : startPos.y();
32205 const double currentPixel = orientation() == Qt::Horizontal ? event->pos().x() : event->pos().y();
32206 if (mScaleType == QCPPolarAxisRadial::stLinear)
32207 {
32208 const double diff = pixelToCoord(startPixel) - pixelToCoord(currentPixel);
32209 setRange(mDragStartRange.lower+diff, mDragStartRange.upper+diff);
32210 } else if (mScaleType == QCPPolarAxisRadial::stLogarithmic)
32211 {
32212 const double diff = pixelToCoord(startPixel) / pixelToCoord(currentPixel);
32213 setRange(mDragStartRange.lower*diff, mDragStartRange.upper*diff);
32214 }
32215 */
32216
32217 if (mParentPlot->noAntialiasingOnDrag())
32219 mParentPlot->replot(QCustomPlot::rpQueuedReplot);
32220 }
32221}
32222
32223/*! \internal
32224
32225 This mouse event reimplementation provides the functionality to let the user drag individual axes
32226 exclusively, by startig the drag on top of the axis.
32227
32228 \seebaseclassmethod
32229
32230 \note The dragging of possibly multiple axes at once by starting the drag anywhere in the axis
32231 rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::mousePressEvent.
32232
32233 \see QCPAxis::mousePressEvent
32234*/
32236{
32238 Q_UNUSED(startPos)
32239 mDragging = false;
32240 if (mParentPlot->noAntialiasingOnDrag())
32241 {
32242 mParentPlot->setAntialiasedElements(mAADragBackup);
32243 mParentPlot->setNotAntialiasedElements(mNotAADragBackup);
32244 }
32245}
32246
32247/*! \internal
32248
32249 This mouse event reimplementation provides the functionality to let the user zoom individual axes
32250 exclusively, by performing the wheel event on top of the axis.
32251
32252 For the axis to accept this event and perform the single axis zoom, the parent \ref QCPAxisRect
32253 must be configured accordingly, i.e. it must allow range zooming in the orientation of this axis
32254 (\ref QCPAxisRect::setRangeZoom) and this axis must be a zoomable axis (\ref
32255 QCPAxisRect::setRangeZoomAxes)
32256
32257 \seebaseclassmethod
32258
32259 \note The zooming of possibly multiple axes at once by performing the wheel event anywhere in the
32260 axis rect is handled by the axis rect's mouse event, e.g. \ref QCPAxisRect::wheelEvent.
32261*/
32263{
32264 // Mouse range zooming interaction:
32265 if (!mParentPlot->interactions().testFlag(QCP::iRangeZoom))
32266 {
32267 event->ignore();
32268 return;
32269 }
32270
32271 // TODO:
32272 //const double wheelSteps = event->delta()/120.0; // a single step delta is +/-120 usually
32273 //const double factor = qPow(mRangeZoomFactor, wheelSteps);
32274 //scaleRange(factor, pixelToCoord(orientation() == Qt::Horizontal ? event->pos().x() : event->pos().y()));
32275 mParentPlot->replot();
32276}
32277
32278void QCPPolarAxisRadial::updateGeometry(const QPointF &center, double radius)
32279{
32280 mCenter = center;
32281 mRadius = radius;
32282 if (mRadius < 1) mRadius = 1;
32283}
32284
32285/*! \internal
32286
32287 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
32288 before drawing axis lines.
32289
32290 This is the antialiasing state the painter passed to the \ref draw method is in by default.
32291
32292 This function takes into account the local setting of the antialiasing flag as well as the
32293 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
32294 QCustomPlot::setNotAntialiasedElements.
32295
32296 \seebaseclassmethod
32297
32298 \see setAntialiased
32299*/
32301{
32302 applyAntialiasingHint(painter, mAntialiased, QCP::aeAxes);
32303}
32304
32305/*! \internal
32306
32307 Draws the axis with the specified \a painter, using the internal QCPAxisPainterPrivate instance.
32308
32309 \seebaseclassmethod
32310*/
32312{
32313 const double axisAngleRad = (mAngle+(mAngleReference==arAngularAxis ? mAngularAxis->angle() : 0))/180.0*M_PI;
32314 const QPointF axisVector(qCos(axisAngleRad), qSin(axisAngleRad)); // semantically should be QCPVector2D, but we save time in loops when we keep it as QPointF
32315 const QPointF tickNormal = QCPVector2D(axisVector).perpendicular().toPointF(); // semantically should be QCPVector2D, but we save time in loops when we keep it as QPointF
32316
32317 // draw baseline:
32318 painter->setPen(getBasePen());
32319 painter->drawLine(QLineF(mCenter, mCenter+axisVector*(mRadius-0.5)));
32320
32321 // draw subticks:
32322 if (!mSubTickVector.isEmpty())
32323 {
32324 painter->setPen(getSubTickPen());
32325 for (int i=0; i<mSubTickVector.size(); ++i)
32326 {
32327 const QPointF tickPosition = mCenter+axisVector*coordToRadius(mSubTickVector.at(i));
32328 painter->drawLine(QLineF(tickPosition-tickNormal*mSubTickLengthIn, tickPosition+tickNormal*mSubTickLengthOut));
32329 }
32330 }
32331
32332 // draw ticks and labels:
32333 if (!mTickVector.isEmpty())
32334 {
32335 mLabelPainter.setAnchorReference(mCenter-axisVector); // subtract (normalized) axisVector, just to prevent degenerate tangents for tick label at exact lower axis range
32336 mLabelPainter.setFont(getTickLabelFont());
32337 mLabelPainter.setColor(getTickLabelColor());
32338 const QPen ticksPen = getTickPen();
32339 painter->setPen(ticksPen);
32340 for (int i=0; i<mTickVector.size(); ++i)
32341 {
32342 const double r = coordToRadius(mTickVector.at(i));
32343 const QPointF tickPosition = mCenter+axisVector*r;
32344 painter->drawLine(QLineF(tickPosition-tickNormal*mTickLengthIn, tickPosition+tickNormal*mTickLengthOut));
32345 // possibly draw tick labels:
32346 if (!mTickVectorLabels.isEmpty())
32347 {
32348 if ((!mRangeReversed && (i < mTickVectorLabels.count()-1 || mRadius-r > 10)) ||
32349 (mRangeReversed && (i > 0 || mRadius-r > 10))) // skip last label if it's closer than 10 pixels to angular axis
32350 mLabelPainter.drawTickLabel(painter, tickPosition+tickNormal*mSubTickLengthOut, mTickVectorLabels.at(i));
32351 }
32352 }
32353 }
32354}
32355
32356/*! \internal
32357
32358 Prepares the internal tick vector, sub tick vector and tick label vector. This is done by calling
32359 QCPAxisTicker::generate on the currently installed ticker.
32360
32361 If a change in the label text/count is detected, the cached axis margin is invalidated to make
32362 sure the next margin calculation recalculates the label sizes and returns an up-to-date value.
32363*/
32365{
32366 if (!mParentPlot) return;
32367 if ((!mTicks && !mTickLabels) || mRange.size() <= 0) return;
32368
32369 mTicker->generate(mRange, mParentPlot->locale(), mNumberFormatChar, mNumberPrecision, mTickVector, mSubTicks ? &mSubTickVector : 0, mTickLabels ? &mTickVectorLabels : 0);
32370}
32371
32372/*! \internal
32373
32374 Returns the pen that is used to draw the axis base line. Depending on the selection state, this
32375 is either mSelectedBasePen or mBasePen.
32376*/
32378{
32379 return mSelectedParts.testFlag(spAxis) ? mSelectedBasePen : mBasePen;
32380}
32381
32382/*! \internal
32383
32384 Returns the pen that is used to draw the (major) ticks. Depending on the selection state, this
32385 is either mSelectedTickPen or mTickPen.
32386*/
32388{
32389 return mSelectedParts.testFlag(spAxis) ? mSelectedTickPen : mTickPen;
32390}
32391
32392/*! \internal
32393
32394 Returns the pen that is used to draw the subticks. Depending on the selection state, this
32395 is either mSelectedSubTickPen or mSubTickPen.
32396*/
32398{
32399 return mSelectedParts.testFlag(spAxis) ? mSelectedSubTickPen : mSubTickPen;
32400}
32401
32402/*! \internal
32403
32404 Returns the font that is used to draw the tick labels. Depending on the selection state, this
32405 is either mSelectedTickLabelFont or mTickLabelFont.
32406*/
32408{
32409 return mSelectedParts.testFlag(spTickLabels) ? mSelectedTickLabelFont : mTickLabelFont;
32410}
32411
32412/*! \internal
32413
32414 Returns the font that is used to draw the axis label. Depending on the selection state, this
32415 is either mSelectedLabelFont or mLabelFont.
32416*/
32418{
32419 return mSelectedParts.testFlag(spAxisLabel) ? mSelectedLabelFont : mLabelFont;
32420}
32421
32422/*! \internal
32423
32424 Returns the color that is used to draw the tick labels. Depending on the selection state, this
32425 is either mSelectedTickLabelColor or mTickLabelColor.
32426*/
32428{
32429 return mSelectedParts.testFlag(spTickLabels) ? mSelectedTickLabelColor : mTickLabelColor;
32430}
32431
32432/*! \internal
32433
32434 Returns the color that is used to draw the axis label. Depending on the selection state, this
32435 is either mSelectedLabelColor or mLabelColor.
32436*/
32438{
32439 return mSelectedParts.testFlag(spAxisLabel) ? mSelectedLabelColor : mLabelColor;
32440}
32441
32442
32443/* inherits documentation from base class */
32448/* end of 'src/polar/radialaxis.cpp' */
32449
32450
32451/* including file 'src/polar/layoutelement-angularaxis.cpp' */
32452/* modified 2021-03-29T02:30:44, size 57266 */
32453
32454
32455////////////////////////////////////////////////////////////////////////////////////////////////////
32456//////////////////// QCPPolarAxisAngular
32457////////////////////////////////////////////////////////////////////////////////////////////////////
32458
32459/*! \class QCPPolarAxisAngular
32460 \brief The main container for polar plots, representing the angular axis as a circle
32461
32462 \warning In this QCustomPlot version, polar plots are a tech preview. Expect documentation and
32463 functionality to be incomplete, as well as changing public interfaces in the future.
32464*/
32465
32466/* start documentation of inline functions */
32467
32468/*! \fn QCPLayoutInset *QCPPolarAxisAngular::insetLayout() const
32469
32470 Returns the inset layout of this axis rect. It can be used to place other layout elements (or
32471 even layouts with multiple other elements) inside/on top of an axis rect.
32472
32473 \see QCPLayoutInset
32474*/
32475
32476/*! \fn int QCPPolarAxisAngular::left() const
32477
32478 Returns the pixel position of the left border of this axis rect. Margins are not taken into
32479 account here, so the returned value is with respect to the inner \ref rect.
32480*/
32481
32482/*! \fn int QCPPolarAxisAngular::right() const
32483
32484 Returns the pixel position of the right border of this axis rect. Margins are not taken into
32485 account here, so the returned value is with respect to the inner \ref rect.
32486*/
32487
32488/*! \fn int QCPPolarAxisAngular::top() const
32489
32490 Returns the pixel position of the top border of this axis rect. Margins are not taken into
32491 account here, so the returned value is with respect to the inner \ref rect.
32492*/
32493
32494/*! \fn int QCPPolarAxisAngular::bottom() const
32495
32496 Returns the pixel position of the bottom border of this axis rect. Margins are not taken into
32497 account here, so the returned value is with respect to the inner \ref rect.
32498*/
32499
32500/*! \fn int QCPPolarAxisAngular::width() const
32501
32502 Returns the pixel width of this axis rect. Margins are not taken into account here, so the
32503 returned value is with respect to the inner \ref rect.
32504*/
32505
32506/*! \fn int QCPPolarAxisAngular::height() const
32507
32508 Returns the pixel height of this axis rect. Margins are not taken into account here, so the
32509 returned value is with respect to the inner \ref rect.
32510*/
32511
32512/*! \fn QSize QCPPolarAxisAngular::size() const
32513
32514 Returns the pixel size of this axis rect. Margins are not taken into account here, so the
32515 returned value is with respect to the inner \ref rect.
32516*/
32517
32518/*! \fn QPoint QCPPolarAxisAngular::topLeft() const
32519
32520 Returns the top left corner of this axis rect in pixels. Margins are not taken into account here,
32521 so the returned value is with respect to the inner \ref rect.
32522*/
32523
32524/*! \fn QPoint QCPPolarAxisAngular::topRight() const
32525
32526 Returns the top right corner of this axis rect in pixels. Margins are not taken into account
32527 here, so the returned value is with respect to the inner \ref rect.
32528*/
32529
32530/*! \fn QPoint QCPPolarAxisAngular::bottomLeft() const
32531
32532 Returns the bottom left corner of this axis rect in pixels. Margins are not taken into account
32533 here, so the returned value is with respect to the inner \ref rect.
32534*/
32535
32536/*! \fn QPoint QCPPolarAxisAngular::bottomRight() const
32537
32538 Returns the bottom right corner of this axis rect in pixels. Margins are not taken into account
32539 here, so the returned value is with respect to the inner \ref rect.
32540*/
32541
32542/*! \fn QPoint QCPPolarAxisAngular::center() const
32543
32544 Returns the center of this axis rect in pixels. Margins are not taken into account here, so the
32545 returned value is with respect to the inner \ref rect.
32546*/
32547
32548/* end documentation of inline functions */
32549
32550/*!
32551 Creates a QCPPolarAxis instance and sets default values. An axis is added for each of the four
32552 sides, the top and right axes are set invisible initially.
32553*/
32555 QCPLayoutElement(parentPlot),
32556 mBackgroundBrush(Qt::NoBrush),
32557 mBackgroundScaled(true),
32558 mBackgroundScaledMode(Qt::KeepAspectRatioByExpanding),
32559 mInsetLayout(new QCPLayoutInset),
32560 mRangeDrag(false),
32561 mRangeZoom(false),
32562 mRangeZoomFactor(0.85),
32563 // axis base:
32564 mAngle(-90),
32565 mAngleRad(mAngle/180.0*M_PI),
32566 mSelectableParts(spAxis | spTickLabels | spAxisLabel),
32567 mSelectedParts(spNone),
32568 mBasePen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
32569 mSelectedBasePen(QPen(Qt::blue, 2)),
32570 // axis label:
32571 mLabelPadding(0),
32572 mLabel(),
32573 mLabelFont(mParentPlot->font()),
32574 mSelectedLabelFont(QFont(mLabelFont.family(), mLabelFont.pointSize(), QFont::Bold)),
32575 mLabelColor(Qt::black),
32576 mSelectedLabelColor(Qt::blue),
32577 // tick labels:
32578 //mTickLabelPadding(0), in label painter
32579 mTickLabels(true),
32580 //mTickLabelRotation(0), in label painter
32581 mTickLabelFont(mParentPlot->font()),
32582 mSelectedTickLabelFont(QFont(mTickLabelFont.family(), mTickLabelFont.pointSize(), QFont::Bold)),
32583 mTickLabelColor(Qt::black),
32584 mSelectedTickLabelColor(Qt::blue),
32585 mNumberPrecision(6),
32586 mNumberFormatChar('g'),
32587 mNumberBeautifulPowers(true),
32588 mNumberMultiplyCross(false),
32589 // ticks and subticks:
32590 mTicks(true),
32591 mSubTicks(true),
32592 mTickLengthIn(5),
32593 mTickLengthOut(0),
32594 mSubTickLengthIn(2),
32595 mSubTickLengthOut(0),
32596 mTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
32597 mSelectedTickPen(QPen(Qt::blue, 2)),
32598 mSubTickPen(QPen(Qt::black, 0, Qt::SolidLine, Qt::SquareCap)),
32599 mSelectedSubTickPen(QPen(Qt::blue, 2)),
32600 // scale and range:
32601 mRange(0, 360),
32602 mRangeReversed(false),
32603 // internal members:
32604 mRadius(1), // non-zero initial value, will be overwritten in ::update() according to inner rect
32605 mGrid(new QCPPolarGrid(this)),
32606 mTicker(new QCPAxisTickerFixed),
32607 mDragging(false),
32608 mLabelPainter(parentPlot)
32609{
32610 // TODO:
32611 //mInsetLayout->initializeParentPlot(mParentPlot);
32612 //mInsetLayout->setParentLayerable(this);
32613 //mInsetLayout->setParent(this);
32614
32616 {
32617 fixedTicker->setTickStep(30);
32618 }
32619 setAntialiased(true);
32620 setLayer(mParentPlot->currentLayer()); // it's actually on that layer already, but we want it in front of the grid, so we place it on there again
32621
32624 setTickLabelMode(lmUpright);
32625 mLabelPainter.setAnchorReferenceType(QCPLabelPainterPrivate::artNormal);
32626 mLabelPainter.setAbbreviateDecimalPowers(false);
32627 mLabelPainter.setCacheSize(24); // so we can cache up to 15-degree intervals, polar angular axis uses a bit larger cache than normal axes
32628
32629 setMinimumSize(50, 50);
32630 setMinimumMargins(QMargins(30, 30, 30, 30));
32631
32632 addRadialAxis();
32633 mGrid->setRadialAxis(radialAxis());
32634}
32635
32636QCPPolarAxisAngular::~QCPPolarAxisAngular()
32637{
32638 delete mGrid; // delete grid here instead of via parent ~QObject for better defined deletion order
32639 mGrid = 0;
32640
32641 delete mInsetLayout;
32642 mInsetLayout = 0;
32643
32645 for (int i=0; i<radialAxesList.size(); ++i)
32647}
32648
32649QCPPolarAxisAngular::LabelMode QCPPolarAxisAngular::tickLabelMode() const
32650{
32651 switch (mLabelPainter.anchorMode())
32652 {
32653 case QCPLabelPainterPrivate::amSkewedUpright: return lmUpright;
32654 case QCPLabelPainterPrivate::amSkewedRotated: return lmRotated;
32655 default: qDebug() << Q_FUNC_INFO << "invalid mode for polar axis"; break;
32656 }
32657 return lmUpright;
32658}
32659
32660/* No documentation as it is a property getter */
32661QString QCPPolarAxisAngular::numberFormat() const
32662{
32663 QString result;
32664 result.append(mNumberFormatChar);
32665 if (mNumberBeautifulPowers)
32666 {
32667 result.append(QLatin1Char('b'));
32668 if (mLabelPainter.multiplicationSymbol() == QCPLabelPainterPrivate::SymbolCross)
32669 result.append(QLatin1Char('c'));
32670 }
32671 return result;
32672}
32673
32674/*!
32675 Returns the number of axes on the axis rect side specified with \a type.
32676
32677 \see axis
32678*/
32680{
32681 return mRadialAxes.size();
32682}
32683
32684/*!
32685 Returns the axis with the given \a index on the axis rect side specified with \a type.
32686
32687 \see axisCount, axes
32688*/
32690{
32691 if (index >= 0 && index < mRadialAxes.size())
32692 {
32693 return mRadialAxes.at(index);
32694 } else
32695 {
32696 qDebug() << Q_FUNC_INFO << "Axis index out of bounds:" << index;
32697 return 0;
32698 }
32699}
32700
32701/*!
32702 Returns all axes on the axis rect sides specified with \a types.
32703
32704 \a types may be a single \ref QCPAxis::AxisType or an <tt>or</tt>-combination, to get the axes of
32705 multiple sides.
32706
32707 \see axis
32708*/
32710{
32711 return mRadialAxes;
32712}
32713
32714
32715/*!
32716 Adds a new axis to the axis rect side specified with \a type, and returns it. If \a axis is 0, a
32717 new QCPAxis instance is created internally. QCustomPlot owns the returned axis, so if you want to
32718 remove an axis, use \ref removeAxis instead of deleting it manually.
32719
32720 You may inject QCPAxis instances (or subclasses of QCPAxis) by setting \a axis to an axis that was
32721 previously created outside QCustomPlot. It is important to note that QCustomPlot takes ownership
32722 of the axis, so you may not delete it afterwards. Further, the \a axis must have been created
32723 with this axis rect as parent and with the same axis type as specified in \a type. If this is not
32724 the case, a debug output is generated, the axis is not added, and the method returns 0.
32725
32726 This method can not be used to move \a axis between axis rects. The same \a axis instance must
32727 not be added multiple times to the same or different axis rects.
32728
32729 If an axis rect side already contains one or more axes, the lower and upper endings of the new
32730 axis (\ref QCPAxis::setLowerEnding, \ref QCPAxis::setUpperEnding) are set to \ref
32731 QCPLineEnding::esHalfBar.
32732
32733 \see addAxes, setupFullAxesBox
32734*/
32736{
32738 if (!newAxis)
32739 {
32740 newAxis = new QCPPolarAxisRadial(this);
32741 } else // user provided existing axis instance, do some sanity checks
32742 {
32743 if (newAxis->angularAxis() != this)
32744 {
32745 qDebug() << Q_FUNC_INFO << "passed radial axis doesn't have this angular axis as parent angular axis";
32746 return 0;
32747 }
32748 if (radialAxes().contains(newAxis))
32749 {
32750 qDebug() << Q_FUNC_INFO << "passed axis is already owned by this angular axis";
32751 return 0;
32752 }
32753 }
32754 mRadialAxes.append(newAxis);
32755 return newAxis;
32756}
32757
32758/*!
32759 Removes the specified \a axis from the axis rect and deletes it.
32760
32761 Returns true on success, i.e. if \a axis was a valid axis in this axis rect.
32762
32763 \see addAxis
32764*/
32766{
32767 if (mRadialAxes.contains(radialAxis))
32768 {
32769 mRadialAxes.removeOne(radialAxis);
32770 delete radialAxis;
32771 return true;
32772 } else
32773 {
32774 qDebug() << Q_FUNC_INFO << "Radial axis isn't associated with this angular axis:" << reinterpret_cast<quintptr>(radialAxis);
32775 return false;
32776 }
32777}
32778
32779QRegion QCPPolarAxisAngular::exactClipRegion() const
32780{
32781 return QRegion(mCenter.x()-mRadius, mCenter.y()-mRadius, qRound(2*mRadius), qRound(2*mRadius), QRegion::Ellipse);
32782}
32783
32784/*!
32785 If the scale type (\ref setScaleType) is \ref stLinear, \a diff is added to the lower and upper
32786 bounds of the range. The range is simply moved by \a diff.
32787
32788 If the scale type is \ref stLogarithmic, the range bounds are multiplied by \a diff. This
32789 corresponds to an apparent "linear" move in logarithmic scaling by a distance of log(diff).
32790*/
32792{
32793 QCPRange oldRange = mRange;
32794 mRange.lower += diff;
32795 mRange.upper += diff;
32796 emit rangeChanged(mRange);
32797 emit rangeChanged(mRange, oldRange);
32798}
32799
32800/*!
32801 Scales the range of this axis by \a factor around the center of the current axis range. For
32802 example, if \a factor is 2.0, then the axis range will double its size, and the point at the axis
32803 range center won't have changed its position in the QCustomPlot widget (i.e. coordinates around
32804 the center will have moved symmetrically closer).
32805
32806 If you wish to scale around a different coordinate than the current axis range center, use the
32807 overload \ref scaleRange(double factor, double center).
32808*/
32810{
32811 scaleRange(factor, range().center());
32812}
32813
32814/*! \overload
32815
32816 Scales the range of this axis by \a factor around the coordinate \a center. For example, if \a
32817 factor is 2.0, \a center is 1.0, then the axis range will double its size, and the point at
32818 coordinate 1.0 won't have changed its position in the QCustomPlot widget (i.e. coordinates
32819 around 1.0 will have moved symmetrically closer to 1.0).
32820
32821 \see scaleRange(double factor)
32822*/
32823void QCPPolarAxisAngular::scaleRange(double factor, double center)
32824{
32825 QCPRange oldRange = mRange;
32827 newRange.lower = (mRange.lower-center)*factor + center;
32828 newRange.upper = (mRange.upper-center)*factor + center;
32830 mRange = newRange.sanitizedForLinScale();
32831 emit rangeChanged(mRange);
32832 emit rangeChanged(mRange, oldRange);
32833}
32834
32835/*!
32836 Changes the axis range such that all plottables associated with this axis are fully visible in
32837 that dimension.
32838
32839 \see QCPAbstractPlottable::rescaleAxes, QCustomPlot::rescaleAxes
32840*/
32842{
32844 bool haveRange = false;
32845 for (int i=0; i<mGraphs.size(); ++i)
32846 {
32847 if (!mGraphs.at(i)->realVisibility() && onlyVisiblePlottables)
32848 continue;
32849 QCPRange range;
32850 bool currentFoundRange;
32851 if (mGraphs.at(i)->keyAxis() == this)
32852 range = mGraphs.at(i)->getKeyRange(currentFoundRange, QCP::sdBoth);
32853 else
32854 range = mGraphs.at(i)->getValueRange(currentFoundRange, QCP::sdBoth);
32856 {
32857 if (!haveRange)
32858 newRange = range;
32859 else
32860 newRange.expand(range);
32861 haveRange = true;
32862 }
32863 }
32864 if (haveRange)
32865 {
32866 if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
32867 {
32868 double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
32869 newRange.lower = center-mRange.size()/2.0;
32870 newRange.upper = center+mRange.size()/2.0;
32871 }
32873 }
32874}
32875
32876/*!
32877 Transforms \a value, in pixel coordinates of the QCustomPlot widget, to axis coordinates.
32878*/
32880{
32881 if (!mRadialAxes.isEmpty())
32882 mRadialAxes.first()->pixelToCoord(pixelPos, angleCoord, radiusCoord);
32883 else
32884 qDebug() << Q_FUNC_INFO << "no radial axis configured";
32885}
32886
32887/*!
32888 Transforms \a value, in coordinates of the axis, to pixel coordinates of the QCustomPlot widget.
32889*/
32891{
32892 if (!mRadialAxes.isEmpty())
32893 {
32894 return mRadialAxes.first()->coordToPixel(angleCoord, radiusCoord);
32895 } else
32896 {
32897 qDebug() << Q_FUNC_INFO << "no radial axis configured";
32898 return QPointF();
32899 }
32900}
32901
32902/*!
32903 Returns the part of the axis that is hit by \a pos (in pixels). The return value of this function
32904 is independent of the user-selectable parts defined with \ref setSelectableParts. Further, this
32905 function does not change the current selection state of the axis.
32906
32907 If the axis is not visible (\ref setVisible), this function always returns \ref spNone.
32908
32909 \see setSelectedParts, setSelectableParts, QCustomPlot::setInteractions
32910*/
32912{
32913 Q_UNUSED(pos) // TODO remove later
32914
32915 if (!mVisible)
32916 return spNone;
32917
32918 /*
32919 TODO:
32920 if (mAxisPainter->axisSelectionBox().contains(pos.toPoint()))
32921 return spAxis;
32922 else if (mAxisPainter->tickLabelsSelectionBox().contains(pos.toPoint()))
32923 return spTickLabels;
32924 else if (mAxisPainter->labelSelectionBox().contains(pos.toPoint()))
32925 return spAxisLabel;
32926 else */
32927 return spNone;
32928}
32929
32930/* inherits documentation from base class */
32931double QCPPolarAxisAngular::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
32932{
32933 /*
32934 if (!mParentPlot) return -1;
32935 SelectablePart part = getPartAt(pos);
32936 if ((onlySelectable && !mSelectableParts.testFlag(part)) || part == spNone)
32937 return -1;
32938
32939 if (details)
32940 details->setValue(part);
32941 return mParentPlot->selectionTolerance()*0.99;
32942 */
32943
32944 Q_UNUSED(details)
32945
32946 if (onlySelectable)
32947 return -1;
32948
32949 if (QRectF(mOuterRect).contains(pos))
32950 {
32951 if (mParentPlot)
32952 return mParentPlot->selectionTolerance()*0.99;
32953 else
32954 {
32955 qDebug() << Q_FUNC_INFO << "parent plot not defined";
32956 return -1;
32957 }
32958 } else
32959 return -1;
32960}
32961
32962/*!
32963 This method is called automatically upon replot and doesn't need to be called by users of
32964 QCPPolarAxisAngular.
32965
32966 Calls the base class implementation to update the margins (see \ref QCPLayoutElement::update),
32967 and finally passes the \ref rect to the inset layout (\ref insetLayout) and calls its
32968 QCPInsetLayout::update function.
32969
32970 \seebaseclassmethod
32971*/
32973{
32975
32976 switch (phase)
32977 {
32978 case upPreparation:
32979 {
32981 for (int i=0; i<mRadialAxes.size(); ++i)
32982 mRadialAxes.at(i)->setupTickVectors();
32983 break;
32984 }
32985 case upLayout:
32986 {
32987 mCenter = mRect.center();
32988 mRadius = 0.5*qMin(qAbs(mRect.width()), qAbs(mRect.height()));
32989 if (mRadius < 1) mRadius = 1; // prevent cases where radius might become 0 which causes trouble
32990 for (int i=0; i<mRadialAxes.size(); ++i)
32991 mRadialAxes.at(i)->updateGeometry(mCenter, mRadius);
32992
32993 mInsetLayout->setOuterRect(rect());
32994 break;
32995 }
32996 default: break;
32997 }
32998
32999 // pass update call on to inset layout (doesn't happen automatically, because QCPPolarAxis doesn't derive from QCPLayout):
33000 mInsetLayout->update(phase);
33001}
33002
33003/* inherits documentation from base class */
33005{
33007 if (mInsetLayout)
33008 {
33009 result << mInsetLayout;
33010 if (recursive)
33011 result << mInsetLayout->elements(recursive);
33012 }
33013 return result;
33014}
33015
33016bool QCPPolarAxisAngular::removeGraph(QCPPolarGraph *graph)
33017{
33018 if (!mGraphs.contains(graph))
33019 {
33020 qDebug() << Q_FUNC_INFO << "graph not in list:" << reinterpret_cast<quintptr>(graph);
33021 return false;
33022 }
33023
33024 // remove plottable from legend:
33025 graph->removeFromLegend();
33026 // remove plottable:
33027 delete graph;
33028 mGraphs.removeOne(graph);
33029 return true;
33030}
33031
33032/* inherits documentation from base class */
33034{
33035 applyAntialiasingHint(painter, mAntialiased, QCP::aeAxes);
33036}
33037
33038/* inherits documentation from base class */
33040{
33041 drawBackground(painter, mCenter, mRadius);
33042
33043 // draw baseline circle:
33044 painter->setPen(getBasePen());
33045 painter->drawEllipse(mCenter, mRadius, mRadius);
33046
33047 // draw subticks:
33048 if (!mSubTickVector.isEmpty())
33049 {
33050 painter->setPen(getSubTickPen());
33051 for (int i=0; i<mSubTickVector.size(); ++i)
33052 {
33053 painter->drawLine(mCenter+mSubTickVectorCosSin.at(i)*(mRadius-mSubTickLengthIn),
33054 mCenter+mSubTickVectorCosSin.at(i)*(mRadius+mSubTickLengthOut));
33055 }
33056 }
33057
33058 // draw ticks and labels:
33059 if (!mTickVector.isEmpty())
33060 {
33061 mLabelPainter.setAnchorReference(mCenter);
33062 mLabelPainter.setFont(getTickLabelFont());
33063 mLabelPainter.setColor(getTickLabelColor());
33064 const QPen ticksPen = getTickPen();
33065 painter->setPen(ticksPen);
33066 for (int i=0; i<mTickVector.size(); ++i)
33067 {
33068 const QPointF outerTick = mCenter+mTickVectorCosSin.at(i)*(mRadius+mTickLengthOut);
33069 painter->drawLine(mCenter+mTickVectorCosSin.at(i)*(mRadius-mTickLengthIn), outerTick);
33070 // draw tick labels:
33071 if (!mTickVectorLabels.isEmpty())
33072 {
33073 if (i < mTickVectorLabels.count()-1 || (mTickVectorCosSin.at(i)-mTickVectorCosSin.first()).manhattanLength() > 5/180.0*M_PI) // skip last label if it's closer than approx 5 degrees to first
33074 mLabelPainter.drawTickLabel(painter, outerTick, mTickVectorLabels.at(i));
33075 }
33076 }
33077 }
33078}
33079
33080/* inherits documentation from base class */
33085
33086
33087/*!
33088 Sets \a pm as the axis background pixmap. The axis background pixmap will be drawn inside the
33089 axis rect. Since axis rects place themselves on the "background" layer by default, the axis rect
33090 backgrounds are usually drawn below everything else.
33091
33092 For cases where the provided pixmap doesn't have the same size as the axis rect, scaling can be
33093 enabled with \ref setBackgroundScaled and the scaling mode (i.e. whether and how the aspect ratio
33094 is preserved) can be set with \ref setBackgroundScaledMode. To set all these options in one call,
33095 consider using the overloaded version of this function.
33096
33097 Below the pixmap, the axis rect may be optionally filled with a brush, if specified with \ref
33098 setBackground(const QBrush &brush).
33099
33100 \see setBackgroundScaled, setBackgroundScaledMode, setBackground(const QBrush &brush)
33101*/
33103{
33104 mBackgroundPixmap = pm;
33105 mScaledBackgroundPixmap = QPixmap();
33106}
33107
33108/*! \overload
33109
33110 Sets \a brush as the background brush. The axis rect background will be filled with this brush.
33111 Since axis rects place themselves on the "background" layer by default, the axis rect backgrounds
33112 are usually drawn below everything else.
33113
33114 The brush will be drawn before (under) any background pixmap, which may be specified with \ref
33115 setBackground(const QPixmap &pm).
33116
33117 To disable drawing of a background brush, set \a brush to Qt::NoBrush.
33118
33119 \see setBackground(const QPixmap &pm)
33120*/
33122{
33123 mBackgroundBrush = brush;
33124}
33125
33126/*! \overload
33127
33128 Allows setting the background pixmap of the axis rect, whether it shall be scaled and how it
33129 shall be scaled in one call.
33130
33131 \see setBackground(const QPixmap &pm), setBackgroundScaled, setBackgroundScaledMode
33132*/
33134{
33135 mBackgroundPixmap = pm;
33136 mScaledBackgroundPixmap = QPixmap();
33137 mBackgroundScaled = scaled;
33138 mBackgroundScaledMode = mode;
33139}
33140
33141/*!
33142 Sets whether the axis background pixmap shall be scaled to fit the axis rect or not. If \a scaled
33143 is set to true, you may control whether and how the aspect ratio of the original pixmap is
33144 preserved with \ref setBackgroundScaledMode.
33145
33146 Note that the scaled version of the original pixmap is buffered, so there is no performance
33147 penalty on replots. (Except when the axis rect dimensions are changed continuously.)
33148
33149 \see setBackground, setBackgroundScaledMode
33150*/
33152{
33153 mBackgroundScaled = scaled;
33154}
33155
33156/*!
33157 If scaling of the axis background pixmap is enabled (\ref setBackgroundScaled), use this function to
33158 define whether and how the aspect ratio of the original pixmap passed to \ref setBackground is preserved.
33159 \see setBackground, setBackgroundScaled
33160*/
33162{
33163 mBackgroundScaledMode = mode;
33164}
33165
33166void QCPPolarAxisAngular::setRangeDrag(bool enabled)
33167{
33168 mRangeDrag = enabled;
33169}
33170
33171void QCPPolarAxisAngular::setRangeZoom(bool enabled)
33172{
33173 mRangeZoom = enabled;
33174}
33175
33176void QCPPolarAxisAngular::setRangeZoomFactor(double factor)
33177{
33178 mRangeZoomFactor = factor;
33179}
33180
33181
33182
33183
33184
33185
33186
33187/*!
33188 Sets the range of the axis.
33189
33190 This slot may be connected with the \ref rangeChanged signal of another axis so this axis
33191 is always synchronized with the other axis range, when it changes.
33192
33193 To invert the direction of an axis, use \ref setRangeReversed.
33194*/
33196{
33197 if (range.lower == mRange.lower && range.upper == mRange.upper)
33198 return;
33199
33200 if (!QCPRange::validRange(range)) return;
33201 QCPRange oldRange = mRange;
33202 mRange = range.sanitizedForLinScale();
33203 emit rangeChanged(mRange);
33204 emit rangeChanged(mRange, oldRange);
33205}
33206
33207/*!
33208 Sets whether the user can (de-)select the parts in \a selectable by clicking on the QCustomPlot surface.
33209 (When \ref QCustomPlot::setInteractions contains iSelectAxes.)
33210
33211 However, even when \a selectable is set to a value not allowing the selection of a specific part,
33212 it is still possible to set the selection of this part manually, by calling \ref setSelectedParts
33213 directly.
33214
33215 \see SelectablePart, setSelectedParts
33216*/
33218{
33219 if (mSelectableParts != selectable)
33220 {
33221 mSelectableParts = selectable;
33222 emit selectableChanged(mSelectableParts);
33223 }
33224}
33225
33226/*!
33227 Sets the selected state of the respective axis parts described by \ref SelectablePart. When a part
33228 is selected, it uses a different pen/font.
33229
33230 The entire selection mechanism for axes is handled automatically when \ref
33231 QCustomPlot::setInteractions contains iSelectAxes. You only need to call this function when you
33232 wish to change the selection state manually.
33233
33234 This function can change the selection state of a part, independent of the \ref setSelectableParts setting.
33235
33236 emits the \ref selectionChanged signal when \a selected is different from the previous selection state.
33237
33238 \see SelectablePart, setSelectableParts, selectTest, setSelectedBasePen, setSelectedTickPen, setSelectedSubTickPen,
33239 setSelectedTickLabelFont, setSelectedLabelFont, setSelectedTickLabelColor, setSelectedLabelColor
33240*/
33242{
33243 if (mSelectedParts != selected)
33244 {
33245 mSelectedParts = selected;
33246 emit selectionChanged(mSelectedParts);
33247 }
33248}
33249
33250/*!
33251 \overload
33252
33253 Sets the lower and upper bound of the axis range.
33254
33255 To invert the direction of an axis, use \ref setRangeReversed.
33256
33257 There is also a slot to set a range, see \ref setRange(const QCPRange &range).
33258*/
33259void QCPPolarAxisAngular::setRange(double lower, double upper)
33260{
33261 if (lower == mRange.lower && upper == mRange.upper)
33262 return;
33263
33264 if (!QCPRange::validRange(lower, upper)) return;
33265 QCPRange oldRange = mRange;
33266 mRange.lower = lower;
33267 mRange.upper = upper;
33268 mRange = mRange.sanitizedForLinScale();
33269 emit rangeChanged(mRange);
33270 emit rangeChanged(mRange, oldRange);
33271}
33272
33273/*!
33274 \overload
33275
33276 Sets the range of the axis.
33277
33278 The \a position coordinate indicates together with the \a alignment parameter, where the new
33279 range will be positioned. \a size defines the size of the new axis range. \a alignment may be
33280 Qt::AlignLeft, Qt::AlignRight or Qt::AlignCenter. This will cause the left border, right border,
33281 or center of the range to be aligned with \a position. Any other values of \a alignment will
33282 default to Qt::AlignCenter.
33283*/
33284void QCPPolarAxisAngular::setRange(double position, double size, Qt::AlignmentFlag alignment)
33285{
33286 if (alignment == Qt::AlignLeft)
33287 setRange(position, position+size);
33288 else if (alignment == Qt::AlignRight)
33289 setRange(position-size, position);
33290 else // alignment == Qt::AlignCenter
33291 setRange(position-size/2.0, position+size/2.0);
33292}
33293
33294/*!
33295 Sets the lower bound of the axis range. The upper bound is not changed.
33296 \see setRange
33297*/
33299{
33300 if (mRange.lower == lower)
33301 return;
33302
33303 QCPRange oldRange = mRange;
33304 mRange.lower = lower;
33305 mRange = mRange.sanitizedForLinScale();
33306 emit rangeChanged(mRange);
33307 emit rangeChanged(mRange, oldRange);
33308}
33309
33310/*!
33311 Sets the upper bound of the axis range. The lower bound is not changed.
33312 \see setRange
33313*/
33315{
33316 if (mRange.upper == upper)
33317 return;
33318
33319 QCPRange oldRange = mRange;
33320 mRange.upper = upper;
33321 mRange = mRange.sanitizedForLinScale();
33322 emit rangeChanged(mRange);
33323 emit rangeChanged(mRange, oldRange);
33324}
33325
33326/*!
33327 Sets whether the axis range (direction) is displayed reversed. Normally, the values on horizontal
33328 axes increase left to right, on vertical axes bottom to top. When \a reversed is set to true, the
33329 direction of increasing values is inverted.
33330
33331 Note that the range and data interface stays the same for reversed axes, e.g. the \a lower part
33332 of the \ref setRange interface will still reference the mathematically smaller number than the \a
33333 upper part.
33334*/
33336{
33337 mRangeReversed = reversed;
33338}
33339
33340void QCPPolarAxisAngular::setAngle(double degrees)
33341{
33342 mAngle = degrees;
33343 mAngleRad = mAngle/180.0*M_PI;
33344}
33345
33346/*!
33347 The axis ticker is responsible for generating the tick positions and tick labels. See the
33348 documentation of QCPAxisTicker for details on how to work with axis tickers.
33349
33350 You can change the tick positioning/labeling behaviour of this axis by setting a different
33351 QCPAxisTicker subclass using this method. If you only wish to modify the currently installed axis
33352 ticker, access it via \ref ticker.
33353
33354 Since the ticker is stored in the axis as a shared pointer, multiple axes may share the same axis
33355 ticker simply by passing the same shared pointer to multiple axes.
33356
33357 \see ticker
33358*/
33360{
33361 if (ticker)
33362 mTicker = ticker;
33363 else
33364 qDebug() << Q_FUNC_INFO << "can not set 0 as axis ticker";
33365 // no need to invalidate margin cache here because produced tick labels are checked for changes in setupTickVector
33366}
33367
33368/*!
33369 Sets whether tick marks are displayed.
33370
33371 Note that setting \a show to false does not imply that tick labels are invisible, too. To achieve
33372 that, see \ref setTickLabels.
33373
33374 \see setSubTicks
33375*/
33377{
33378 if (mTicks != show)
33379 {
33380 mTicks = show;
33381 //mCachedMarginValid = false;
33382 }
33383}
33384
33385/*!
33386 Sets whether tick labels are displayed. Tick labels are the numbers drawn next to tick marks.
33387*/
33389{
33390 if (mTickLabels != show)
33391 {
33392 mTickLabels = show;
33393 //mCachedMarginValid = false;
33394 if (!mTickLabels)
33395 mTickVectorLabels.clear();
33396 }
33397}
33398
33399/*!
33400 Sets the distance between the axis base line (including any outward ticks) and the tick labels.
33401 \see setLabelPadding, setPadding
33402*/
33404{
33405 mLabelPainter.setPadding(padding);
33406}
33407
33408/*!
33409 Sets the font of the tick labels.
33410
33411 \see setTickLabels, setTickLabelColor
33412*/
33414{
33415 mTickLabelFont = font;
33416}
33417
33418/*!
33419 Sets the color of the tick labels.
33420
33421 \see setTickLabels, setTickLabelFont
33422*/
33424{
33425 mTickLabelColor = color;
33426}
33427
33428/*!
33429 Sets the rotation of the tick labels. If \a degrees is zero, the labels are drawn normally. Else,
33430 the tick labels are drawn rotated by \a degrees clockwise. The specified angle is bound to values
33431 from -90 to 90 degrees.
33432
33433 If \a degrees is exactly -90, 0 or 90, the tick labels are centered on the tick coordinate. For
33434 other angles, the label is drawn with an offset such that it seems to point toward or away from
33435 the tick mark.
33436*/
33438{
33439 mLabelPainter.setRotation(degrees);
33440}
33441
33442void QCPPolarAxisAngular::setTickLabelMode(LabelMode mode)
33443{
33444 switch (mode)
33445 {
33446 case lmUpright: mLabelPainter.setAnchorMode(QCPLabelPainterPrivate::amSkewedUpright); break;
33447 case lmRotated: mLabelPainter.setAnchorMode(QCPLabelPainterPrivate::amSkewedRotated); break;
33448 }
33449}
33450
33451/*!
33452 Sets the number format for the numbers in tick labels. This \a formatCode is an extended version
33453 of the format code used e.g. by QString::number() and QLocale::toString(). For reference about
33454 that, see the "Argument Formats" section in the detailed description of the QString class.
33455
33456 \a formatCode is a string of one, two or three characters. The first character is identical to
33457 the normal format code used by Qt. In short, this means: 'e'/'E' scientific format, 'f' fixed
33458 format, 'g'/'G' scientific or fixed, whichever is shorter.
33459
33460 The second and third characters are optional and specific to QCustomPlot:\n If the first char was
33461 'e' or 'g', numbers are/might be displayed in the scientific format, e.g. "5.5e9", which might be
33462 visually unappealing in a plot. So when the second char of \a formatCode is set to 'b' (for
33463 "beautiful"), those exponential numbers are formatted in a more natural way, i.e. "5.5
33464 [multiplication sign] 10 [superscript] 9". By default, the multiplication sign is a centered dot.
33465 If instead a cross should be shown (as is usual in the USA), the third char of \a formatCode can
33466 be set to 'c'. The inserted multiplication signs are the UTF-8 characters 215 (0xD7) for the
33467 cross and 183 (0xB7) for the dot.
33468
33469 Examples for \a formatCode:
33470 \li \c g normal format code behaviour. If number is small, fixed format is used, if number is large,
33471 normal scientific format is used
33472 \li \c gb If number is small, fixed format is used, if number is large, scientific format is used with
33473 beautifully typeset decimal powers and a dot as multiplication sign
33474 \li \c ebc All numbers are in scientific format with beautifully typeset decimal power and a cross as
33475 multiplication sign
33476 \li \c fb illegal format code, since fixed format doesn't support (or need) beautifully typeset decimal
33477 powers. Format code will be reduced to 'f'.
33478 \li \c hello illegal format code, since first char is not 'e', 'E', 'f', 'g' or 'G'. Current format
33479 code will not be changed.
33480*/
33482{
33483 if (formatCode.isEmpty())
33484 {
33485 qDebug() << Q_FUNC_INFO << "Passed formatCode is empty";
33486 return;
33487 }
33488 //mCachedMarginValid = false;
33489
33490 // interpret first char as number format char:
33492 if (allowedFormatChars.contains(formatCode.at(0)))
33493 {
33494 mNumberFormatChar = QLatin1Char(formatCode.at(0).toLatin1());
33495 } else
33496 {
33497 qDebug() << Q_FUNC_INFO << "Invalid number format code (first char not in 'eEfgG'):" << formatCode;
33498 return;
33499 }
33500
33501 if (formatCode.length() < 2)
33502 {
33503 mNumberBeautifulPowers = false;
33504 mNumberMultiplyCross = false;
33505 } else
33506 {
33507 // interpret second char as indicator for beautiful decimal powers:
33508 if (formatCode.at(1) == QLatin1Char('b') && (mNumberFormatChar == QLatin1Char('e') || mNumberFormatChar == QLatin1Char('g')))
33509 mNumberBeautifulPowers = true;
33510 else
33511 qDebug() << Q_FUNC_INFO << "Invalid number format code (second char not 'b' or first char neither 'e' nor 'g'):" << formatCode;
33512
33513 if (formatCode.length() < 3)
33514 {
33515 mNumberMultiplyCross = false;
33516 } else
33517 {
33518 // interpret third char as indicator for dot or cross multiplication symbol:
33519 if (formatCode.at(2) == QLatin1Char('c'))
33520 mNumberMultiplyCross = true;
33521 else if (formatCode.at(2) == QLatin1Char('d'))
33522 mNumberMultiplyCross = false;
33523 else
33524 qDebug() << Q_FUNC_INFO << "Invalid number format code (third char neither 'c' nor 'd'):" << formatCode;
33525 }
33526 }
33527 mLabelPainter.setSubstituteExponent(mNumberBeautifulPowers);
33528 mLabelPainter.setMultiplicationSymbol(mNumberMultiplyCross ? QCPLabelPainterPrivate::SymbolCross : QCPLabelPainterPrivate::SymbolDot);
33529}
33530
33531/*!
33532 Sets the precision of the tick label numbers. See QLocale::toString(double i, char f, int prec)
33533 for details. The effect of precisions are most notably for number Formats starting with 'e', see
33534 \ref setNumberFormat
33535*/
33537{
33538 if (mNumberPrecision != precision)
33539 {
33540 mNumberPrecision = precision;
33541 //mCachedMarginValid = false;
33542 }
33543}
33544
33545/*!
33546 Sets the length of the ticks in pixels. \a inside is the length the ticks will reach inside the
33547 plot and \a outside is the length they will reach outside the plot. If \a outside is greater than
33548 zero, the tick labels and axis label will increase their distance to the axis accordingly, so
33549 they won't collide with the ticks.
33550
33551 \see setSubTickLength, setTickLengthIn, setTickLengthOut
33552*/
33554{
33555 setTickLengthIn(inside);
33557}
33558
33559/*!
33560 Sets the length of the inward ticks in pixels. \a inside is the length the ticks will reach
33561 inside the plot.
33562
33563 \see setTickLengthOut, setTickLength, setSubTickLength
33564*/
33566{
33567 if (mTickLengthIn != inside)
33568 {
33569 mTickLengthIn = inside;
33570 }
33571}
33572
33573/*!
33574 Sets the length of the outward ticks in pixels. \a outside is the length the ticks will reach
33575 outside the plot. If \a outside is greater than zero, the tick labels and axis label will
33576 increase their distance to the axis accordingly, so they won't collide with the ticks.
33577
33578 \see setTickLengthIn, setTickLength, setSubTickLength
33579*/
33581{
33582 if (mTickLengthOut != outside)
33583 {
33584 mTickLengthOut = outside;
33585 //mCachedMarginValid = false; // only outside tick length can change margin
33586 }
33587}
33588
33589/*!
33590 Sets whether sub tick marks are displayed.
33591
33592 Sub ticks are only potentially visible if (major) ticks are also visible (see \ref setTicks)
33593
33594 \see setTicks
33595*/
33597{
33598 if (mSubTicks != show)
33599 {
33600 mSubTicks = show;
33601 //mCachedMarginValid = false;
33602 }
33603}
33604
33605/*!
33606 Sets the length of the subticks in pixels. \a inside is the length the subticks will reach inside
33607 the plot and \a outside is the length they will reach outside the plot. If \a outside is greater
33608 than zero, the tick labels and axis label will increase their distance to the axis accordingly,
33609 so they won't collide with the ticks.
33610
33611 \see setTickLength, setSubTickLengthIn, setSubTickLengthOut
33612*/
33614{
33615 setSubTickLengthIn(inside);
33617}
33618
33619/*!
33620 Sets the length of the inward subticks in pixels. \a inside is the length the subticks will reach inside
33621 the plot.
33622
33623 \see setSubTickLengthOut, setSubTickLength, setTickLength
33624*/
33626{
33627 if (mSubTickLengthIn != inside)
33628 {
33629 mSubTickLengthIn = inside;
33630 }
33631}
33632
33633/*!
33634 Sets the length of the outward subticks in pixels. \a outside is the length the subticks will reach
33635 outside the plot. If \a outside is greater than zero, the tick labels will increase their
33636 distance to the axis accordingly, so they won't collide with the ticks.
33637
33638 \see setSubTickLengthIn, setSubTickLength, setTickLength
33639*/
33641{
33642 if (mSubTickLengthOut != outside)
33643 {
33644 mSubTickLengthOut = outside;
33645 //mCachedMarginValid = false; // only outside tick length can change margin
33646 }
33647}
33648
33649/*!
33650 Sets the pen, the axis base line is drawn with.
33651
33652 \see setTickPen, setSubTickPen
33653*/
33655{
33656 mBasePen = pen;
33657}
33658
33659/*!
33660 Sets the pen, tick marks will be drawn with.
33661
33662 \see setTickLength, setBasePen
33663*/
33665{
33666 mTickPen = pen;
33667}
33668
33669/*!
33670 Sets the pen, subtick marks will be drawn with.
33671
33672 \see setSubTickCount, setSubTickLength, setBasePen
33673*/
33675{
33676 mSubTickPen = pen;
33677}
33678
33679/*!
33680 Sets the font of the axis label.
33681
33682 \see setLabelColor
33683*/
33685{
33686 if (mLabelFont != font)
33687 {
33688 mLabelFont = font;
33689 //mCachedMarginValid = false;
33690 }
33691}
33692
33693/*!
33694 Sets the color of the axis label.
33695
33696 \see setLabelFont
33697*/
33699{
33700 mLabelColor = color;
33701}
33702
33703/*!
33704 Sets the text of the axis label that will be shown below/above or next to the axis, depending on
33705 its orientation. To disable axis labels, pass an empty string as \a str.
33706*/
33708{
33709 if (mLabel != str)
33710 {
33711 mLabel = str;
33712 //mCachedMarginValid = false;
33713 }
33714}
33715
33716/*!
33717 Sets the distance between the tick labels and the axis label.
33718
33719 \see setTickLabelPadding, setPadding
33720*/
33722{
33723 if (mLabelPadding != padding)
33724 {
33725 mLabelPadding = padding;
33726 //mCachedMarginValid = false;
33727 }
33728}
33729
33730/*!
33731 Sets the font that is used for tick labels when they are selected.
33732
33733 \see setTickLabelFont, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
33734*/
33736{
33737 if (font != mSelectedTickLabelFont)
33738 {
33739 mSelectedTickLabelFont = font;
33740 // don't set mCachedMarginValid to false here because margin calculation is always done with non-selected fonts
33741 }
33742}
33743
33744/*!
33745 Sets the font that is used for the axis label when it is selected.
33746
33747 \see setLabelFont, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
33748*/
33750{
33751 mSelectedLabelFont = font;
33752 // don't set mCachedMarginValid to false here because margin calculation is always done with non-selected fonts
33753}
33754
33755/*!
33756 Sets the color that is used for tick labels when they are selected.
33757
33758 \see setTickLabelColor, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
33759*/
33761{
33762 if (color != mSelectedTickLabelColor)
33763 {
33764 mSelectedTickLabelColor = color;
33765 }
33766}
33767
33768/*!
33769 Sets the color that is used for the axis label when it is selected.
33770
33771 \see setLabelColor, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
33772*/
33774{
33775 mSelectedLabelColor = color;
33776}
33777
33778/*!
33779 Sets the pen that is used to draw the axis base line when selected.
33780
33781 \see setBasePen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
33782*/
33784{
33785 mSelectedBasePen = pen;
33786}
33787
33788/*!
33789 Sets the pen that is used to draw the (major) ticks when selected.
33790
33791 \see setTickPen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
33792*/
33794{
33795 mSelectedTickPen = pen;
33796}
33797
33798/*!
33799 Sets the pen that is used to draw the subticks when selected.
33800
33801 \see setSubTickPen, setSelectableParts, setSelectedParts, QCustomPlot::setInteractions
33802*/
33804{
33805 mSelectedSubTickPen = pen;
33806}
33807
33808/*! \internal
33809
33810 Draws the background of this axis rect. It may consist of a background fill (a QBrush) and a
33811 pixmap.
33812
33813 If a brush was given via \ref setBackground(const QBrush &brush), this function first draws an
33814 according filling inside the axis rect with the provided \a painter.
33815
33816 Then, if a pixmap was provided via \ref setBackground, this function buffers the scaled version
33817 depending on \ref setBackgroundScaled and \ref setBackgroundScaledMode and then draws it inside
33818 the axis rect with the provided \a painter. The scaled version is buffered in
33819 mScaledBackgroundPixmap to prevent expensive rescaling at every redraw. It is only updated, when
33820 the axis rect has changed in a way that requires a rescale of the background pixmap (this is
33821 dependent on the \ref setBackgroundScaledMode), or when a differend axis background pixmap was
33822 set.
33823
33824 \see setBackground, setBackgroundScaled, setBackgroundScaledMode
33825*/
33826void QCPPolarAxisAngular::drawBackground(QCPPainter *painter, const QPointF &center, double radius)
33827{
33828 // draw background fill (don't use circular clip, looks bad):
33829 if (mBackgroundBrush != Qt::NoBrush)
33830 {
33832 ellipsePath.addEllipse(center, radius, radius);
33833 painter->fillPath(ellipsePath, mBackgroundBrush);
33834 }
33835
33836 // draw background pixmap (on top of fill, if brush specified):
33837 if (!mBackgroundPixmap.isNull())
33838 {
33839 QRegion clipCircle(center.x()-radius, center.y()-radius, qRound(2*radius), qRound(2*radius), QRegion::Ellipse);
33840 QRegion originalClip = painter->clipRegion();
33841 painter->setClipRegion(clipCircle);
33842 if (mBackgroundScaled)
33843 {
33844 // check whether mScaledBackground needs to be updated:
33845 QSize scaledSize(mBackgroundPixmap.size());
33846 scaledSize.scale(mRect.size(), mBackgroundScaledMode);
33847 if (mScaledBackgroundPixmap.size() != scaledSize)
33848 mScaledBackgroundPixmap = mBackgroundPixmap.scaled(mRect.size(), mBackgroundScaledMode, Qt::SmoothTransformation);
33849 painter->drawPixmap(mRect.topLeft()+QPoint(0, -1), mScaledBackgroundPixmap, QRect(0, 0, mRect.width(), mRect.height()) & mScaledBackgroundPixmap.rect());
33850 } else
33851 {
33852 painter->drawPixmap(mRect.topLeft()+QPoint(0, -1), mBackgroundPixmap, QRect(0, 0, mRect.width(), mRect.height()));
33853 }
33854 painter->setClipRegion(originalClip);
33855 }
33856}
33857
33858/*! \internal
33859
33860 Prepares the internal tick vector, sub tick vector and tick label vector. This is done by calling
33861 QCPAxisTicker::generate on the currently installed ticker.
33862
33863 If a change in the label text/count is detected, the cached axis margin is invalidated to make
33864 sure the next margin calculation recalculates the label sizes and returns an up-to-date value.
33865*/
33867{
33868 if (!mParentPlot) return;
33869 if ((!mTicks && !mTickLabels && !mGrid->visible()) || mRange.size() <= 0) return;
33870
33871 mSubTickVector.clear(); // since we might not pass it to mTicker->generate(), and we don't want old data in there
33872 mTicker->generate(mRange, mParentPlot->locale(), mNumberFormatChar, mNumberPrecision, mTickVector, mSubTicks ? &mSubTickVector : 0, mTickLabels ? &mTickVectorLabels : 0);
33873
33874 // fill cos/sin buffers which will be used by draw() and QCPPolarGrid::draw(), so we don't have to calculate it twice:
33875 mTickVectorCosSin.resize(mTickVector.size());
33876 for (int i=0; i<mTickVector.size(); ++i)
33877 {
33878 const double theta = coordToAngleRad(mTickVector.at(i));
33879 mTickVectorCosSin[i] = QPointF(qCos(theta), qSin(theta));
33880 }
33881 mSubTickVectorCosSin.resize(mSubTickVector.size());
33882 for (int i=0; i<mSubTickVector.size(); ++i)
33883 {
33884 const double theta = coordToAngleRad(mSubTickVector.at(i));
33885 mSubTickVectorCosSin[i] = QPointF(qCos(theta), qSin(theta));
33886 }
33887}
33888
33889/*! \internal
33890
33891 Returns the pen that is used to draw the axis base line. Depending on the selection state, this
33892 is either mSelectedBasePen or mBasePen.
33893*/
33895{
33896 return mSelectedParts.testFlag(spAxis) ? mSelectedBasePen : mBasePen;
33897}
33898
33899/*! \internal
33900
33901 Returns the pen that is used to draw the (major) ticks. Depending on the selection state, this
33902 is either mSelectedTickPen or mTickPen.
33903*/
33905{
33906 return mSelectedParts.testFlag(spAxis) ? mSelectedTickPen : mTickPen;
33907}
33908
33909/*! \internal
33910
33911 Returns the pen that is used to draw the subticks. Depending on the selection state, this
33912 is either mSelectedSubTickPen or mSubTickPen.
33913*/
33915{
33916 return mSelectedParts.testFlag(spAxis) ? mSelectedSubTickPen : mSubTickPen;
33917}
33918
33919/*! \internal
33920
33921 Returns the font that is used to draw the tick labels. Depending on the selection state, this
33922 is either mSelectedTickLabelFont or mTickLabelFont.
33923*/
33925{
33926 return mSelectedParts.testFlag(spTickLabels) ? mSelectedTickLabelFont : mTickLabelFont;
33927}
33928
33929/*! \internal
33930
33931 Returns the font that is used to draw the axis label. Depending on the selection state, this
33932 is either mSelectedLabelFont or mLabelFont.
33933*/
33935{
33936 return mSelectedParts.testFlag(spAxisLabel) ? mSelectedLabelFont : mLabelFont;
33937}
33938
33939/*! \internal
33940
33941 Returns the color that is used to draw the tick labels. Depending on the selection state, this
33942 is either mSelectedTickLabelColor or mTickLabelColor.
33943*/
33945{
33946 return mSelectedParts.testFlag(spTickLabels) ? mSelectedTickLabelColor : mTickLabelColor;
33947}
33948
33949/*! \internal
33950
33951 Returns the color that is used to draw the axis label. Depending on the selection state, this
33952 is either mSelectedLabelColor or mLabelColor.
33953*/
33955{
33956 return mSelectedParts.testFlag(spAxisLabel) ? mSelectedLabelColor : mLabelColor;
33957}
33958
33959/*! \internal
33960
33961 Event handler for when a mouse button is pressed on the axis rect. If the left mouse button is
33962 pressed, the range dragging interaction is initialized (the actual range manipulation happens in
33963 the \ref mouseMoveEvent).
33964
33965 The mDragging flag is set to true and some anchor points are set that are needed to determine the
33966 distance the mouse was dragged in the mouse move/release events later.
33967
33968 \see mouseMoveEvent, mouseReleaseEvent
33969*/
33971{
33972 Q_UNUSED(details)
33973 if (event->buttons() & Qt::LeftButton)
33974 {
33975 mDragging = true;
33976 // initialize antialiasing backup in case we start dragging:
33977 if (mParentPlot->noAntialiasingOnDrag())
33978 {
33979 mAADragBackup = mParentPlot->antialiasedElements();
33980 mNotAADragBackup = mParentPlot->notAntialiasedElements();
33981 }
33982 // Mouse range dragging interaction:
33983 if (mParentPlot->interactions().testFlag(QCP::iRangeDrag))
33984 {
33985 mDragAngularStart = range();
33986 mDragRadialStart.clear();
33987 for (int i=0; i<mRadialAxes.size(); ++i)
33988 mDragRadialStart.append(mRadialAxes.at(i)->range());
33989 }
33990 }
33991}
33992
33993/*! \internal
33994
33995 Event handler for when the mouse is moved on the axis rect. If range dragging was activated in a
33996 preceding \ref mousePressEvent, the range is moved accordingly.
33997
33998 \see mousePressEvent, mouseReleaseEvent
33999*/
34001{
34002 Q_UNUSED(startPos)
34003 bool doReplot = false;
34004 // Mouse range dragging interaction:
34005 if (mDragging && mParentPlot->interactions().testFlag(QCP::iRangeDrag))
34006 {
34007 if (mRangeDrag)
34008 {
34009 doReplot = true;
34011 double angleCoord, radiusCoord;
34014 double diff = angleCoordStart - angleCoord;
34015 setRange(mDragAngularStart.lower+diff, mDragAngularStart.upper+diff);
34016 }
34017
34018 for (int i=0; i<mRadialAxes.size(); ++i)
34019 {
34020 QCPPolarAxisRadial *ax = mRadialAxes.at(i);
34021 if (!ax->rangeDrag())
34022 continue;
34023 doReplot = true;
34025 double angleCoord, radiusCoord;
34026 ax->pixelToCoord(startPos, angleCoordStart, radiusCoordStart);
34027 ax->pixelToCoord(event->pos(), angleCoord, radiusCoord);
34028 if (ax->scaleType() == QCPPolarAxisRadial::stLinear)
34029 {
34031 ax->setRange(mDragRadialStart.at(i).lower+diff, mDragRadialStart.at(i).upper+diff);
34032 } else if (ax->scaleType() == QCPPolarAxisRadial::stLogarithmic)
34033 {
34034 if (radiusCoord != 0)
34035 {
34037 ax->setRange(mDragRadialStart.at(i).lower*diff, mDragRadialStart.at(i).upper*diff);
34038 }
34039 }
34040 }
34041
34042 if (doReplot) // if either vertical or horizontal drag was enabled, do a replot
34043 {
34044 if (mParentPlot->noAntialiasingOnDrag())
34046 mParentPlot->replot(QCustomPlot::rpQueuedReplot);
34047 }
34048 }
34049}
34050
34051/* inherits documentation from base class */
34053{
34055 Q_UNUSED(startPos)
34056 mDragging = false;
34057 if (mParentPlot->noAntialiasingOnDrag())
34058 {
34059 mParentPlot->setAntialiasedElements(mAADragBackup);
34060 mParentPlot->setNotAntialiasedElements(mNotAADragBackup);
34061 }
34062}
34063
34064/*! \internal
34065
34066 Event handler for mouse wheel events. If rangeZoom is Qt::Horizontal, Qt::Vertical or both, the
34067 ranges of the axes defined as rangeZoomHorzAxis and rangeZoomVertAxis are scaled. The center of
34068 the scaling operation is the current cursor position inside the axis rect. The scaling factor is
34069 dependent on the mouse wheel delta (which direction the wheel was rotated) to provide a natural
34070 zooming feel. The Strength of the zoom can be controlled via \ref setRangeZoomFactor.
34071
34072 Note, that event->delta() is usually +/-120 for single rotation steps. However, if the mouse
34073 wheel is turned rapidly, many steps may bunch up to one event, so the event->delta() may then be
34074 multiples of 120. This is taken into account here, by calculating \a wheelSteps and using it as
34075 exponent of the range zoom factor. This takes care of the wheel direction automatically, by
34076 inverting the factor, when the wheel step is negative (f^-1 = 1/f).
34077*/
34079{
34080 bool doReplot = false;
34081 // Mouse range zooming interaction:
34082 if (mParentPlot->interactions().testFlag(QCP::iRangeZoom))
34083 {
34084#if QT_VERSION < QT_VERSION_CHECK(5, 0, 0)
34085 const double delta = event->delta();
34086#else
34087 const double delta = event->angleDelta().y();
34088#endif
34089
34090#if QT_VERSION < QT_VERSION_CHECK(5, 14, 0)
34091 const QPointF pos = event->pos();
34092#else
34093 const QPointF pos = event->position();
34094#endif
34095 const double wheelSteps = delta/120.0; // a single step delta is +/-120 usually
34096 if (mRangeZoom)
34097 {
34098 double angleCoord, radiusCoord;
34100 scaleRange(qPow(mRangeZoomFactor, wheelSteps), angleCoord);
34101 }
34102
34103 for (int i=0; i<mRadialAxes.size(); ++i)
34104 {
34105 QCPPolarAxisRadial *ax = mRadialAxes.at(i);
34106 if (!ax->rangeZoom())
34107 continue;
34108 doReplot = true;
34109 double angleCoord, radiusCoord;
34110 ax->pixelToCoord(pos, angleCoord, radiusCoord);
34111 ax->scaleRange(qPow(ax->rangeZoomFactor(), wheelSteps), radiusCoord);
34112 }
34113 }
34114 if (doReplot)
34115 mParentPlot->replot();
34116}
34117
34118bool QCPPolarAxisAngular::registerPolarGraph(QCPPolarGraph *graph)
34119{
34120 if (mGraphs.contains(graph))
34121 {
34122 qDebug() << Q_FUNC_INFO << "plottable already added:" << reinterpret_cast<quintptr>(graph);
34123 return false;
34124 }
34125 if (graph->keyAxis() != this)
34126 {
34127 qDebug() << Q_FUNC_INFO << "plottable not created with this as axis:" << reinterpret_cast<quintptr>(graph);
34128 return false;
34129 }
34130
34131 mGraphs.append(graph);
34132 // possibly add plottable to legend:
34133 if (mParentPlot->autoAddPlottableToLegend())
34134 graph->addToLegend();
34135 if (!graph->layer()) // usually the layer is already set in the constructor of the plottable (via QCPLayerable constructor)
34136 graph->setLayer(mParentPlot->currentLayer());
34137 return true;
34138}
34139/* end of 'src/polar/layoutelement-angularaxis.cpp' */
34140
34141
34142/* including file 'src/polar/polargrid.cpp' */
34143/* modified 2021-03-29T02:30:44, size 7493 */
34144
34145
34146////////////////////////////////////////////////////////////////////////////////////////////////////
34147//////////////////// QCPPolarGrid
34148////////////////////////////////////////////////////////////////////////////////////////////////////
34149
34150/*! \class QCPPolarGrid
34151 \brief The grid in both angular and radial dimensions for polar plots
34152
34153 \warning In this QCustomPlot version, polar plots are a tech preview. Expect documentation and
34154 functionality to be incomplete, as well as changing public interfaces in the future.
34155*/
34156
34157/*!
34158 Creates a QCPPolarGrid instance and sets default values.
34159
34160 You shouldn't instantiate grids on their own, since every axis brings its own grid.
34161*/
34163 QCPLayerable(parentAxis->parentPlot(), QString(), parentAxis),
34164 mType(gtNone),
34165 mSubGridType(gtNone),
34166 mAntialiasedSubGrid(true),
34167 mAntialiasedZeroLine(true),
34168 mParentAxis(parentAxis)
34169{
34170 // warning: this is called in QCPPolarAxisAngular constructor, so parentAxis members should not be accessed/called
34172 setType(gtAll);
34173 setSubGridType(gtNone);
34174
34175 setAngularPen(QPen(QColor(200,200,200), 0, Qt::DotLine));
34176 setAngularSubGridPen(QPen(QColor(220,220,220), 0, Qt::DotLine));
34177
34178 setRadialPen(QPen(QColor(200,200,200), 0, Qt::DotLine));
34179 setRadialSubGridPen(QPen(QColor(220,220,220), 0, Qt::DotLine));
34180 setRadialZeroLinePen(QPen(QColor(200,200,200), 0, Qt::SolidLine));
34181
34182 setAntialiased(true);
34183}
34184
34185void QCPPolarGrid::setRadialAxis(QCPPolarAxisRadial *axis)
34186{
34187 mRadialAxis = axis;
34188}
34189
34190void QCPPolarGrid::setType(GridTypes type)
34191{
34192 mType = type;
34193}
34194
34195void QCPPolarGrid::setSubGridType(GridTypes type)
34196{
34197 mSubGridType = type;
34198}
34199
34200/*!
34201 Sets whether sub grid lines are drawn antialiased.
34202*/
34204{
34205 mAntialiasedSubGrid = enabled;
34206}
34207
34208/*!
34209 Sets whether zero lines are drawn antialiased.
34210*/
34212{
34213 mAntialiasedZeroLine = enabled;
34214}
34215
34216/*!
34217 Sets the pen with which (major) grid lines are drawn.
34218*/
34220{
34221 mAngularPen = pen;
34222}
34223
34224/*!
34225 Sets the pen with which sub grid lines are drawn.
34226*/
34228{
34229 mAngularSubGridPen = pen;
34230}
34231
34232void QCPPolarGrid::setRadialPen(const QPen &pen)
34233{
34234 mRadialPen = pen;
34235}
34236
34237void QCPPolarGrid::setRadialSubGridPen(const QPen &pen)
34238{
34239 mRadialSubGridPen = pen;
34240}
34241
34242void QCPPolarGrid::setRadialZeroLinePen(const QPen &pen)
34243{
34244 mRadialZeroLinePen = pen;
34245}
34246
34247/*! \internal
34248
34249 A convenience function to easily set the QPainter::Antialiased hint on the provided \a painter
34250 before drawing the major grid lines.
34251
34252 This is the antialiasing state the painter passed to the \ref draw method is in by default.
34253
34254 This function takes into account the local setting of the antialiasing flag as well as the
34255 overrides set with \ref QCustomPlot::setAntialiasedElements and \ref
34256 QCustomPlot::setNotAntialiasedElements.
34257
34258 \see setAntialiased
34259*/
34261{
34262 applyAntialiasingHint(painter, mAntialiased, QCP::aeGrid);
34263}
34264
34265/*! \internal
34266
34267 Draws grid lines and sub grid lines at the positions of (sub) ticks of the parent axis, spanning
34268 over the complete axis rect. Also draws the zero line, if appropriate (\ref setZeroLinePen).
34269*/
34271{
34272 if (!mParentAxis) { qDebug() << Q_FUNC_INFO << "invalid parent axis"; return; }
34273
34274 const QPointF center = mParentAxis->mCenter;
34275 const double radius = mParentAxis->mRadius;
34276
34277 painter->setBrush(Qt::NoBrush);
34278 // draw main angular grid:
34279 if (mType.testFlag(gtAngular))
34280 drawAngularGrid(painter, center, radius, mParentAxis->mTickVectorCosSin, mAngularPen);
34281 // draw main radial grid:
34282 if (mType.testFlag(gtRadial) && mRadialAxis)
34283 drawRadialGrid(painter, center, mRadialAxis->tickVector(), mRadialPen, mRadialZeroLinePen);
34284
34285 applyAntialiasingHint(painter, mAntialiasedSubGrid, QCP::aeGrid);
34286 // draw sub angular grid:
34287 if (mSubGridType.testFlag(gtAngular))
34288 drawAngularGrid(painter, center, radius, mParentAxis->mSubTickVectorCosSin, mAngularSubGridPen);
34289 // draw sub radial grid:
34290 if (mSubGridType.testFlag(gtRadial) && mRadialAxis)
34291 drawRadialGrid(painter, center, mRadialAxis->subTickVector(), mRadialSubGridPen);
34292}
34293
34294void QCPPolarGrid::drawRadialGrid(QCPPainter *painter, const QPointF &center, const QVector<double> &coords, const QPen &pen, const QPen &zeroPen)
34295{
34296 if (!mRadialAxis) return;
34297 if (coords.isEmpty()) return;
34298 const bool drawZeroLine = zeroPen != Qt::NoPen;
34299 const double zeroLineEpsilon = qAbs(coords.last()-coords.first())*1e-6;
34300
34301 painter->setPen(pen);
34302 for (int i=0; i<coords.size(); ++i)
34303 {
34304 const double r = mRadialAxis->coordToRadius(coords.at(i));
34305 if (drawZeroLine && qAbs(coords.at(i)) < zeroLineEpsilon)
34306 {
34307 applyAntialiasingHint(painter, mAntialiasedZeroLine, QCP::aeZeroLine);
34308 painter->setPen(zeroPen);
34309 painter->drawEllipse(center, r, r);
34310 painter->setPen(pen);
34312 } else
34313 {
34314 painter->drawEllipse(center, r, r);
34315 }
34316 }
34317}
34318
34319void QCPPolarGrid::drawAngularGrid(QCPPainter *painter, const QPointF &center, double radius, const QVector<QPointF> &ticksCosSin, const QPen &pen)
34320{
34321 if (ticksCosSin.isEmpty()) return;
34322
34323 painter->setPen(pen);
34324 for (int i=0; i<ticksCosSin.size(); ++i)
34325 painter->drawLine(center, center+ticksCosSin.at(i)*radius);
34326}
34327/* end of 'src/polar/polargrid.cpp' */
34328
34329
34330/* including file 'src/polar/polargraph.cpp' */
34331/* modified 2021-03-29T02:30:44, size 44035 */
34332
34333
34334////////////////////////////////////////////////////////////////////////////////////////////////////
34335//////////////////// QCPPolarLegendItem
34336////////////////////////////////////////////////////////////////////////////////////////////////////
34337
34338/*! \class QCPPolarLegendItem
34339 \brief A legend item for polar plots
34340
34341 \warning In this QCustomPlot version, polar plots are a tech preview. Expect documentation and
34342 functionality to be incomplete, as well as changing public interfaces in the future.
34343*/
34344QCPPolarLegendItem::QCPPolarLegendItem(QCPLegend *parent, QCPPolarGraph *graph) :
34345 QCPAbstractLegendItem(parent),
34346 mPolarGraph(graph)
34347{
34348 setAntialiased(false);
34349}
34350
34352{
34353 if (!mPolarGraph) return;
34354 painter->setFont(getFont());
34355 painter->setPen(QPen(getTextColor()));
34356 QSizeF iconSize = mParentLegend->iconSize();
34357 QRectF textRect = painter->fontMetrics().boundingRect(0, 0, 0, iconSize.height(), Qt::TextDontClip, mPolarGraph->name());
34358 QRectF iconRect(mRect.topLeft(), iconSize);
34359 int textHeight = qMax(textRect.height(), iconSize.height()); // if text has smaller height than icon, center text vertically in icon height, else align tops
34360 painter->drawText(mRect.x()+iconSize.width()+mParentLegend->iconTextPadding(), mRect.y(), textRect.width(), textHeight, Qt::TextDontClip, mPolarGraph->name());
34361 // draw icon:
34362 painter->save();
34363 painter->setClipRect(iconRect, Qt::IntersectClip);
34364 mPolarGraph->drawLegendIcon(painter, iconRect);
34365 painter->restore();
34366 // draw icon border:
34367 if (getIconBorderPen().style() != Qt::NoPen)
34368 {
34369 painter->setPen(getIconBorderPen());
34370 painter->setBrush(Qt::NoBrush);
34371 int halfPen = qCeil(painter->pen().widthF()*0.5)+1;
34372 painter->setClipRect(mOuterRect.adjusted(-halfPen, -halfPen, halfPen, halfPen)); // extend default clip rect so thicker pens (especially during selection) are not clipped
34373 painter->drawRect(iconRect);
34374 }
34375}
34376
34378{
34379 if (!mPolarGraph) return QSize();
34380 QSize result(0, 0);
34382 QFontMetrics fontMetrics(getFont());
34383 QSize iconSize = mParentLegend->iconSize();
34384 textRect = fontMetrics.boundingRect(0, 0, 0, iconSize.height(), Qt::TextDontClip, mPolarGraph->name());
34385 result.setWidth(iconSize.width() + mParentLegend->iconTextPadding() + textRect.width());
34386 result.setHeight(qMax(textRect.height(), iconSize.height()));
34387 result.rwidth() += mMargins.left()+mMargins.right();
34388 result.rheight() += mMargins.top()+mMargins.bottom();
34389 return result;
34390}
34391
34392QPen QCPPolarLegendItem::getIconBorderPen() const
34393{
34394 return mSelected ? mParentLegend->selectedIconBorderPen() : mParentLegend->iconBorderPen();
34395}
34396
34397QColor QCPPolarLegendItem::getTextColor() const
34398{
34399 return mSelected ? mSelectedTextColor : mTextColor;
34400}
34401
34402QFont QCPPolarLegendItem::getFont() const
34403{
34404 return mSelected ? mSelectedFont : mFont;
34405}
34406
34407
34408////////////////////////////////////////////////////////////////////////////////////////////////////
34409//////////////////// QCPPolarGraph
34410////////////////////////////////////////////////////////////////////////////////////////////////////
34411
34412/*! \class QCPPolarGraph
34413 \brief A radial graph used to display data in polar plots
34414
34415 \warning In this QCustomPlot version, polar plots are a tech preview. Expect documentation and
34416 functionality to be incomplete, as well as changing public interfaces in the future.
34417*/
34418
34419/* start of documentation of inline functions */
34420
34421// TODO
34422
34423/* end of documentation of inline functions */
34424
34425/*!
34426 Constructs a graph which uses \a keyAxis as its angular and \a valueAxis as its radial axis. \a
34427 keyAxis and \a valueAxis must reside in the same QCustomPlot, and the radial axis must be
34428 associated with the angular axis. If either of these restrictions is violated, a corresponding
34429 message is printed to the debug output (qDebug), the construction is not aborted, though.
34430
34431 The created QCPPolarGraph is automatically registered with the QCustomPlot instance inferred from
34432 \a keyAxis. This QCustomPlot instance takes ownership of the QCPPolarGraph, so do not delete it
34433 manually but use QCPPolarAxisAngular::removeGraph() instead.
34434
34435 To directly create a QCPPolarGraph inside a plot, you shoud use the QCPPolarAxisAngular::addGraph
34436 method.
34437*/
34439 QCPLayerable(keyAxis->parentPlot(), QString(), keyAxis),
34440 mDataContainer(new QCPGraphDataContainer),
34441 mName(),
34442 mAntialiasedFill(true),
34443 mAntialiasedScatters(true),
34444 mPen(Qt::black),
34445 mBrush(Qt::NoBrush),
34446 mPeriodic(true),
34447 mKeyAxis(keyAxis),
34448 mValueAxis(valueAxis),
34449 mSelectable(QCP::stWhole)
34450 //mSelectionDecorator(0) // TODO
34451{
34452 if (keyAxis->parentPlot() != valueAxis->parentPlot())
34453 qDebug() << Q_FUNC_INFO << "Parent plot of keyAxis is not the same as that of valueAxis.";
34454
34455 mKeyAxis->registerPolarGraph(this);
34456
34457 //setSelectionDecorator(new QCPSelectionDecorator); // TODO
34458
34459 setPen(QPen(Qt::blue, 0));
34462}
34463
34464QCPPolarGraph::~QCPPolarGraph()
34465{
34466 /* TODO
34467 if (mSelectionDecorator)
34468 {
34469 delete mSelectionDecorator;
34470 mSelectionDecorator = 0;
34471 }
34472 */
34473}
34474
34475/*!
34476 The name is the textual representation of this plottable as it is displayed in the legend
34477 (\ref QCPLegend). It may contain any UTF-8 characters, including newlines.
34478*/
34480{
34481 mName = name;
34482}
34483
34484/*!
34485 Sets whether fills of this plottable are drawn antialiased or not.
34486
34487 Note that this setting may be overridden by \ref QCustomPlot::setAntialiasedElements and \ref
34488 QCustomPlot::setNotAntialiasedElements.
34489*/
34491{
34492 mAntialiasedFill = enabled;
34493}
34494
34495/*!
34496 Sets whether the scatter symbols of this plottable are drawn antialiased or not.
34497
34498 Note that this setting may be overridden by \ref QCustomPlot::setAntialiasedElements and \ref
34499 QCustomPlot::setNotAntialiasedElements.
34500*/
34502{
34503 mAntialiasedScatters = enabled;
34504}
34505
34506/*!
34507 The pen is used to draw basic lines that make up the plottable representation in the
34508 plot.
34509
34510 For example, the \ref QCPGraph subclass draws its graph lines with this pen.
34511
34512 \see setBrush
34513*/
34515{
34516 mPen = pen;
34517}
34518
34519/*!
34520 The brush is used to draw basic fills of the plottable representation in the
34521 plot. The Fill can be a color, gradient or texture, see the usage of QBrush.
34522
34523 For example, the \ref QCPGraph subclass draws the fill under the graph with this brush, when
34524 it's not set to Qt::NoBrush.
34525
34526 \see setPen
34527*/
34529{
34530 mBrush = brush;
34531}
34532
34533void QCPPolarGraph::setPeriodic(bool enabled)
34534{
34535 mPeriodic = enabled;
34536}
34537
34538/*!
34539 The key axis of a plottable can be set to any axis of a QCustomPlot, as long as it is orthogonal
34540 to the plottable's value axis. This function performs no checks to make sure this is the case.
34541 The typical mathematical choice is to use the x-axis (QCustomPlot::xAxis) as key axis and the
34542 y-axis (QCustomPlot::yAxis) as value axis.
34543
34544 Normally, the key and value axes are set in the constructor of the plottable (or \ref
34545 QCustomPlot::addGraph when working with QCPGraphs through the dedicated graph interface).
34546
34547 \see setValueAxis
34548*/
34550{
34551 mKeyAxis = axis;
34552}
34553
34554/*!
34555 The value axis of a plottable can be set to any axis of a QCustomPlot, as long as it is
34556 orthogonal to the plottable's key axis. This function performs no checks to make sure this is the
34557 case. The typical mathematical choice is to use the x-axis (QCustomPlot::xAxis) as key axis and
34558 the y-axis (QCustomPlot::yAxis) as value axis.
34559
34560 Normally, the key and value axes are set in the constructor of the plottable (or \ref
34561 QCustomPlot::addGraph when working with QCPGraphs through the dedicated graph interface).
34562
34563 \see setKeyAxis
34564*/
34566{
34567 mValueAxis = axis;
34568}
34569
34570/*!
34571 Sets whether and to which granularity this plottable can be selected.
34572
34573 A selection can happen by clicking on the QCustomPlot surface (When \ref
34574 QCustomPlot::setInteractions contains \ref QCP::iSelectPlottables), by dragging a selection rect
34575 (When \ref QCustomPlot::setSelectionRectMode is \ref QCP::srmSelect), or programmatically by
34576 calling \ref setSelection.
34577
34578 \see setSelection, QCP::SelectionType
34579*/
34581{
34582 if (mSelectable != selectable)
34583 {
34584 mSelectable = selectable;
34585 QCPDataSelection oldSelection = mSelection;
34586 mSelection.enforceType(mSelectable);
34587 emit selectableChanged(mSelectable);
34588 if (mSelection != oldSelection)
34589 {
34590 emit selectionChanged(selected());
34591 emit selectionChanged(mSelection);
34592 }
34593 }
34594}
34595
34596/*!
34597 Sets which data ranges of this plottable are selected. Selected data ranges are drawn differently
34598 (e.g. color) in the plot. This can be controlled via the selection decorator (see \ref
34599 selectionDecorator).
34600
34601 The entire selection mechanism for plottables is handled automatically when \ref
34602 QCustomPlot::setInteractions contains iSelectPlottables. You only need to call this function when
34603 you wish to change the selection state programmatically.
34604
34605 Using \ref setSelectable you can further specify for each plottable whether and to which
34606 granularity it is selectable. If \a selection is not compatible with the current \ref
34607 QCP::SelectionType set via \ref setSelectable, the resulting selection will be adjusted
34608 accordingly (see \ref QCPDataSelection::enforceType).
34609
34610 emits the \ref selectionChanged signal when \a selected is different from the previous selection state.
34611
34612 \see setSelectable, selectTest
34613*/
34615{
34616 selection.enforceType(mSelectable);
34617 if (mSelection != selection)
34618 {
34619 mSelection = selection;
34620 emit selectionChanged(selected());
34621 emit selectionChanged(mSelection);
34622 }
34623}
34624
34625/*! \overload
34626
34627 Replaces the current data container with the provided \a data container.
34628
34629 Since a QSharedPointer is used, multiple QCPPolarGraphs may share the same data container safely.
34630 Modifying the data in the container will then affect all graphs that share the container. Sharing
34631 can be achieved by simply exchanging the data containers wrapped in shared pointers:
34632 \snippet documentation/doc-code-snippets/mainwindow.cpp QCPPolarGraph-datasharing-1
34633
34634 If you do not wish to share containers, but create a copy from an existing container, rather use
34635 the \ref QCPDataContainer<DataType>::set method on the graph's data container directly:
34636 \snippet documentation/doc-code-snippets/mainwindow.cpp QCPPolarGraph-datasharing-2
34637
34638 \see addData
34639*/
34641{
34642 mDataContainer = data;
34643}
34644
34645/*! \overload
34646
34647 Replaces the current data with the provided points in \a keys and \a values. The provided
34648 vectors should have equal length. Else, the number of added points will be the size of the
34649 smallest vector.
34650
34651 If you can guarantee that the passed data points are sorted by \a keys in ascending order, you
34652 can set \a alreadySorted to true, to improve performance by saving a sorting run.
34653
34654 \see addData
34655*/
34657{
34658 mDataContainer->clear();
34659 addData(keys, values, alreadySorted);
34660}
34661
34662/*!
34663 Sets how the single data points are connected in the plot. For scatter-only plots, set \a ls to
34664 \ref lsNone and \ref setScatterStyle to the desired scatter style.
34665
34666 \see setScatterStyle
34667*/
34669{
34670 mLineStyle = ls;
34671}
34672
34673/*!
34674 Sets the visual appearance of single data points in the plot. If set to \ref QCPScatterStyle::ssNone, no scatter points
34675 are drawn (e.g. for line-only-plots with appropriate line style).
34676
34677 \see QCPScatterStyle, setLineStyle
34678*/
34680{
34681 mScatterStyle = style;
34682}
34683
34684void QCPPolarGraph::addData(const QVector<double> &keys, const QVector<double> &values, bool alreadySorted)
34685{
34686 if (keys.size() != values.size())
34687 qDebug() << Q_FUNC_INFO << "keys and values have different sizes:" << keys.size() << values.size();
34688 const int n = qMin(keys.size(), values.size());
34692 int i = 0;
34693 while (it != itEnd)
34694 {
34695 it->key = keys[i];
34696 it->value = values[i];
34697 ++it;
34698 ++i;
34699 }
34700 mDataContainer->add(tempData, alreadySorted); // don't modify tempData beyond this to prevent copy on write
34701}
34702
34703void QCPPolarGraph::addData(double key, double value)
34704{
34705 mDataContainer->add(QCPGraphData(key, value));
34706}
34707
34708/*!
34709 Use this method to set an own QCPSelectionDecorator (subclass) instance. This allows you to
34710 customize the visual representation of selected data ranges further than by using the default
34711 QCPSelectionDecorator.
34712
34713 The plottable takes ownership of the \a decorator.
34714
34715 The currently set decorator can be accessed via \ref selectionDecorator.
34716*/
34717/*
34718void QCPPolarGraph::setSelectionDecorator(QCPSelectionDecorator *decorator)
34719{
34720 if (decorator)
34721 {
34722 if (decorator->registerWithPlottable(this))
34723 {
34724 if (mSelectionDecorator) // delete old decorator if necessary
34725 delete mSelectionDecorator;
34726 mSelectionDecorator = decorator;
34727 }
34728 } else if (mSelectionDecorator) // just clear decorator
34729 {
34730 delete mSelectionDecorator;
34731 mSelectionDecorator = 0;
34732 }
34733}
34734*/
34735
34736void QCPPolarGraph::coordsToPixels(double key, double value, double &x, double &y) const
34737{
34738 if (mValueAxis)
34739 {
34740 const QPointF point = mValueAxis->coordToPixel(key, value);
34741 x = point.x();
34742 y = point.y();
34743 } else
34744 {
34745 qDebug() << Q_FUNC_INFO << "invalid key or value axis";
34746 }
34747}
34748
34749const QPointF QCPPolarGraph::coordsToPixels(double key, double value) const
34750{
34751 if (mValueAxis)
34752 {
34753 return mValueAxis->coordToPixel(key, value);
34754 } else
34755 {
34756 qDebug() << Q_FUNC_INFO << "invalid key or value axis";
34757 return QPointF();
34758 }
34759}
34760
34761void QCPPolarGraph::pixelsToCoords(double x, double y, double &key, double &value) const
34762{
34763 if (mValueAxis)
34764 {
34765 mValueAxis->pixelToCoord(QPointF(x, y), key, value);
34766 } else
34767 {
34768 qDebug() << Q_FUNC_INFO << "invalid key or value axis";
34769 }
34770}
34771
34772void QCPPolarGraph::pixelsToCoords(const QPointF &pixelPos, double &key, double &value) const
34773{
34774 if (mValueAxis)
34775 {
34776 mValueAxis->pixelToCoord(pixelPos, key, value);
34777 } else
34778 {
34779 qDebug() << Q_FUNC_INFO << "invalid key or value axis";
34780 }
34781}
34782
34783void QCPPolarGraph::rescaleAxes(bool onlyEnlarge) const
34784{
34785 rescaleKeyAxis(onlyEnlarge);
34786 rescaleValueAxis(onlyEnlarge);
34787}
34788
34789void QCPPolarGraph::rescaleKeyAxis(bool onlyEnlarge) const
34790{
34791 QCPPolarAxisAngular *keyAxis = mKeyAxis.data();
34792 if (!keyAxis) { qDebug() << Q_FUNC_INFO << "invalid key axis"; return; }
34793
34794 bool foundRange;
34795 QCPRange newRange = getKeyRange(foundRange, QCP::sdBoth);
34796 if (foundRange)
34797 {
34798 if (onlyEnlarge)
34799 newRange.expand(keyAxis->range());
34800 if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
34801 {
34802 double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
34803 newRange.lower = center-keyAxis->range().size()/2.0;
34804 newRange.upper = center+keyAxis->range().size()/2.0;
34805 }
34806 keyAxis->setRange(newRange);
34807 }
34808}
34809
34810void QCPPolarGraph::rescaleValueAxis(bool onlyEnlarge, bool inKeyRange) const
34811{
34812 QCPPolarAxisAngular *keyAxis = mKeyAxis.data();
34813 QCPPolarAxisRadial *valueAxis = mValueAxis.data();
34814 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
34815
34817 if (valueAxis->scaleType() == QCPPolarAxisRadial::stLogarithmic)
34818 signDomain = (valueAxis->range().upper < 0 ? QCP::sdNegative : QCP::sdPositive);
34819
34820 bool foundRange;
34821 QCPRange newRange = getValueRange(foundRange, signDomain, inKeyRange ? keyAxis->range() : QCPRange());
34822 if (foundRange)
34823 {
34824 if (onlyEnlarge)
34825 newRange.expand(valueAxis->range());
34826 if (!QCPRange::validRange(newRange)) // likely due to range being zero (plottable has only constant data in this axis dimension), shift current range to at least center the plottable
34827 {
34828 double center = (newRange.lower+newRange.upper)*0.5; // upper and lower should be equal anyway, but just to make sure, incase validRange returned false for other reason
34829 if (valueAxis->scaleType() == QCPPolarAxisRadial::stLinear)
34830 {
34831 newRange.lower = center-valueAxis->range().size()/2.0;
34832 newRange.upper = center+valueAxis->range().size()/2.0;
34833 } else // scaleType() == stLogarithmic
34834 {
34835 newRange.lower = center/qSqrt(valueAxis->range().upper/valueAxis->range().lower);
34836 newRange.upper = center*qSqrt(valueAxis->range().upper/valueAxis->range().lower);
34837 }
34838 }
34839 valueAxis->setRange(newRange);
34840 }
34841}
34842
34843bool QCPPolarGraph::addToLegend(QCPLegend *legend)
34844{
34845 if (!legend)
34846 {
34847 qDebug() << Q_FUNC_INFO << "passed legend is null";
34848 return false;
34849 }
34850 if (legend->parentPlot() != mParentPlot)
34851 {
34852 qDebug() << Q_FUNC_INFO << "passed legend isn't in the same QCustomPlot as this plottable";
34853 return false;
34854 }
34855
34856 //if (!legend->hasItemWithPlottable(this)) // TODO
34857 //{
34858 legend->addItem(new QCPPolarLegendItem(legend, this));
34859 return true;
34860 //} else
34861 // return false;
34862}
34863
34864bool QCPPolarGraph::addToLegend()
34865{
34866 if (!mParentPlot || !mParentPlot->legend)
34867 return false;
34868 else
34869 return addToLegend(mParentPlot->legend);
34870}
34871
34872bool QCPPolarGraph::removeFromLegend(QCPLegend *legend) const
34873{
34874 if (!legend)
34875 {
34876 qDebug() << Q_FUNC_INFO << "passed legend is null";
34877 return false;
34878 }
34879
34880
34882 for (int i=0; i<legend->itemCount(); ++i) // TODO: reduce this to code in QCPAbstractPlottable::removeFromLegend once unified
34883 {
34885 {
34886 if (pli->polarGraph() == this)
34887 {
34889 break;
34890 }
34891 }
34892 }
34893
34894 if (removableItem)
34895 return legend->removeItem(removableItem);
34896 else
34897 return false;
34898}
34899
34900bool QCPPolarGraph::removeFromLegend() const
34901{
34902 if (!mParentPlot || !mParentPlot->legend)
34903 return false;
34904 else
34905 return removeFromLegend(mParentPlot->legend);
34906}
34907
34908double QCPPolarGraph::selectTest(const QPointF &pos, bool onlySelectable, QVariant *details) const
34909{
34910 if ((onlySelectable && mSelectable == QCP::stNone) || mDataContainer->isEmpty())
34911 return -1;
34912 if (!mKeyAxis || !mValueAxis)
34913 return -1;
34914
34915 if (mKeyAxis->rect().contains(pos.toPoint()))
34916 {
34917 QCPGraphDataContainer::const_iterator closestDataPoint = mDataContainer->constEnd();
34918 double result = pointDistance(pos, closestDataPoint);
34919 if (details)
34920 {
34921 int pointIndex = closestDataPoint-mDataContainer->constBegin();
34922 details->setValue(QCPDataSelection(QCPDataRange(pointIndex, pointIndex+1)));
34923 }
34924 return result;
34925 } else
34926 return -1;
34927}
34928
34929/* inherits documentation from base class */
34930QCPRange QCPPolarGraph::getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain) const
34931{
34932 return mDataContainer->keyRange(foundRange, inSignDomain);
34933}
34934
34935/* inherits documentation from base class */
34936QCPRange QCPPolarGraph::getValueRange(bool &foundRange, QCP::SignDomain inSignDomain, const QCPRange &inKeyRange) const
34937{
34938 return mDataContainer->valueRange(foundRange, inSignDomain, inKeyRange);
34939}
34940
34941/* inherits documentation from base class */
34943{
34944 if (mKeyAxis)
34945 return mKeyAxis.data()->rect();
34946 else
34947 return QRect();
34948}
34949
34951{
34952 if (!mKeyAxis || !mValueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
34953 if (mKeyAxis.data()->range().size() <= 0 || mDataContainer->isEmpty()) return;
34954 if (mLineStyle == lsNone && mScatterStyle.isNone()) return;
34955
34956 painter->setClipRegion(mKeyAxis->exactClipRegion());
34957
34958 QVector<QPointF> lines, scatters; // line and (if necessary) scatter pixel coordinates will be stored here while iterating over segments
34959
34960 // loop over and draw segments of unselected/selected data:
34962 getDataSegments(selectedSegments, unselectedSegments);
34964 for (int i=0; i<allSegments.size(); ++i)
34965 {
34966 bool isSelectedSegment = i >= unselectedSegments.size();
34967 // get line pixel points appropriate to line style:
34968 QCPDataRange lineDataRange = isSelectedSegment ? allSegments.at(i) : allSegments.at(i).adjusted(-1, 1); // unselected segments extend lines to bordering selected data point (safe to exceed total data bounds in first/last segment, getLines takes care)
34969 getLines(&lines, lineDataRange);
34970
34971 // check data validity if flag set:
34972#ifdef QCUSTOMPLOT_CHECK_DATA
34973 QCPGraphDataContainer::const_iterator it;
34974 for (it = mDataContainer->constBegin(); it != mDataContainer->constEnd(); ++it)
34975 {
34976 if (QCP::isInvalidData(it->key, it->value))
34977 qDebug() << Q_FUNC_INFO << "Data point at" << it->key << "invalid." << "Plottable name:" << name();
34978 }
34979#endif
34980
34981 // draw fill of graph:
34982 //if (isSelectedSegment && mSelectionDecorator)
34983 // mSelectionDecorator->applyBrush(painter);
34984 //else
34985 painter->setBrush(mBrush);
34986 painter->setPen(Qt::NoPen);
34987 drawFill(painter, &lines);
34988
34989
34990 // draw line:
34991 if (mLineStyle != lsNone)
34992 {
34993 //if (isSelectedSegment && mSelectionDecorator)
34994 // mSelectionDecorator->applyPen(painter);
34995 //else
34996 painter->setPen(mPen);
34997 painter->setBrush(Qt::NoBrush);
34998 drawLinePlot(painter, lines);
34999 }
35000
35001 // draw scatters:
35002
35003 QCPScatterStyle finalScatterStyle = mScatterStyle;
35004 //if (isSelectedSegment && mSelectionDecorator)
35005 // finalScatterStyle = mSelectionDecorator->getFinalScatterStyle(mScatterStyle);
35006 if (!finalScatterStyle.isNone())
35007 {
35008 getScatters(&scatters, allSegments.at(i));
35010 }
35011 }
35012
35013 // draw other selection decoration that isn't just line/scatter pens and brushes:
35014 //if (mSelectionDecorator)
35015 // mSelectionDecorator->drawDecoration(painter, selection());
35016}
35017
35022
35024{
35025 applyAntialiasingHint(painter, mAntialiased, QCP::aePlottables);
35026}
35027
35028/* inherits documentation from base class */
35030{
35032
35033 if (mSelectable != QCP::stNone)
35034 {
35035 QCPDataSelection newSelection = details.value<QCPDataSelection>();
35036 QCPDataSelection selectionBefore = mSelection;
35037 if (additive)
35038 {
35039 if (mSelectable == QCP::stWhole) // in whole selection mode, we toggle to no selection even if currently unselected point was hit
35040 {
35041 if (selected())
35043 else
35044 setSelection(newSelection);
35045 } else // in all other selection modes we toggle selections of homogeneously selected/unselected segments
35046 {
35047 if (mSelection.contains(newSelection)) // if entire newSelection is already selected, toggle selection
35048 setSelection(mSelection-newSelection);
35049 else
35050 setSelection(mSelection+newSelection);
35051 }
35052 } else
35053 setSelection(newSelection);
35055 *selectionStateChanged = mSelection != selectionBefore;
35056 }
35057}
35058
35059/* inherits documentation from base class */
35061{
35062 if (mSelectable != QCP::stNone)
35063 {
35064 QCPDataSelection selectionBefore = mSelection;
35067 *selectionStateChanged = mSelection != selectionBefore;
35068 }
35069}
35070
35071/*! \internal
35072
35073 Draws lines between the points in \a lines, given in pixel coordinates.
35074
35075 \see drawScatterPlot, drawImpulsePlot, QCPAbstractPlottable1D::drawPolyline
35076*/
35078{
35079 if (painter->pen().style() != Qt::NoPen && painter->pen().color().alpha() != 0)
35080 {
35082 drawPolyline(painter, lines);
35083 }
35084}
35085
35086/*! \internal
35087
35088 Draws the fill of the graph using the specified \a painter, with the currently set brush.
35089
35090 Depending on whether a normal fill or a channel fill (\ref setChannelFillGraph) is needed, \ref
35091 getFillPolygon or \ref getChannelFillPolygon are used to find the according fill polygons.
35092
35093 In order to handle NaN Data points correctly (the fill needs to be split into disjoint areas),
35094 this method first determines a list of non-NaN segments with \ref getNonNanSegments, on which to
35095 operate. In the channel fill case, \ref getOverlappingSegments is used to consolidate the non-NaN
35096 segments of the two involved graphs, before passing the overlapping pairs to \ref
35097 getChannelFillPolygon.
35098
35099 Pass the points of this graph's line as \a lines, in pixel coordinates.
35100
35101 \see drawLinePlot, drawImpulsePlot, drawScatterPlot
35102*/
35104{
35105 applyFillAntialiasingHint(painter);
35106 if (painter->brush().style() != Qt::NoBrush && painter->brush().color().alpha() != 0)
35107 painter->drawPolygon(QPolygonF(*lines));
35108}
35109
35110/*! \internal
35111
35112 Draws scatter symbols at every point passed in \a scatters, given in pixel coordinates. The
35113 scatters will be drawn with \a painter and have the appearance as specified in \a style.
35114
35115 \see drawLinePlot, drawImpulsePlot
35116*/
35118{
35119 applyScattersAntialiasingHint(painter);
35120 style.applyTo(painter, mPen);
35121 for (int i=0; i<scatters.size(); ++i)
35122 style.drawShape(painter, scatters.at(i).x(), scatters.at(i).y());
35123}
35124
35125void QCPPolarGraph::drawLegendIcon(QCPPainter *painter, const QRectF &rect) const
35126{
35127 // draw fill:
35128 if (mBrush.style() != Qt::NoBrush)
35129 {
35130 applyFillAntialiasingHint(painter);
35131 painter->fillRect(QRectF(rect.left(), rect.top()+rect.height()/2.0, rect.width(), rect.height()/3.0), mBrush);
35132 }
35133 // draw line vertically centered:
35134 if (mLineStyle != lsNone)
35135 {
35137 painter->setPen(mPen);
35138 painter->drawLine(QLineF(rect.left(), rect.top()+rect.height()/2.0, rect.right()+5, rect.top()+rect.height()/2.0)); // +5 on x2 else last segment is missing from dashed/dotted pens
35139 }
35140 // draw scatter symbol:
35141 if (!mScatterStyle.isNone())
35142 {
35143 applyScattersAntialiasingHint(painter);
35144 // scale scatter pixmap if it's too large to fit in legend icon rect:
35145 if (mScatterStyle.shape() == QCPScatterStyle::ssPixmap && (mScatterStyle.pixmap().size().width() > rect.width() || mScatterStyle.pixmap().size().height() > rect.height()))
35146 {
35147 QCPScatterStyle scaledStyle(mScatterStyle);
35148 scaledStyle.setPixmap(scaledStyle.pixmap().scaled(rect.size().toSize(), Qt::KeepAspectRatio, Qt::SmoothTransformation));
35149 scaledStyle.applyTo(painter, mPen);
35150 scaledStyle.drawShape(painter, QRectF(rect).center());
35151 } else
35152 {
35153 mScatterStyle.applyTo(painter, mPen);
35154 mScatterStyle.drawShape(painter, QRectF(rect).center());
35155 }
35156 }
35157}
35158
35159void QCPPolarGraph::applyFillAntialiasingHint(QCPPainter *painter) const
35160{
35161 applyAntialiasingHint(painter, mAntialiasedFill, QCP::aeFills);
35162}
35163
35164void QCPPolarGraph::applyScattersAntialiasingHint(QCPPainter *painter) const
35165{
35166 applyAntialiasingHint(painter, mAntialiasedScatters, QCP::aeScatters);
35167}
35168
35169double QCPPolarGraph::pointDistance(const QPointF &pixelPoint, QCPGraphDataContainer::const_iterator &closestData) const
35170{
35171 closestData = mDataContainer->constEnd();
35172 if (mDataContainer->isEmpty())
35173 return -1.0;
35174 if (mLineStyle == lsNone && mScatterStyle.isNone())
35175 return -1.0;
35176
35177 // calculate minimum distances to graph data points and find closestData iterator:
35178 double minDistSqr = (std::numeric_limits<double>::max)();
35179 // determine which key range comes into question, taking selection tolerance around pos into account:
35180 double posKeyMin, posKeyMax, dummy;
35181 pixelsToCoords(pixelPoint-QPointF(mParentPlot->selectionTolerance(), mParentPlot->selectionTolerance()), posKeyMin, dummy);
35182 pixelsToCoords(pixelPoint+QPointF(mParentPlot->selectionTolerance(), mParentPlot->selectionTolerance()), posKeyMax, dummy);
35183 if (posKeyMin > posKeyMax)
35185 // iterate over found data points and then choose the one with the shortest distance to pos:
35186 QCPGraphDataContainer::const_iterator begin = mDataContainer->findBegin(posKeyMin, true);
35187 QCPGraphDataContainer::const_iterator end = mDataContainer->findEnd(posKeyMax, true);
35189 {
35190 const double currentDistSqr = QCPVector2D(coordsToPixels(it->key, it->value)-pixelPoint).lengthSquared();
35192 {
35194 closestData = it;
35195 }
35196 }
35197
35198 // calculate distance to graph line if there is one (if so, will probably be smaller than distance to closest data point):
35199 if (mLineStyle != lsNone)
35200 {
35201 // line displayed, calculate distance to line segments:
35203 getLines(&lineData, QCPDataRange(0, dataCount()));
35205 for (int i=0; i<lineData.size()-1; ++i)
35206 {
35207 const double currentDistSqr = p.distanceSquaredToLine(lineData.at(i), lineData.at(i+1));
35210 }
35211 }
35212
35213 return qSqrt(minDistSqr);
35214}
35215
35216int QCPPolarGraph::dataCount() const
35217{
35218 return mDataContainer->size();
35219}
35220
35221void QCPPolarGraph::getDataSegments(QList<QCPDataRange> &selectedSegments, QList<QCPDataRange> &unselectedSegments) const
35222{
35223 selectedSegments.clear();
35224 unselectedSegments.clear();
35225 if (mSelectable == QCP::stWhole) // stWhole selection type draws the entire plottable with selected style if mSelection isn't empty
35226 {
35227 if (selected())
35228 selectedSegments << QCPDataRange(0, dataCount());
35229 else
35230 unselectedSegments << QCPDataRange(0, dataCount());
35231 } else
35232 {
35233 QCPDataSelection sel(selection());
35234 sel.simplify();
35235 selectedSegments = sel.dataRanges();
35236 unselectedSegments = sel.inverse(QCPDataRange(0, dataCount())).dataRanges();
35237 }
35238}
35239
35240void QCPPolarGraph::drawPolyline(QCPPainter *painter, const QVector<QPointF> &lineData) const
35241{
35242 // if drawing solid line and not in PDF, use much faster line drawing instead of polyline:
35243 if (mParentPlot->plottingHints().testFlag(QCP::phFastPolylines) &&
35244 painter->pen().style() == Qt::SolidLine &&
35245 !painter->modes().testFlag(QCPPainter::pmVectorized) &&
35246 !painter->modes().testFlag(QCPPainter::pmNoCaching))
35247 {
35248 int i = 0;
35249 bool lastIsNan = false;
35250 const int lineDataSize = lineData.size();
35251 while (i < lineDataSize && (qIsNaN(lineData.at(i).y()) || qIsNaN(lineData.at(i).x()))) // make sure first point is not NaN
35252 ++i;
35253 ++i; // because drawing works in 1 point retrospect
35254 while (i < lineDataSize)
35255 {
35256 if (!qIsNaN(lineData.at(i).y()) && !qIsNaN(lineData.at(i).x())) // NaNs create a gap in the line
35257 {
35258 if (!lastIsNan)
35259 painter->drawLine(lineData.at(i-1), lineData.at(i));
35260 else
35261 lastIsNan = false;
35262 } else
35263 lastIsNan = true;
35264 ++i;
35265 }
35266 } else
35267 {
35268 int segmentStart = 0;
35269 int i = 0;
35270 const int lineDataSize = lineData.size();
35271 while (i < lineDataSize)
35272 {
35273 if (qIsNaN(lineData.at(i).y()) || qIsNaN(lineData.at(i).x()) || qIsInf(lineData.at(i).y())) // NaNs create a gap in the line. Also filter Infs which make drawPolyline block
35274 {
35275 painter->drawPolyline(lineData.constData()+segmentStart, i-segmentStart); // i, because we don't want to include the current NaN point
35276 segmentStart = i+1;
35277 }
35278 ++i;
35279 }
35280 // draw last segment:
35282 }
35283}
35284
35285void QCPPolarGraph::getVisibleDataBounds(QCPGraphDataContainer::const_iterator &begin, QCPGraphDataContainer::const_iterator &end, const QCPDataRange &rangeRestriction) const
35286{
35287 if (rangeRestriction.isEmpty())
35288 {
35289 end = mDataContainer->constEnd();
35290 begin = end;
35291 } else
35292 {
35293 QCPPolarAxisAngular *keyAxis = mKeyAxis.data();
35294 QCPPolarAxisRadial *valueAxis = mValueAxis.data();
35295 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
35296 // get visible data range:
35297 if (mPeriodic)
35298 {
35299 begin = mDataContainer->constBegin();
35300 end = mDataContainer->constEnd();
35301 } else
35302 {
35303 begin = mDataContainer->findBegin(keyAxis->range().lower);
35304 end = mDataContainer->findEnd(keyAxis->range().upper);
35305 }
35306 // limit lower/upperEnd to rangeRestriction:
35307 mDataContainer->limitIteratorsToDataRange(begin, end, rangeRestriction); // this also ensures rangeRestriction outside data bounds doesn't break anything
35308 }
35309}
35310
35311/*! \internal
35312
35313 This method retrieves an optimized set of data points via \ref getOptimizedLineData, an branches
35314 out to the line style specific functions such as \ref dataToLines, \ref dataToStepLeftLines, etc.
35315 according to the line style of the graph.
35316
35317 \a lines will be filled with points in pixel coordinates, that can be drawn with the according
35318 draw functions like \ref drawLinePlot and \ref drawImpulsePlot. The points returned in \a lines
35319 aren't necessarily the original data points. For example, step line styles require additional
35320 points to form the steps when drawn. If the line style of the graph is \ref lsNone, the \a
35321 lines vector will be empty.
35322
35323 \a dataRange specifies the beginning and ending data indices that will be taken into account for
35324 conversion. In this function, the specified range may exceed the total data bounds without harm:
35325 a correspondingly trimmed data range will be used. This takes the burden off the user of this
35326 function to check for valid indices in \a dataRange, e.g. when extending ranges coming from \ref
35327 getDataSegments.
35328
35329 \see getScatters
35330*/
35331void QCPPolarGraph::getLines(QVector<QPointF> *lines, const QCPDataRange &dataRange) const
35332{
35333 if (!lines) return;
35334 QCPGraphDataContainer::const_iterator begin, end;
35335 getVisibleDataBounds(begin, end, dataRange);
35336 if (begin == end)
35337 {
35338 lines->clear();
35339 return;
35340 }
35341
35343 if (mLineStyle != lsNone)
35344 getOptimizedLineData(&lineData, begin, end);
35345
35346 switch (mLineStyle)
35347 {
35348 case lsNone: lines->clear(); break;
35349 case lsLine: *lines = dataToLines(lineData); break;
35350 }
35351}
35352
35353void QCPPolarGraph::getScatters(QVector<QPointF> *scatters, const QCPDataRange &dataRange) const
35354{
35355 QCPPolarAxisAngular *keyAxis = mKeyAxis.data();
35356 QCPPolarAxisRadial *valueAxis = mValueAxis.data();
35357 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return; }
35358
35359 if (!scatters) return;
35361 getVisibleDataBounds(begin, end, dataRange);
35362 if (begin == end)
35363 {
35364 scatters->clear();
35365 return;
35366 }
35367
35369 getOptimizedScatterData(&data, begin, end);
35370
35371 scatters->resize(data.size());
35372 for (int i=0; i<data.size(); ++i)
35373 {
35374 if (!qIsNaN(data.at(i).value))
35375 (*scatters)[i] = valueAxis->coordToPixel(data.at(i).key, data.at(i).value);
35376 }
35377}
35378
35379void QCPPolarGraph::getOptimizedLineData(QVector<QCPGraphData> *lineData, const QCPGraphDataContainer::const_iterator &begin, const QCPGraphDataContainer::const_iterator &end) const
35380{
35381 lineData->clear();
35382
35383 // TODO: fix for log axes and thick line style
35384
35385 const QCPRange range = mValueAxis->range();
35386 bool reversed = mValueAxis->rangeReversed();
35387 const double clipMargin = range.size()*0.05; // extra distance from visible circle, so optimized outside lines can cover more angle before having to place a dummy point to prevent tangents
35388 const double upperClipValue = range.upper + (reversed ? 0 : range.size()*0.05+clipMargin); // clip slightly outside of actual range to avoid line thicknesses to peek into visible circle
35389 const double lowerClipValue = range.lower - (reversed ? range.size()*0.05+clipMargin : 0); // clip slightly outside of actual range to avoid line thicknesses to peek into visible circle
35390 const double maxKeySkip = qAsin(qSqrt(clipMargin*(clipMargin+2*range.size()))/(range.size()+clipMargin))/M_PI*mKeyAxis->range().size(); // the maximum angle between two points on outer circle (r=clipValue+clipMargin) before connecting line becomes tangent to inner circle (r=clipValue)
35391 double skipBegin = 0;
35392 bool belowRange = false;
35393 bool aboveRange = false;
35395 while (it != end)
35396 {
35397 if (it->value < lowerClipValue)
35398 {
35399 if (aboveRange) // jumped directly from above to below visible range, draw previous point so entry angle is correct
35400 {
35401 aboveRange = false;
35402 if (!reversed) // TODO: with inner radius, we'll need else case here with projected border point
35403 lineData->append(*(it-1));
35404 }
35405 if (!belowRange)
35406 {
35407 skipBegin = it->key;
35408 lineData->append(QCPGraphData(it->key, lowerClipValue));
35409 belowRange = true;
35410 }
35411 if (it->key-skipBegin > maxKeySkip) // add dummy point if we're exceeding the maximum skippable angle (to prevent unintentional intersections with visible circle)
35412 {
35415 }
35416 } else if (it->value > upperClipValue)
35417 {
35418 if (belowRange) // jumped directly from below to above visible range, draw previous point so entry angle is correct (if lower means outer, so if reversed axis)
35419 {
35420 belowRange = false;
35421 if (reversed)
35422 lineData->append(*(it-1));
35423 }
35424 if (!aboveRange)
35425 {
35426 skipBegin = it->key;
35427 lineData->append(QCPGraphData(it->key, upperClipValue));
35428 aboveRange = true;
35429 }
35430 if (it->key-skipBegin > maxKeySkip) // add dummy point if we're exceeding the maximum skippable angle (to prevent unintentional intersections with visible circle)
35431 {
35434 }
35435 } else // value within bounds where we don't optimize away points
35436 {
35437 if (aboveRange)
35438 {
35439 aboveRange = false;
35440 if (!reversed)
35441 lineData->append(*(it-1)); // just entered from above, draw previous point so entry angle is correct (if above means outer, so if not reversed axis)
35442 }
35443 if (belowRange)
35444 {
35445 belowRange = false;
35446 if (reversed)
35447 lineData->append(*(it-1)); // just entered from below, draw previous point so entry angle is correct (if below means outer, so if reversed axis)
35448 }
35449 lineData->append(*it); // inside visible circle, add point normally
35450 }
35451 ++it;
35452 }
35453 // to make fill not erratic, add last point normally if it was outside visible circle:
35454 if (aboveRange)
35455 {
35456 aboveRange = false;
35457 if (!reversed)
35458 lineData->append(*(it-1)); // just entered from above, draw previous point so entry angle is correct (if above means outer, so if not reversed axis)
35459 }
35460 if (belowRange)
35461 {
35462 belowRange = false;
35463 if (reversed)
35464 lineData->append(*(it-1)); // just entered from below, draw previous point so entry angle is correct (if below means outer, so if reversed axis)
35465 }
35466}
35467
35468void QCPPolarGraph::getOptimizedScatterData(QVector<QCPGraphData> *scatterData, QCPGraphDataContainer::const_iterator begin, QCPGraphDataContainer::const_iterator end) const
35469{
35470 scatterData->clear();
35471
35472 const QCPRange range = mValueAxis->range();
35473 bool reversed = mValueAxis->rangeReversed();
35474 const double clipMargin = range.size()*0.05;
35475 const double upperClipValue = range.upper + (reversed ? 0 : clipMargin); // clip slightly outside of actual range to avoid scatter size to peek into visible circle
35476 const double lowerClipValue = range.lower - (reversed ? clipMargin : 0); // clip slightly outside of actual range to avoid scatter size to peek into visible circle
35478 while (it != end)
35479 {
35480 if (it->value > lowerClipValue && it->value < upperClipValue)
35481 scatterData->append(*it);
35482 ++it;
35483 }
35484}
35485
35486/*! \internal
35487
35488 Takes raw data points in plot coordinates as \a data, and returns a vector containing pixel
35489 coordinate points which are suitable for drawing the line style \ref lsLine.
35490
35491 The source of \a data is usually \ref getOptimizedLineData, and this method is called in \a
35492 getLines if the line style is set accordingly.
35493
35494 \see dataToStepLeftLines, dataToStepRightLines, dataToStepCenterLines, dataToImpulseLines, getLines, drawLinePlot
35495*/
35497{
35498 QVector<QPointF> result;
35499 QCPPolarAxisAngular *keyAxis = mKeyAxis.data();
35500 QCPPolarAxisRadial *valueAxis = mValueAxis.data();
35501 if (!keyAxis || !valueAxis) { qDebug() << Q_FUNC_INFO << "invalid key or value axis"; return result; }
35502
35503 // transform data points to pixels:
35504 result.resize(data.size());
35505 for (int i=0; i<data.size(); ++i)
35506 result[i] = mValueAxis->coordToPixel(data.at(i).key, data.at(i).value);
35507 return result;
35508}
35509/* end of 'src/polar/polargraph.cpp' */
35510
35511
The abstract base class for all items in a plot.
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
QCPItemAnchor * anchor(const QString &name) const
Q_SLOT void setSelected(bool selected)
virtual void deselectEvent(bool *selectionStateChanged) override
QCPItemPosition * position(const QString &name) const
virtual QRect clipRect() const override
void setClipToAxisRect(bool clip)
QList< QCPItemPosition * > positions() const
QCPItemPosition * createPosition(const QString &name)
void setClipAxisRect(QCPAxisRect *rect)
double rectDistance(const QRectF &rect, const QPointF &pos, bool filledRect) const
bool hasAnchor(const QString &name) const
Q_SLOT void setSelectable(bool selectable)
QCPAbstractItem(QCustomPlot *parentPlot)
void selectionChanged(bool selected)
virtual QCP::Interaction selectionCategory() const override
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged) override
virtual QPointF anchorPixelPosition(int anchorId) const
QCPItemAnchor * createAnchor(const QString &name, int anchorId)
The abstract base class for all entries in a QCPLegend.
virtual QCP::Interaction selectionCategory() const override
void setFont(const QFont &font)
void setSelectedTextColor(const QColor &color)
void setTextColor(const QColor &color)
Q_SLOT void setSelected(bool selected)
void selectionChanged(bool selected)
void setSelectedFont(const QFont &font)
Q_SLOT void setSelectable(bool selectable)
virtual QRect clipRect() const override
virtual void deselectEvent(bool *selectionStateChanged) override
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged) override
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
QCPAbstractLegendItem(QCPLegend *parent)
The abstract base class for paint buffers, which define the rendering backend.
QCPAbstractPaintBuffer(const QSize &size, double devicePixelRatio)
void setDevicePixelRatio(double ratio)
void setSize(const QSize &size)
void setInvalidated(bool invalidated=true)
virtual void reallocateBuffer()=0
A template base class for plottables with one-dimensional data.
virtual int dataCount() const override
void drawPolyline(QCPPainter *painter, const QVector< QPointF > &lineData) const
void getDataSegments(QList< QCPDataRange > &selectedSegments, QList< QCPDataRange > &unselectedSegments) const
The abstract base class for all data representing objects in a plot.
QCPDataSelection selection() const
void setAntialiasedFill(bool enabled)
bool selected() const
void applyDefaultAntialiasingHint(QCPPainter *painter) const override
void rescaleAxes(bool onlyEnlarge=false) const
void setSelectionDecorator(QCPSelectionDecorator *decorator)
Q_SLOT void setSelection(QCPDataSelection selection)
void setAntialiasedScatters(bool enabled)
void pixelsToCoords(double x, double y, double &key, double &value) const
void selectionChanged(bool selected)
bool removeFromLegend(QCPLegend *legend) const
virtual QCPRange getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth) const =0
virtual QCPRange getValueRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth, const QCPRange &inKeyRange=QCPRange()) const =0
virtual void deselectEvent(bool *selectionStateChanged) override
void selectableChanged(QCP::SelectionType selectable)
void rescaleValueAxis(bool onlyEnlarge=false, bool inKeyRange=false) const
void setValueAxis(QCPAxis *axis)
void setBrush(const QBrush &brush)
void coordsToPixels(double key, double value, double &x, double &y) const
virtual QCPPlottableInterface1D * interface1D()
void setKeyAxis(QCPAxis *axis)
void applyFillAntialiasingHint(QCPPainter *painter) const
virtual void drawLegendIcon(QCPPainter *painter, const QRectF &rect) const =0
bool addToLegend(QCPLegend *legend)
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged) override
void setPen(const QPen &pen)
void setName(const QString &name)
Q_SLOT void setSelectable(QCP::SelectionType selectable)
virtual QRect clipRect() const override
void applyScattersAntialiasingHint(QCPPainter *painter) const
bool removeFromLegend() const
virtual QCP::Interaction selectionCategory() const override
void rescaleKeyAxis(bool onlyEnlarge=false) const
QCPAbstractPlottable(QCPAxis *keyAxis, QCPAxis *valueAxis)
virtual void draw(QCPPainter *painter)
QCPAxisPainterPrivate(QCustomPlot *parentPlot)
virtual TickLabelData getTickLabelData(const QFont &font, const QString &text) const
virtual QPointF getTickLabelDrawOffset(const TickLabelData &labelData) const
virtual void getMaxTickLabelSize(const QFont &font, const QString &text, QSize *tickLabelsSize) const
virtual void drawTickLabel(QCPPainter *painter, double x, double y, const TickLabelData &labelData) const
virtual QByteArray generateLabelParameterHash() const
virtual void placeTickLabel(QCPPainter *painter, double position, int distanceToAxis, const QString &text, QSize *tickLabelsSize)
Holds multiple axes and arranges them in a rectangular shape.
QList< QCPAbstractItem * > items() const
bool removeAxis(QCPAxis *axis)
QList< QCPAxis * > axes() const
int width() const
virtual void mouseMoveEvent(QMouseEvent *event, const QPointF &startPos) override
QCPAxis * addAxis(QCPAxis::AxisType type, QCPAxis *axis=nullptr)
QList< QCPGraph * > graphs() const
int right() const
virtual void update(UpdatePhase phase) override
int top() const
QCPAxis * axis(QCPAxis::AxisType type, int index=0) const
QList< QCPAbstractPlottable * > plottables() const
void setBackgroundScaledMode(Qt::AspectRatioMode mode)
void setupFullAxesBox(bool connectRanges=false)
void zoom(const QRectF &pixelRect)
void updateAxesOffset(QCPAxis::AxisType type)
QCPAxisRect(QCustomPlot *parentPlot, bool setupDefaultAxes=true)
void setRangeDragAxes(QCPAxis *horizontal, QCPAxis *vertical)
virtual int calculateAutoMargin(QCP::MarginSide side) override
QCPAxis * rangeZoomAxis(Qt::Orientation orientation)
QCPAxis * rangeDragAxis(Qt::Orientation orientation)
QList< QCPAxis * > addAxes(QCPAxis::AxisTypes types)
void setRangeZoom(Qt::Orientations orientations)
virtual QList< QCPLayoutElement * > elements(bool recursive) const override
virtual void layoutChanged() override
int axisCount(QCPAxis::AxisType type) const
QList< QCPAxis * > rangeZoomAxes(Qt::Orientation orientation)
void setRangeZoomFactor(double horizontalFactor, double verticalFactor)
void setRangeZoomAxes(QCPAxis *horizontal, QCPAxis *vertical)
virtual void wheelEvent(QWheelEvent *event) override
virtual void mousePressEvent(QMouseEvent *event, const QVariant &details) override
QList< QCPAxis * > rangeDragAxes(Qt::Orientation orientation)
void drawBackground(QCPPainter *painter)
virtual void mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos) override
int height() const
int bottom() const
double rangeZoomFactor(Qt::Orientation orientation)
void setRangeDrag(Qt::Orientations orientations)
void setBackgroundScaled(bool scaled)
virtual void draw(QCPPainter *painter) override
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
void setBackground(const QPixmap &pm)
int left() const
static double dateTimeToKey(const QDateTime &dateTime)
void setTimeZone(const QTimeZone &zone)
virtual QVector< double > createTickVector(double tickStep, const QCPRange &range) override
static QDateTime keyToDateTime(double key)
virtual int getSubTickCount(double tickStep) override
void setTickOrigin(double origin)
virtual double getTickStep(const QCPRange &range) override
virtual QString getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision) override
void setDateTimeFormat(const QString &format)
void setDateTimeSpec(Qt::TimeSpec spec)
Specialized axis ticker with a fixed tick step.
@ ssMultiples
An integer multiple of the specified tick step is allowed. The used factor follows the base class pro...
@ ssNone
Modifications are not allowed, the specified tick step is absolutely fixed. This might cause a high t...
@ ssPowers
An integer power of the specified tick step is allowed.
void setTickStep(double step)
virtual double getTickStep(const QCPRange &range) override
void setScaleStrategy(ScaleStrategy strategy)
virtual int getSubTickCount(double tickStep) override
virtual QVector< double > createTickVector(double tickStep, const QCPRange &range) override
void setLogBase(double base)
void setSubTickCount(int subTicks)
void simplifyFraction(int &numerator, int &denominator) const
@ fsFloatingPoint
Fractions are displayed as regular decimal floating point numbers, e.g. "0.25" or "0....
@ fsAsciiFractions
Fractions are written as rationals using ASCII characters only, e.g. "1/4" or "1/8".
@ fsUnicodeFractions
Fractions are written using sub- and superscript UTF-8 digits and the fraction symbol.
QString unicodeSuperscript(int number) const
void setPiValue(double pi)
void setPeriodicity(int multiplesOfPi)
QString unicodeSubscript(int number) const
void setFractionStyle(FractionStyle style)
virtual double getTickStep(const QCPRange &range) override
virtual QString getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision) override
void setPiSymbol(QString symbol)
QString unicodeFraction(int numerator, int denominator) const
virtual int getSubTickCount(double tickStep) override
QString fractionToString(int numerator, int denominator) const
virtual QVector< double > createTickVector(double tickStep, const QCPRange &range) override
virtual double getTickStep(const QCPRange &range) override
void addTick(double position, const QString &label)
virtual QString getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision) override
void setTicks(const QMap< double, QString > &ticks)
void setSubTickCount(int subTicks)
void addTicks(const QMap< double, QString > &ticks)
QMap< double, QString > & ticks()
virtual int getSubTickCount(double tickStep) override
void replaceUnit(QString &text, TimeUnit unit, int value) const
void setTimeFormat(const QString &format)
virtual double getTickStep(const QCPRange &range) override
@ tuSeconds
Seconds (%s in setTimeFormat)
@ tuMinutes
Minutes (%m in setTimeFormat)
@ tuMilliseconds
Milliseconds, one thousandth of a second (%z in setTimeFormat)
@ tuHours
Hours (%h in setTimeFormat)
@ tuDays
Days (%d in setTimeFormat)
void setFieldWidth(TimeUnit unit, int width)
virtual QString getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision) override
virtual int getSubTickCount(double tickStep) override
The base class tick generator used by QCPAxis to create tick positions and tick labels.
void setTickCount(int count)
virtual int getSubTickCount(double tickStep)
double pickClosest(double target, const QVector< double > &candidates) const
void setTickStepStrategy(TickStepStrategy strategy)
virtual QVector< QString > createLabelVector(const QVector< double > &ticks, const QLocale &locale, QChar formatChar, int precision)
virtual QString getTickLabel(double tick, const QLocale &locale, QChar formatChar, int precision)
virtual double getTickStep(const QCPRange &range)
virtual QVector< double > createSubTickVector(int subTickCount, const QVector< double > &ticks)
void trimTicks(const QCPRange &range, QVector< double > &ticks, bool keepOneOutlier) const
void setTickOrigin(double origin)
@ tssMeetTickCount
Less readable tick steps are allowed which in turn facilitates getting closer to the requested tick c...
@ tssReadability
A nicely readable tick step is prioritized over matching the requested number of ticks (see setTickCo...
double getMantissa(double input, double *magnitude=nullptr) const
double cleanMantissa(double input) const
virtual void generate(const QCPRange &range, const QLocale &locale, QChar formatChar, int precision, QVector< double > &ticks, QVector< double > *subTicks, QVector< QString > *tickLabels)
virtual QVector< double > createTickVector(double tickStep, const QCPRange &range)
Manages a single axis inside a QCustomPlot.
virtual void wheelEvent(QWheelEvent *event) override
void setSelectedLabelFont(const QFont &font)
void setOffset(int offset)
void setTickLabels(bool show)
void rangeChanged(const QCPRange &newRange)
void setLowerEnding(const QCPLineEnding &ending)
void setTickLabelSide(LabelSide side)
virtual void draw(QCPPainter *painter) override
void moveRange(double diff)
void setTickLabelRotation(double degrees)
virtual void mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos) override
void setRangeReversed(bool reversed)
void setNumberPrecision(int precision)
SelectablePart getPartAt(const QPointF &pos) const
@ lsOutside
Tick labels will be displayed outside the axis rect.
@ lsInside
Tick labels will be displayed inside the axis rect and clipped to the inner axis rect.
void setSelectedSubTickPen(const QPen &pen)
void setTickLabelFont(const QFont &font)
void scaleRange(double factor)
void setLabel(const QString &str)
void scaleTypeChanged(QCPAxis::ScaleType scaleType)
@ stLogarithmic
Logarithmic scaling with correspondingly transformed axis coordinates (possibly also setTicker to a Q...
@ stLinear
Linear scaling.
void setTickLabelColor(const QColor &color)
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
void setTickLengthOut(int outside)
QList< QCPAbstractItem * > items() const
void setLabelPadding(int padding)
int pixelOrientation() const
virtual int calculateMargin()
void rescale(bool onlyVisiblePlottables=false)
void setSubTickLengthOut(int outside)
void setTicker(QSharedPointer< QCPAxisTicker > ticker)
Q_SLOT void setSelectableParts(const QCPAxis::SelectableParts &selectableParts)
double pixelToCoord(double value) const
void setPadding(int padding)
void setupTickVectors()
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void setSelectedLabelColor(const QColor &color)
void selectionChanged(const QCPAxis::SelectableParts &parts)
void setTickLength(int inside, int outside=0)
QCPGrid * grid() const
void setUpperEnding(const QCPLineEnding &ending)
QFont getTickLabelFont() const
void setLabelColor(const QColor &color)
void setLabelFont(const QFont &font)
virtual QCP::Interaction selectionCategory() const override
void setBasePen(const QPen &pen)
QSharedPointer< QCPAxisTicker > ticker() const
void setSelectedTickPen(const QPen &pen)
void setSelectedTickLabelFont(const QFont &font)
QPen getBasePen() const
QColor getTickLabelColor() const
virtual void mousePressEvent(QMouseEvent *event, const QVariant &details) override
void setSelectedTickLabelColor(const QColor &color)
void selectableChanged(const QCPAxis::SelectableParts &parts)
static AxisType opposite(AxisType type)
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged) override
QPen getSubTickPen() const
virtual void deselectEvent(bool *selectionStateChanged) override
void setSubTickLength(int inside, int outside=0)
Qt::Orientation orientation() const
Q_SLOT void setSelectedParts(const QCPAxis::SelectableParts &selectedParts)
@ spTickLabels
Tick labels (numbers) of this axis (as a whole, not individually)
@ spAxisLabel
The axis label.
@ spAxis
The axis backbone and tick marks.
@ spNone
None of the selectable parts.
static AxisType marginSideToAxisType(QCP::MarginSide side)
void setSubTickLengthIn(int inside)
QList< QCPAbstractPlottable * > plottables() const
QCPAxis(QCPAxisRect *parent, AxisType type)
virtual void mouseMoveEvent(QMouseEvent *event, const QPointF &startPos) override
void setTicks(bool show)
void setRangeUpper(double upper)
QList< QCPGraph * > graphs() const
void setTickPen(const QPen &pen)
Q_SLOT void setScaleType(QCPAxis::ScaleType type)
@ atBottom
0x08 Axis is horizontal and on the bottom side of the axis rect
@ atTop
0x04 Axis is horizontal and on the top side of the axis rect
@ atRight
0x02 Axis is vertical and on the right side of the axis rect
@ atLeft
0x01 Axis is vertical and on the left side of the axis rect
void setNumberFormat(const QString &formatCode)
QColor getLabelColor() const
QFont getLabelFont() const
void setSelectedBasePen(const QPen &pen)
Q_SLOT void setRange(const QCPRange &range)
void setSubTickPen(const QPen &pen)
double coordToPixel(double value) const
void setTickLabelPadding(int padding)
void setScaleRatio(const QCPAxis *otherAxis, double ratio=1.0)
void setSubTicks(bool show)
void setTickLengthIn(int inside)
void setRangeLower(double lower)
QPen getTickPen() const
Holds the data of one single data point (one bar) for QCPBars.
Groups multiple QCPBars together so they appear side by side.
double getPixelSpacing(const QCPBars *bars, double keyCoord)
void remove(QCPBars *bars)
void setSpacingType(SpacingType spacingType)
void insert(int i, QCPBars *bars)
@ stAbsolute
Bar spacing is in absolute pixels.
@ stPlotCoords
Bar spacing is in key coordinates and thus scales with the key axis range.
@ stAxisRectRatio
Bar spacing is given by a fraction of the axis rect size.
QList< QCPBars * > bars() const
void registerBars(QCPBars *bars)
void append(QCPBars *bars)
double keyPixelOffset(const QCPBars *bars, double keyCoord)
QCPBarsGroup(QCustomPlot *parentPlot)
void setSpacing(double spacing)
void unregisterBars(QCPBars *bars)
A plottable representing a bar chart in a plot.
QRectF getBarRect(double key, double value) const
double getStackedBaseValue(double key, bool positive) const
QCPBars * barBelow() const
void addData(const QVector< double > &keys, const QVector< double > &values, bool alreadySorted=false)
virtual QCPRange getValueRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth, const QCPRange &inKeyRange=QCPRange()) const override
void setBaseValue(double baseValue)
QCPBars(QCPAxis *keyAxis, QCPAxis *valueAxis)
@ wtAxisRectRatio
Bar width is given by a fraction of the axis rect size.
@ wtPlotCoords
Bar width is in key coordinates and thus scales with the key axis range.
@ wtAbsolute
Bar width is in absolute pixels.
void moveBelow(QCPBars *bars)
void setData(QSharedPointer< QCPBarsDataContainer > data)
static void connectBars(QCPBars *lower, QCPBars *upper)
virtual void draw(QCPPainter *painter) override
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
QSharedPointer< QCPBarsDataContainer > data() const
virtual QPointF dataPixelPosition(int index) const override
virtual QCPRange getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth) const override
void moveAbove(QCPBars *bars)
void getVisibleDataBounds(QCPBarsDataContainer::const_iterator &begin, QCPBarsDataContainer::const_iterator &end) const
virtual void drawLegendIcon(QCPPainter *painter, const QRectF &rect) const override
void getPixelWidth(double key, double &lower, double &upper) const
void setWidthType(WidthType widthType)
void setStackingGap(double pixels)
void setBarsGroup(QCPBarsGroup *barsGroup)
virtual QCPDataSelection selectTestRect(const QRectF &rect, bool onlySelectable) const override
void setWidth(double width)
Defines a color gradient for use with e.g. QCPColorMap.
QRgb color(double position, const QCPRange &range, bool logarithmic=false)
void setNanHandling(NanHandling handling)
bool stopsUseAlpha() const
void setLevelCount(int n)
void setPeriodic(bool enabled)
void setColorStopAt(double position, const QColor &color)
void setColorStops(const QMap< double, QColor > &colorStops)
QCPColorGradient inverted() const
void loadPreset(GradientPreset preset)
void setColorInterpolation(ColorInterpolation interpolation)
void colorize(const double *data, const QCPRange &range, QRgb *scanLine, int n, int dataIndexFactor=1, bool logarithmic=false)
void setNanColor(const QColor &color)
@ ciRGB
Color channels red, green and blue are linearly interpolated.
@ ciHSV
Color channels hue, saturation and value are linearly interpolated (The hue is interpolated over the ...
@ gpNight
Continuous lightness from black over weak blueish colors to white (suited for non-biased data represe...
@ gpHues
Full hue cycle, with highest and lowest color red (suitable for periodic data, such as angles and pha...
@ gpGeography
Colors suitable to represent different elevations on geographical maps.
@ gpIon
Half hue spectrum from black over purple to blue and finally green (creates banding illusion but allo...
@ gpHot
Continuous lightness from black over firey colors to white (suited for non-biased data representation...
@ gpJet
Hue variation similar to a spectrum, often used in numerical visualization (creates banding illusion ...
@ gpCandy
Blue over pink to white.
@ gpPolar
Colors suitable to emphasize polarity around the center, with blue for negative, black in the middle ...
@ gpSpectrum
An approximation of the visible light spectrum (creates banding illusion but allows more precise magn...
@ gpGrayscale
Continuous lightness from black to white (suited for non-biased data representation)
@ gpCold
Continuous lightness from black over icey colors to white (suited for non-biased data representation)
@ gpThermal
Colors suitable for thermal imaging, ranging from dark blue over purple to orange,...
@ nhHighestColor
NaN data points appear as the highest color defined in this QCPColorGradient.
@ nhTransparent
NaN data points appear transparent.
@ nhLowestColor
NaN data points appear as the lowest color defined in this QCPColorGradient.
@ nhNone
NaN data points are not explicitly handled and shouldn't occur in the data (this gives slight perform...
@ nhNanColor
NaN data points appear as the color defined with setNanColor.
Holds the two-dimensional data of a QCPColorMap plottable.
void setKeyRange(const QCPRange &keyRange)
void setValueSize(int valueSize)
void setSize(int keySize, int valueSize)
void fill(double z)
bool createAlpha(bool initializeOpaque=true)
unsigned char alpha(int keyIndex, int valueIndex)
void setCell(int keyIndex, int valueIndex, double z)
void fillAlpha(unsigned char alpha)
QCPColorMapData(int keySize, int valueSize, const QCPRange &keyRange, const QCPRange &valueRange)
void setRange(const QCPRange &keyRange, const QCPRange &valueRange)
void setAlpha(int keyIndex, int valueIndex, unsigned char alpha)
void setKeySize(int keySize)
void coordToCell(double key, double value, int *keyIndex, int *valueIndex) const
void setValueRange(const QCPRange &valueRange)
bool isEmpty() const
void cellToCoord(int keyIndex, int valueIndex, double *key, double *value) const
void setData(double key, double value, double z)
QCPColorMapData & operator=(const QCPColorMapData &other)
A plottable representing a two-dimensional color map in a plot.
QCPColorMapData * data() const
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void gradientChanged(const QCPColorGradient &newGradient)
virtual void draw(QCPPainter *painter) override
void setInterpolate(bool enabled)
virtual QCPRange getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth) const override
void setData(QCPColorMapData *data, bool copy=false)
Q_SLOT void updateLegendIcon(Qt::TransformationMode transformMode=Qt::SmoothTransformation, const QSize &thumbSize=QSize(32, 18))
virtual void updateMapImage()
Q_SLOT void setGradient(const QCPColorGradient &gradient)
void dataRangeChanged(const QCPRange &newRange)
void rescaleDataRange(bool recalculateDataBounds=false)
virtual void drawLegendIcon(QCPPainter *painter, const QRectF &rect) const override
void dataScaleTypeChanged(QCPAxis::ScaleType scaleType)
Q_SLOT void setDataRange(const QCPRange &dataRange)
Q_SLOT void setDataScaleType(QCPAxis::ScaleType scaleType)
QCPColorMap(QCPAxis *keyAxis, QCPAxis *valueAxis)
void setColorScale(QCPColorScale *colorScale)
void setTightBoundary(bool enabled)
virtual QCPRange getValueRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth, const QCPRange &inKeyRange=QCPRange()) const override
An axis rect subclass for use in a QCPColorScale.
Q_SLOT void axisSelectionChanged(QCPAxis::SelectableParts selectedParts)
Q_SLOT void axisSelectableChanged(QCPAxis::SelectableParts selectableParts)
QCPColorScaleAxisRectPrivate(QCPColorScale *parentColorScale)
virtual void draw(QCPPainter *painter) override
A color scale for use with color coding data such as QCPColorMap.
void setType(QCPAxis::AxisType type)
Q_SLOT void setGradient(const QCPColorGradient &gradient)
void setRangeDrag(bool enabled)
virtual void mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos) override
virtual void mouseMoveEvent(QMouseEvent *event, const QPointF &startPos) override
virtual void wheelEvent(QWheelEvent *event) override
void rescaleDataRange(bool onlyVisibleMaps)
QList< QCPColorMap * > colorMaps() const
void gradientChanged(const QCPColorGradient &newGradient)
void dataScaleTypeChanged(QCPAxis::ScaleType scaleType)
void dataRangeChanged(const QCPRange &newRange)
virtual void mousePressEvent(QMouseEvent *event, const QVariant &details) override
void setRangeZoom(bool enabled)
QCPColorScale(QCustomPlot *parentPlot)
void setBarWidth(int width)
Q_SLOT void setDataRange(const QCPRange &dataRange)
virtual void update(UpdatePhase phase) override
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
Q_SLOT void setDataScaleType(QCPAxis::ScaleType scaleType)
void setLabel(const QString &str)
Holds the data of one single data point for QCPCurve.
virtual void drawLegendIcon(QCPPainter *painter, const QRectF &rect) const override
virtual void drawScatterPlot(QCPPainter *painter, const QVector< QPointF > &points, const QCPScatterStyle &style) const
@ lsLine
Data points are connected with a straight line.
@ lsNone
No line is drawn between data points (e.g. only scatters)
virtual QCPRange getValueRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth, const QCPRange &inKeyRange=QCPRange()) const override
QCPCurve(QCPAxis *keyAxis, QCPAxis *valueAxis)
void setData(QSharedPointer< QCPCurveDataContainer > data)
void setLineStyle(LineStyle style)
void getTraverseCornerPoints(int prevRegion, int currentRegion, double keyMin, double valueMax, double keyMax, double valueMin, QVector< QPointF > &beforeTraverse, QVector< QPointF > &afterTraverse) const
void setScatterStyle(const QCPScatterStyle &style)
void getScatters(QVector< QPointF > *scatters, const QCPDataRange &dataRange, double scatterWidth) const
virtual QCPRange getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth) const override
QVector< QPointF > getOptimizedCornerPoints(int prevRegion, int currentRegion, double prevKey, double prevValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
QPointF getOptimizedPoint(int otherRegion, double otherKey, double otherValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
void addData(const QVector< double > &t, const QVector< double > &keys, const QVector< double > &values, bool alreadySorted=false)
QSharedPointer< QCPCurveDataContainer > data() const
int getRegion(double key, double value, double keyMin, double valueMax, double keyMax, double valueMin) const
void setScatterSkip(int skip)
double pointDistance(const QPointF &pixelPoint, QCPCurveDataContainer::const_iterator &closestData) const
virtual void drawCurveLine(QCPPainter *painter, const QVector< QPointF > &lines) const
virtual void draw(QCPPainter *painter) override
void getCurveLines(QVector< QPointF > *lines, const QCPDataRange &dataRange, double penWidth) const
bool mayTraverse(int prevRegion, int currentRegion) const
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
bool getTraverse(double prevKey, double prevValue, double key, double value, double keyMin, double valueMax, double keyMax, double valueMin, QPointF &crossA, QPointF &crossB) const
The generic data container for one-dimensional plottables.
Describes a data range given by begin and end index.
bool contains(const QCPDataRange &other) const
int length() const
QCPDataRange expanded(const QCPDataRange &other) const
QCPDataRange intersection(const QCPDataRange &other) const
bool intersects(const QCPDataRange &other) const
QCPDataRange bounded(const QCPDataRange &other) const
bool isValid() const
bool isEmpty() const
Describes a data set by holding multiple QCPDataRange instances.
void enforceType(QCP::SelectionType type)
QCPDataSelection & operator+=(const QCPDataSelection &other)
void addDataRange(const QCPDataRange &dataRange, bool simplify=true)
bool operator==(const QCPDataSelection &other) const
QCPDataSelection & operator-=(const QCPDataSelection &other)
QCPDataRange dataRange(int index=0) const
bool isEmpty() const
QCPDataRange span() const
bool contains(const QCPDataSelection &other) const
QList< QCPDataRange > dataRanges() const
int dataPointCount() const
QCPDataSelection inverse(const QCPDataRange &outerRange) const
QCPDataSelection intersection(const QCPDataRange &other) const
Holds the data of one single error bar for QCPErrorBars.
virtual bool sortKeyIsMainKey() const override
virtual void drawLegendIcon(QCPPainter *painter, const QRectF &rect) const override
void getDataSegments(QList< QCPDataRange > &selectedSegments, QList< QCPDataRange > &unselectedSegments) const
void setSymbolGap(double pixels)
virtual QCPRange dataValueRange(int index) const override
virtual QCPDataSelection selectTestRect(const QRectF &rect, bool onlySelectable) const override
virtual QCPRange getValueRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth, const QCPRange &inKeyRange=QCPRange()) const override
virtual double dataMainKey(int index) const override
bool errorBarVisible(int index) const
QCPErrorBars(QCPAxis *keyAxis, QCPAxis *valueAxis)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
virtual int dataCount() const override
virtual QCPRange getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth) const override
double pointDistance(const QPointF &pixelPoint, QCPErrorBarsDataContainer::const_iterator &closestData) const
void setData(QSharedPointer< QCPErrorBarsDataContainer > data)
@ etValueError
The errors are for the value dimension (bars appear parallel to the value axis)
@ etKeyError
The errors are for the key dimension (bars appear parallel to the key axis)
bool rectIntersectsLine(const QRectF &pixelRect, const QLineF &line) const
virtual double dataMainValue(int index) const override
void setDataPlottable(QCPAbstractPlottable *plottable)
void getVisibleDataBounds(QCPErrorBarsDataContainer::const_iterator &begin, QCPErrorBarsDataContainer::const_iterator &end, const QCPDataRange &rangeRestriction) const
void addData(const QVector< double > &error)
virtual int findEnd(double sortKey, bool expandedRange=true) const override
void getErrorBarLines(QCPErrorBarsDataContainer::const_iterator it, QVector< QLineF > &backbones, QVector< QLineF > &whiskers) const
virtual double dataSortKey(int index) const override
void setWhiskerWidth(double pixels)
virtual void draw(QCPPainter *painter) override
virtual QPointF dataPixelPosition(int index) const override
QSharedPointer< QCPErrorBarsDataContainer > data() const
void setErrorType(ErrorType type)
virtual int findBegin(double sortKey, bool expandedRange=true) const override
Holds the data of one single data point for QCPFinancial.
@ csOhlc
Open-High-Low-Close bar representation.
@ csCandlestick
Candlestick representation.
void setTwoColored(bool twoColored)
void setWidthType(WidthType widthType)
double ohlcSelectTest(const QPointF &pos, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, QCPFinancialDataContainer::const_iterator &closestDataPoint) const
void drawOhlcPlot(QCPPainter *painter, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, bool isSelected)
void getVisibleDataBounds(QCPFinancialDataContainer::const_iterator &begin, QCPFinancialDataContainer::const_iterator &end) const
void addData(const QVector< double > &keys, const QVector< double > &open, const QVector< double > &high, const QVector< double > &low, const QVector< double > &close, bool alreadySorted=false)
virtual void draw(QCPPainter *painter) override
double getPixelWidth(double key, double keyPixel) const
QCPFinancial(QCPAxis *keyAxis, QCPAxis *valueAxis)
virtual void drawLegendIcon(QCPPainter *painter, const QRectF &rect) const override
void setChartStyle(ChartStyle style)
void setBrushPositive(const QBrush &brush)
void setData(QSharedPointer< QCPFinancialDataContainer > data)
virtual QCPRange getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth) const override
void setBrushNegative(const QBrush &brush)
virtual QCPRange getValueRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth, const QCPRange &inKeyRange=QCPRange()) const override
double candlestickSelectTest(const QPointF &pos, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, QCPFinancialDataContainer::const_iterator &closestDataPoint) const
void setWidth(double width)
static QCPFinancialDataContainer timeSeriesToOhlc(const QVector< double > &time, const QVector< double > &value, double timeBinSize, double timeBinOffset=0)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void setPenPositive(const QPen &pen)
void drawCandlestickPlot(QCPPainter *painter, const QCPFinancialDataContainer::const_iterator &begin, const QCPFinancialDataContainer::const_iterator &end, bool isSelected)
QSharedPointer< QCPFinancialDataContainer > data() const
@ wtAbsolute
width is in absolute pixels
@ wtAxisRectRatio
width is given by a fraction of the axis rect size
@ wtPlotCoords
width is in key coordinates and thus scales with the key axis range
virtual QCPDataSelection selectTestRect(const QRectF &rect, bool onlySelectable) const override
QRectF selectionHitBox(QCPFinancialDataContainer::const_iterator it) const
void setPenNegative(const QPen &pen)
Holds the data of one single data point for QCPGraph.
A plottable representing a graph in a plot.
QVector< QPointF > dataToLines(const QVector< QCPGraphData > &data) const
virtual void draw(QCPPainter *painter) override
QCPGraph(QCPAxis *keyAxis, QCPAxis *valueAxis)
QVector< QCPDataRange > getNonNanSegments(const QVector< QPointF > *lineData, Qt::Orientation keyOrientation) const
void setScatterStyle(const QCPScatterStyle &style)
QPointF getFillBasePoint(QPointF matchingDataPoint) const
QSharedPointer< QCPGraphDataContainer > data() const
void setScatterSkip(int skip)
void setData(QSharedPointer< QCPGraphDataContainer > data)
QVector< QPointF > dataToStepLeftLines(const QVector< QCPGraphData > &data) const
virtual void getOptimizedLineData(QVector< QCPGraphData > *lineData, const QCPGraphDataContainer::const_iterator &begin, const QCPGraphDataContainer::const_iterator &end) const
virtual QCPRange getValueRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth, const QCPRange &inKeyRange=QCPRange()) const override
virtual void drawImpulsePlot(QCPPainter *painter, const QVector< QPointF > &lines) const
QVector< QPointF > dataToStepCenterLines(const QVector< QCPGraphData > &data) const
const QPolygonF getChannelFillPolygon(const QVector< QPointF > *thisData, QCPDataRange thisSegment, const QVector< QPointF > *otherData, QCPDataRange otherSegment) const
QVector< QPointF > dataToImpulseLines(const QVector< QCPGraphData > &data) const
void setChannelFillGraph(QCPGraph *targetGraph)
QVector< QPair< QCPDataRange, QCPDataRange > > getOverlappingSegments(QVector< QCPDataRange > thisSegments, const QVector< QPointF > *thisData, QVector< QCPDataRange > otherSegments, const QVector< QPointF > *otherData) const
virtual void drawLinePlot(QCPPainter *painter, const QVector< QPointF > &lines) const
void setLineStyle(LineStyle ls)
virtual void getOptimizedScatterData(QVector< QCPGraphData > *scatterData, QCPGraphDataContainer::const_iterator begin, QCPGraphDataContainer::const_iterator end) const
void getLines(QVector< QPointF > *lines, const QCPDataRange &dataRange) const
int findIndexBelowY(const QVector< QPointF > *data, double y) const
virtual void drawFill(QCPPainter *painter, QVector< QPointF > *lines) const
virtual void drawLegendIcon(QCPPainter *painter, const QRectF &rect) const override
void getVisibleDataBounds(QCPGraphDataContainer::const_iterator &begin, QCPGraphDataContainer::const_iterator &end, const QCPDataRange &rangeRestriction) const
double pointDistance(const QPointF &pixelPoint, QCPGraphDataContainer::const_iterator &closestData) const
int findIndexAboveY(const QVector< QPointF > *data, double y) const
int findIndexBelowX(const QVector< QPointF > *data, double x) const
virtual QCPRange getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth) const override
void getScatters(QVector< QPointF > *scatters, const QCPDataRange &dataRange) const
int findIndexAboveX(const QVector< QPointF > *data, double x) const
QVector< QPointF > dataToStepRightLines(const QVector< QCPGraphData > &data) const
void setAdaptiveSampling(bool enabled)
bool segmentsIntersect(double aLower, double aUpper, double bLower, double bUpper, int &bPrecedence) const
virtual void drawScatterPlot(QCPPainter *painter, const QVector< QPointF > &scatters, const QCPScatterStyle &style) const
@ lsLine
data points are connected by a straight line
@ lsStepCenter
line is drawn as steps where the step is in between two data points
@ lsStepRight
line is drawn as steps where the step height is the value of the right data point
@ lsImpulse
each data point is represented by a line parallel to the value axis, which reaches from the data poin...
@ lsStepLeft
line is drawn as steps where the step height is the value of the left data point
@ lsNone
data points are not connected with any lines (e.g.
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void addData(const QVector< double > &keys, const QVector< double > &values, bool alreadySorted=false)
const QPolygonF getFillPolygon(const QVector< QPointF > *lineData, QCPDataRange segment) const
Responsible for drawing the grid of a QCPAxis.
void setZeroLinePen(const QPen &pen)
void setAntialiasedZeroLine(bool enabled)
void setAntialiasedSubGrid(bool enabled)
virtual void draw(QCPPainter *painter) override
void drawSubGridLines(QCPPainter *painter) const
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
void setSubGridPen(const QPen &pen)
void setPen(const QPen &pen)
QCPGrid(QCPAxis *parentAxis)
void setSubGridVisible(bool visible)
void drawGridLines(QCPPainter *painter) const
An anchor of an item to which positions can be attached to.
virtual QPointF pixelPosition() const
void removeChildX(QCPItemPosition *pos)
QCPItemAnchor(QCustomPlot *parentPlot, QCPAbstractItem *parentItem, const QString &name, int anchorId=-1)
void removeChildY(QCPItemPosition *pos)
void addChildX(QCPItemPosition *pos)
void addChildY(QCPItemPosition *pos)
void setSelectedPen(const QPen &pen)
QCPItemBracket(QCustomPlot *parentPlot)
void setStyle(BracketStyle style)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
@ bsRound
A brace with round edges.
@ bsCurly
A curly brace.
@ bsSquare
A brace with angled edges.
@ bsCalligraphic
A curly brace with varying stroke width giving a calligraphic impression.
virtual void draw(QCPPainter *painter) override
virtual QPointF anchorPixelPosition(int anchorId) const override
void setPen(const QPen &pen)
void setLength(double length)
QPen mainPen() const
void setPen(const QPen &pen)
void setHead(const QCPLineEnding &head)
void setSelectedPen(const QPen &pen)
QPen mainPen() const
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
virtual void draw(QCPPainter *painter) override
void setTail(const QCPLineEnding &tail)
QCPItemCurve(QCustomPlot *parentPlot)
virtual void draw(QCPPainter *painter) override
virtual QPointF anchorPixelPosition(int anchorId) const override
void setBrush(const QBrush &brush)
QBrush mainBrush() const
void setSelectedPen(const QPen &pen)
QCPItemEllipse(QCustomPlot *parentPlot)
void setSelectedBrush(const QBrush &brush)
QPen mainPen() const
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void setPen(const QPen &pen)
QCPItemLine(QCustomPlot *parentPlot)
void setSelectedPen(const QPen &pen)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void setPen(const QPen &pen)
virtual void draw(QCPPainter *painter) override
QLineF getRectClippedLine(const QCPVector2D &start, const QCPVector2D &end, const QRect &rect) const
void setTail(const QCPLineEnding &tail)
void setHead(const QCPLineEnding &head)
QPen mainPen() const
virtual void draw(QCPPainter *painter) override
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void setPixmap(const QPixmap &pixmap)
void updateScaledPixmap(QRect finalRect=QRect(), bool flipHorz=false, bool flipVert=false)
QRect getFinalRect(bool *flippedHorz=nullptr, bool *flippedVert=nullptr) const
QCPItemPixmap(QCustomPlot *parentPlot)
QPen mainPen() const
virtual QPointF anchorPixelPosition(int anchorId) const override
void setScaled(bool scaled, Qt::AspectRatioMode aspectRatioMode=Qt::KeepAspectRatio, Qt::TransformationMode transformationMode=Qt::SmoothTransformation)
void setPen(const QPen &pen)
void setSelectedPen(const QPen &pen)
Manages the position of an item.
QCPItemAnchor * parentAnchor() const
void setAxisRect(QCPAxisRect *axisRect)
void setTypeX(PositionType type)
void setAxes(QCPAxis *keyAxis, QCPAxis *valueAxis)
QCPItemPosition(QCustomPlot *parentPlot, QCPAbstractItem *parentItem, const QString &name)
virtual QPointF pixelPosition() const override
void setPixelPosition(const QPointF &pixelPosition)
void setType(PositionType type)
void setCoords(double key, double value)
@ ptAxisRectRatio
Static positioning given by a fraction of the axis rect size (see setAxisRect).
@ ptAbsolute
Static positioning in pixels, starting from the top left corner of the viewport/widget.
@ ptViewportRatio
Static positioning given by a fraction of the viewport size.
@ ptPlotCoords
Dynamic positioning at a plot coordinate defined by two axes (see setAxes).
PositionType type() const
bool setParentAnchor(QCPItemAnchor *parentAnchor, bool keepPixelPosition=false)
void setTypeY(PositionType type)
bool setParentAnchorY(QCPItemAnchor *parentAnchor, bool keepPixelPosition=false)
bool setParentAnchorX(QCPItemAnchor *parentAnchor, bool keepPixelPosition=false)
virtual void draw(QCPPainter *painter) override
QCPItemRect(QCustomPlot *parentPlot)
void setPen(const QPen &pen)
void setSelectedPen(const QPen &pen)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
virtual QPointF anchorPixelPosition(int anchorId) const override
QBrush mainBrush() const
void setBrush(const QBrush &brush)
void setSelectedBrush(const QBrush &brush)
QPen mainPen() const
QCPItemStraightLine(QCustomPlot *parentPlot)
QLineF getRectClippedStraightLine(const QCPVector2D &base, const QCPVector2D &vec, const QRect &rect) const
void setSelectedPen(const QPen &pen)
virtual void draw(QCPPainter *painter) override
void setPen(const QPen &pen)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void setSelectedFont(const QFont &font)
void setBrush(const QBrush &brush)
void setSelectedPen(const QPen &pen)
QPen mainPen() const
void setText(const QString &text)
void setRotation(double degrees)
QPointF getTextDrawPoint(const QPointF &pos, const QRectF &rect, Qt::Alignment positionAlignment) const
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void setSelectedBrush(const QBrush &brush)
QCPItemText(QCustomPlot *parentPlot)
void setPositionAlignment(Qt::Alignment alignment)
void setFont(const QFont &font)
virtual QPointF anchorPixelPosition(int anchorId) const override
void setPen(const QPen &pen)
void setColor(const QColor &color)
void setTextAlignment(Qt::Alignment alignment)
QColor mainColor() const
virtual void draw(QCPPainter *painter) override
QBrush mainBrush() const
void setSelectedColor(const QColor &color)
void setPadding(const QMargins &padding)
QFont mainFont() const
void setSelectedBrush(const QBrush &brush)
void setBrush(const QBrush &brush)
@ tsPlus
A plus shaped crosshair with limited size.
@ tsSquare
A square.
@ tsNone
The tracer is not visible.
@ tsCircle
A circle.
@ tsCrosshair
A plus shaped crosshair which spans the complete axis rect.
void setStyle(TracerStyle style)
void setGraphKey(double key)
void setInterpolating(bool enabled)
QBrush mainBrush() const
QPen mainPen() const
QCPItemTracer(QCustomPlot *parentPlot)
void setSelectedPen(const QPen &pen)
void setSize(double size)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
virtual void draw(QCPPainter *painter) override
void setGraph(QCPGraph *graph)
void setPen(const QPen &pen)
QCPLabelPainterPrivate(QCustomPlot *parentPlot)
virtual QByteArray generateLabelParameterHash() const
CachedLabel * createCachedLabel(const LabelData &labelData) const
void drawText(QCPPainter *painter, const QPointF &pos, const LabelData &labelData) const
virtual void drawLabelMaybeCached(QCPPainter *painter, const QFont &font, const QColor &color, const QPointF &pos, AnchorSide side, double rotation, const QString &text)
LabelData getTickLabelData(const QFont &font, const QColor &color, double rotation, AnchorSide side, const QString &text) const
A layer that may contain objects, to control the rendering order.
QList< QCPLayerable * > children() const
void drawToPaintBuffer()
void addChild(QCPLayerable *layerable, bool prepend)
QCPLayer(QCustomPlot *parentPlot, const QString &layerName)
@ lmLogical
Layer is used only for rendering order, and shares paint buffer with all other adjacent logical layer...
@ lmBuffered
Layer has its own paint buffer and may be replotted individually (see replot).
void setMode(LayerMode mode)
void draw(QCPPainter *painter)
void setVisible(bool visible)
void removeChild(QCPLayerable *layerable)
int index() const
void replot()
Base class for all drawable objects.
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const
void setVisible(bool on)
virtual void mouseDoubleClickEvent(QMouseEvent *event, const QVariant &details)
virtual void wheelEvent(QWheelEvent *event)
QCPLayerable(QCustomPlot *plot, QString targetLayer=QString(), QCPLayerable *parentLayerable=nullptr)
void setAntialiased(bool enabled)
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged)
void initializeParentPlot(QCustomPlot *parentPlot)
virtual QCP::Interaction selectionCategory() const
virtual void mouseMoveEvent(QMouseEvent *event, const QPointF &startPos)
virtual void mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos)
void setParentLayerable(QCPLayerable *parentLayerable)
QCPLayerable * parentLayerable() const
bool realVisibility() const
Q_SLOT bool setLayer(QCPLayer *layer)
virtual void parentPlotInitialized(QCustomPlot *parentPlot)
void layerChanged(QCPLayer *newLayer)
void applyAntialiasingHint(QCPPainter *painter, bool localAntialiased, QCP::AntialiasedElement overrideElement) const
virtual QRect clipRect() const
virtual void deselectEvent(bool *selectionStateChanged)
virtual void draw(QCPPainter *painter)=0
virtual void mousePressEvent(QMouseEvent *event, const QVariant &details)
bool moveToLayer(QCPLayer *layer, bool prepend)
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const =0
The abstract base class for all objects that form the layout system.
virtual int calculateAutoMargin(QCP::MarginSide side)
void setMinimumMargins(const QMargins &margins)
@ scrInnerRect
Minimum/Maximum size constraints apply to inner rect.
@ upMargins
Phase in which the margins are calculated and set.
@ upLayout
Final phase in which the layout system places the rects of the elements.
@ upPreparation
Phase used for any type of preparation that needs to be done before margin calculation and layout.
QRect rect() const
QCPLayoutElement(QCustomPlot *parentPlot=nullptr)
void setSizeConstraintRect(SizeConstraintRect constraintRect)
void setOuterRect(const QRect &rect)
virtual QSize minimumOuterSizeHint() const
QCPLayout * layout() const
void setMarginGroup(QCP::MarginSides sides, QCPMarginGroup *group)
void setMinimumSize(const QSize &size)
void setMaximumSize(const QSize &size)
virtual void layoutChanged()
virtual QList< QCPLayoutElement * > elements(bool recursive) const
void setMargins(const QMargins &margins)
virtual void update(UpdatePhase phase)
void setAutoMargins(QCP::MarginSides sides)
virtual QSize maximumOuterSizeHint() const
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
virtual void parentPlotInitialized(QCustomPlot *parentPlot) override
A layout that arranges child elements in a grid.
virtual QCPLayoutElement * takeAt(int index) override
int rowCount() const
int columnCount() const
void insertColumn(int newIndex)
void setRowStretchFactors(const QList< double > &factors)
virtual QCPLayoutElement * elementAt(int index) const override
virtual void updateLayout() override
void setColumnSpacing(int pixels)
void insertRow(int newIndex)
void getMinimumRowColSizes(QVector< int > *minColWidths, QVector< int > *minRowHeights) const
void indexToRowCol(int index, int &row, int &column) const
QCPLayoutElement * element(int row, int column) const
int rowColToIndex(int row, int column) const
void setColumnStretchFactors(const QList< double > &factors)
void setRowStretchFactor(int row, double factor)
@ foRowsFirst
Rows are filled first, and a new element is wrapped to the next column if the row count would exceed ...
@ foColumnsFirst
Columns are filled first, and a new element is wrapped to the next row if the column count would exce...
void expandTo(int newRowCount, int newColumnCount)
virtual void simplify() override
virtual QList< QCPLayoutElement * > elements(bool recursive) const override
void getMaximumRowColSizes(QVector< int > *maxColWidths, QVector< int > *maxRowHeights) const
virtual int elementCount() const override
void setRowSpacing(int pixels)
bool hasElement(int row, int column)
virtual bool take(QCPLayoutElement *element) override
void setWrap(int count)
virtual QSize minimumOuterSizeHint() const override
virtual QSize maximumOuterSizeHint() const override
bool addElement(int row, int column, QCPLayoutElement *element)
void setColumnStretchFactor(int column, double factor)
void setFillOrder(FillOrder order, bool rearrange=true)
A layout that places child elements aligned to the border or arbitrarily positioned.
virtual int elementCount() const override
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
virtual void updateLayout() override
Qt::Alignment insetAlignment(int index) const
void setInsetAlignment(int index, Qt::Alignment alignment)
void setInsetPlacement(int index, InsetPlacement placement)
InsetPlacement insetPlacement(int index) const
@ ipFree
The element may be positioned/sized arbitrarily, see setInsetRect.
@ ipBorderAligned
The element is aligned to one of the layout sides, see setInsetAlignment.
virtual QCPLayoutElement * elementAt(int index) const override
void setInsetRect(int index, const QRectF &rect)
QRectF insetRect(int index) const
virtual QCPLayoutElement * takeAt(int index) override
void addElement(QCPLayoutElement *element, Qt::Alignment alignment)
virtual bool take(QCPLayoutElement *element) override
The abstract base class for layouts.
virtual void updateLayout()
bool removeAt(int index)
virtual int elementCount() const =0
QVector< int > getSectionSizes(QVector< int > maxSizes, QVector< int > minSizes, QVector< double > stretchFactors, int totalSize) const
virtual void simplify()
void releaseElement(QCPLayoutElement *el)
virtual QList< QCPLayoutElement * > elements(bool recursive) const override
virtual QCPLayoutElement * takeAt(int index)=0
bool remove(QCPLayoutElement *element)
static QSize getFinalMinimumOuterSize(const QCPLayoutElement *el)
virtual void update(UpdatePhase phase) override
virtual bool take(QCPLayoutElement *element)=0
static QSize getFinalMaximumOuterSize(const QCPLayoutElement *el)
void sizeConstraintsChanged() const
void adoptElement(QCPLayoutElement *el)
virtual QCPLayoutElement * elementAt(int index) const =0
Manages a legend inside a QCustomPlot.
virtual QCP::Interaction selectionCategory() const override
QPen getBorderPen() const
void clearItems()
Q_SLOT void setSelectedParts(const SelectableParts &selectedParts)
void setSelectedBorderPen(const QPen &pen)
void setIconBorderPen(const QPen &pen)
virtual void deselectEvent(bool *selectionStateChanged) override
bool addItem(QCPAbstractLegendItem *item)
void setBrush(const QBrush &brush)
bool hasItemWithPlottable(const QCPAbstractPlottable *plottable) const
@ spLegendBox
0x001 The legend box (frame)
@ spNone
0x000 None
@ spItems
0x002 Legend items individually (see selectedItems)
int itemCount() const
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged) override
void setIconTextPadding(int padding)
void setSelectedTextColor(const QColor &color)
void selectionChanged(QCPLegend::SelectableParts parts)
void setBorderPen(const QPen &pen)
void setSelectedBrush(const QBrush &brush)
void setIconSize(const QSize &size)
QCPPlottableLegendItem * itemWithPlottable(const QCPAbstractPlottable *plottable) const
virtual void parentPlotInitialized(QCustomPlot *parentPlot) override
Q_SLOT void setSelectableParts(const SelectableParts &selectableParts)
void setFont(const QFont &font)
QBrush getBrush() const
virtual void draw(QCPPainter *painter) override
void setSelectedFont(const QFont &font)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
QList< QCPAbstractLegendItem * > selectedItems() const
bool removeItem(int index)
QCPAbstractLegendItem * item(int index) const
bool hasItem(QCPAbstractLegendItem *item) const
void setSelectedIconBorderPen(const QPen &pen)
void setTextColor(const QColor &color)
Handles the different ending decorations for line-like items.
double boundingDistance() const
void setWidth(double width)
void draw(QCPPainter *painter, const QCPVector2D &pos, const QCPVector2D &dir) const
void setStyle(EndingStyle style)
void setInverted(bool inverted)
@ esHalfBar
A bar perpendicular to the line, pointing out to only one side (to which side can be changed with set...
@ esSkewedBar
A bar that is skewed (skew controllable via setLength)
@ esBar
A bar perpendicular to the line.
@ esDiamond
A filled diamond (45 degrees rotated square)
@ esFlatArrow
A filled arrow head with a straight/flat back (a triangle)
@ esLineArrow
A non-filled arrow head with open back.
@ esSpikeArrow
A filled arrow head with an indented back.
@ esNone
No ending decoration.
@ esSquare
A filled square.
@ esDisc
A filled circle.
double realLength() const
void setLength(double length)
A margin group allows synchronization of margin sides if working with multiple layout elements.
void removeChild(QCP::MarginSide side, QCPLayoutElement *element)
QCPMarginGroup(QCustomPlot *parentPlot)
QList< QCPLayoutElement * > elements(QCP::MarginSide side) const
void addChild(QCP::MarginSide side, QCPLayoutElement *element)
bool isEmpty() const
virtual int commonMargin(QCP::MarginSide side) const
A paint buffer based on QPixmap, using software raster rendering.
void clear(const QColor &color) override
virtual QCPPainter * startPainting() override
virtual void draw(QCPPainter *painter) const override
virtual void reallocateBuffer() override
QCPPaintBufferPixmap(const QSize &size, double devicePixelRatio)
QPainter subclass used internally.
bool begin(QPaintDevice *device)
void drawLine(const QLineF &line)
@ pmNonCosmetic
0x04 Turns pen widths 0 to 1, i.e. disables cosmetic pens. (A cosmetic pen is always drawn with width...
@ pmNoCaching
0x02 Mode for all sorts of exports (e.g. PNG, PDF,...). For example, this prevents using cached pixma...
@ pmVectorized
0x01 Mode for vectorized painting (e.g. PDF export). For example, this prevents some antialiasing fix...
void setModes(PainterModes modes)
void makeNonCosmetic()
void setAntialiasing(bool enabled)
void setMode(PainterMode mode, bool enabled=true)
void setPen(const QPen &pen)
Defines an abstract interface for one-dimensional plottables.
A legend item representing a plottable with an icon and the plottable name.
virtual QSize minimumOuterSizeHint() const override
QColor getTextColor() const
QCPPlottableLegendItem(QCPLegend *parent, QCPAbstractPlottable *plottable)
virtual void draw(QCPPainter *painter) override
The main container for polar plots, representing the angular axis as a circle.
virtual void update(UpdatePhase phase) override
QFont getLabelFont() const
void setTickPen(const QPen &pen)
void setBackground(const QPixmap &pm)
QSize size() const
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
void setNumberPrecision(int precision)
virtual QList< QCPLayoutElement * > elements(bool recursive) const override
QPointF center() const
void setTickLabels(bool show)
void setSelectedBasePen(const QPen &pen)
void setSubTickPen(const QPen &pen)
@ spTickLabels
Tick labels (numbers) of this axis (as a whole, not individually)
@ spNone
None of the selectable parts.
@ spAxis
The axis backbone and tick marks.
@ spAxisLabel
The axis label.
void setTicker(QSharedPointer< QCPAxisTicker > ticker)
void setSelectedSubTickPen(const QPen &pen)
void setNumberFormat(const QString &formatCode)
virtual void draw(QCPPainter *painter) override
QFont getTickLabelFont() const
void setSelectedTickLabelFont(const QFont &font)
void setTickLength(int inside, int outside=0)
QColor getLabelColor() const
Q_SLOT void setSelectedParts(const QCPPolarAxisAngular::SelectableParts &selectedParts)
void drawBackground(QCPPainter *painter, const QPointF &center, double radius)
void setSubTickLength(int inside, int outside=0)
void setSubTicks(bool show)
virtual void mousePressEvent(QMouseEvent *event, const QVariant &details) override
bool removeRadialAxis(QCPPolarAxisRadial *axis)
void setRangeUpper(double upper)
QPen getSubTickPen() const
void pixelToCoord(QPointF pixelPos, double &angleCoord, double &radiusCoord) const
void setBackgroundScaledMode(Qt::AspectRatioMode mode)
virtual QCP::Interaction selectionCategory() const override
void setBasePen(const QPen &pen)
void setLabel(const QString &str)
SelectablePart getPartAt(const QPointF &pos) const
void setLabelColor(const QColor &color)
void setTickLabelFont(const QFont &font)
void setRangeLower(double lower)
void setTickLabelColor(const QColor &color)
void setSubTickLengthIn(int inside)
void setLabelPadding(int padding)
void setSubTickLengthOut(int outside)
void setSelectedLabelColor(const QColor &color)
void setLabelFont(const QFont &font)
void rescale(bool onlyVisiblePlottables=false)
QCPPolarAxisRadial * radialAxis(int index=0) const
void setTickLengthIn(int inside)
virtual void wheelEvent(QWheelEvent *event) override
void setSelectedTickPen(const QPen &pen)
virtual void mouseMoveEvent(QMouseEvent *event, const QPointF &startPos) override
QList< QCPPolarAxisRadial * > radialAxes() const
virtual void mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos) override
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=0) const override
QColor getTickLabelColor() const
void setSelectedLabelFont(const QFont &font)
QCPPolarAxisRadial * addRadialAxis(QCPPolarAxisRadial *axis=0)
void setTickLengthOut(int outside)
void setTicks(bool show)
void setTickLabelPadding(int padding)
void setRangeReversed(bool reversed)
void scaleRange(double factor)
int radialAxisCount() const
void setSelectedTickLabelColor(const QColor &color)
void setTickLabelRotation(double degrees)
void setBackgroundScaled(bool scaled)
QPointF coordToPixel(double angleCoord, double radiusCoord) const
Q_SLOT void setSelectableParts(const QCPPolarAxisAngular::SelectableParts &selectableParts)
void moveRange(double diff)
QCPPolarAxisAngular(QCustomPlot *parentPlot)
Q_SLOT void setRange(const QCPRange &range)
The radial axis inside a radial plot.
void setSubTickLengthIn(int inside)
QSharedPointer< QCPAxisTicker > ticker() const
virtual void deselectEvent(bool *selectionStateChanged) override
void setNumberFormat(const QString &formatCode)
SelectablePart getPartAt(const QPointF &pos) const
void setSubTickPen(const QPen &pen)
void setSelectedTickLabelColor(const QColor &color)
@ stLogarithmic
Logarithmic scaling with correspondingly transformed axis coordinates (possibly also setTicker to a Q...
@ stLinear
Linear scaling.
void setSubTicks(bool show)
void scaleRange(double factor)
virtual QCP::Interaction selectionCategory() const override
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=0) const override
void setTickLengthIn(int inside)
virtual void mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos) override
@ arAngularAxis
The axis tilt is measured in the angular coordinate system given by the parent angular axis.
void selectionChanged(const QCPPolarAxisRadial::SelectableParts &parts)
void scaleTypeChanged(QCPPolarAxisRadial::ScaleType scaleType)
QPen getTickPen() const
QPen getSubTickPen() const
void setTickPen(const QPen &pen)
QFont getLabelFont() const
void rangeChanged(const QCPRange &newRange)
QFont getTickLabelFont() const
void setSelectedLabelColor(const QColor &color)
void setTickLabelRotation(double degrees)
Q_SLOT void setRange(const QCPRange &range)
void setTickLabelColor(const QColor &color)
void setTickLength(int inside, int outside=0)
virtual void draw(QCPPainter *painter) override
void setSelectedLabelFont(const QFont &font)
void setSubTickLengthOut(int outside)
void setTicks(bool show)
void setLabel(const QString &str)
void setBasePen(const QPen &pen)
void setLabelFont(const QFont &font)
void setTickLabels(bool show)
QColor getLabelColor() const
void setTickLabelPadding(int padding)
void setSelectedSubTickPen(const QPen &pen)
Q_SLOT void setSelectableParts(const QCPPolarAxisRadial::SelectableParts &selectableParts)
void setLabelColor(const QColor &color)
void setSelectedTickPen(const QPen &pen)
void setNumberPrecision(int precision)
void setSelectedTickLabelFont(const QFont &font)
QColor getTickLabelColor() const
void pixelToCoord(QPointF pixelPos, double &angleCoord, double &radiusCoord) const
void setTicker(QSharedPointer< QCPAxisTicker > ticker)
void setLabelPadding(int padding)
void moveRange(double diff)
QCPPolarAxisRadial(QCPPolarAxisAngular *parent)
void selectableChanged(const QCPPolarAxisRadial::SelectableParts &parts)
@ spTickLabels
Tick labels (numbers) of this axis (as a whole, not individually)
@ spAxis
The axis backbone and tick marks.
@ spNone
None of the selectable parts.
@ spAxisLabel
The axis label.
virtual void mouseMoveEvent(QMouseEvent *event, const QPointF &startPos) override
void setTickLabelFont(const QFont &font)
void setRangeLower(double lower)
void setRangeReversed(bool reversed)
void setRangeUpper(double upper)
virtual void mousePressEvent(QMouseEvent *event, const QVariant &details) override
void setSelectedBasePen(const QPen &pen)
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged) override
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
void rescale(bool onlyVisiblePlottables=false)
void setTickLengthOut(int outside)
void setSubTickLength(int inside, int outside=0)
QPen getBasePen() const
virtual void wheelEvent(QWheelEvent *event) override
QPointF coordToPixel(double angleCoord, double radiusCoord) const
Q_SLOT void setScaleType(QCPPolarAxisRadial::ScaleType type)
Q_SLOT void setSelectedParts(const QCPPolarAxisRadial::SelectableParts &selectedParts)
A radial graph used to display data in polar plots.
void setValueAxis(QCPPolarAxisRadial *axis)
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
virtual void deselectEvent(bool *selectionStateChanged) override
@ lsNone
data points are not connected with any lines (e.g.
@ lsLine
data points are connected by a straight line
void setKeyAxis(QCPPolarAxisAngular *axis)
QCPPolarGraph(QCPPolarAxisAngular *keyAxis, QCPPolarAxisRadial *valueAxis)
virtual void draw(QCPPainter *painter) override
QVector< QPointF > dataToLines(const QVector< QCPGraphData > &data) const
virtual QRect clipRect() const override
virtual void drawFill(QCPPainter *painter, QVector< QPointF > *lines) const
virtual void drawScatterPlot(QCPPainter *painter, const QVector< QPointF > &scatters, const QCPScatterStyle &style) const
void setData(QSharedPointer< QCPGraphDataContainer > data)
void setPen(const QPen &pen)
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged) override
virtual QCP::Interaction selectionCategory() const override
void setName(const QString &name)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=0) const override
void setLineStyle(LineStyle ls)
Q_SLOT void setSelection(QCPDataSelection selection)
Q_SLOT void setSelectable(QCP::SelectionType selectable)
void setAntialiasedFill(bool enabled)
void setBrush(const QBrush &brush)
virtual void drawLinePlot(QCPPainter *painter, const QVector< QPointF > &lines) const
void setScatterStyle(const QCPScatterStyle &style)
void getLines(QVector< QPointF > *lines, const QCPDataRange &dataRange) const
void setAntialiasedScatters(bool enabled)
void coordsToPixels(double key, double value, double &x, double &y) const
The grid in both angular and radial dimensions for polar plots.
QCPPolarGrid(QCPPolarAxisAngular *parentAxis)
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
void setAngularSubGridPen(const QPen &pen)
void setAntialiasedZeroLine(bool enabled)
virtual void draw(QCPPainter *painter) override
void setAntialiasedSubGrid(bool enabled)
void setAngularPen(const QPen &pen)
A legend item for polar plots.
virtual void draw(QCPPainter *painter) override
virtual QSize minimumOuterSizeHint() const override
Represents the range an axis is encompassing.
void expand(const QCPRange &otherRange)
QCPRange bounded(double lowerBound, double upperBound) const
QCPRange sanitizedForLogScale() const
static const double maxRange
double size() const
QCPRange sanitizedForLinScale() const
QCPRange expanded(const QCPRange &otherRange) const
static bool validRange(double lower, double upper)
static const double minRange
bool contains(double value) const
void normalize()
Represents the visual appearance of scatter points.
bool isPenDefined() const
void setPixmap(const QPixmap &pixmap)
bool isNone() const
void setBrush(const QBrush &brush)
void setPen(const QPen &pen)
void setShape(ScatterShape shape)
void setFromOther(const QCPScatterStyle &other, ScatterProperties properties)
@ spShape
0x08 The shape property, see setShape
@ spSize
0x04 The size property, see setSize
@ spPen
0x01 The pen property, see setPen
@ spBrush
0x02 The brush property, see setBrush
void drawShape(QCPPainter *painter, const QPointF &pos) const
void setCustomPath(const QPainterPath &customPath)
void setSize(double size)
@ ssDot
\enumimage{ssDot.png} a single pixel (use ssDisc or ssCircle if you want a round shape with a certain...
@ ssCustom
custom painter operations are performed per scatter (As QPainterPath, see setCustomPath)
@ ssSquare
\enumimage{ssSquare.png} a square
@ ssDisc
\enumimage{ssDisc.png} a circle which is filled with the pen's color (not the brush as with ssCircle)
@ ssPlus
\enumimage{ssPlus.png} a plus
@ ssDiamond
\enumimage{ssDiamond.png} a diamond
@ ssCrossCircle
\enumimage{ssCrossCircle.png} a circle with a cross inside
@ ssPlusSquare
\enumimage{ssPlusSquare.png} a square with a plus inside
@ ssStar
\enumimage{ssStar.png} a star with eight arms, i.e. a combination of cross and plus
@ ssTriangleInverted
\enumimage{ssTriangleInverted.png} an equilateral triangle, standing on corner
@ ssPlusCircle
\enumimage{ssPlusCircle.png} a circle with a plus inside
@ ssCrossSquare
\enumimage{ssCrossSquare.png} a square with a cross inside
@ ssTriangle
\enumimage{ssTriangle.png} an equilateral triangle, standing on baseline
@ ssCircle
\enumimage{ssCircle.png} a circle
@ ssPixmap
a custom pixmap specified by setPixmap, centered on the data point coordinates
@ ssCross
\enumimage{ssCross.png} a cross
@ ssNone
no scatter symbols are drawn (e.g. in QCPGraph, data only represented with lines)
@ ssPeace
\enumimage{ssPeace.png} a circle, with one vertical and two downward diagonal lines
void applyTo(QCPPainter *painter, const QPen &defaultPen) const
void setBracketStyle(BracketStyle style)
void setBracketBrush(const QBrush &brush)
virtual void drawBracket(QCPPainter *painter, int direction) const
virtual void drawDecoration(QCPPainter *painter, QCPDataSelection selection) override
void setTangentToData(bool enabled)
QPointF getPixelCoordinates(const QCPPlottableInterface1D *interface1d, int dataIndex) const
@ bsEllipse
An ellipse is drawn. The size of the ellipse is given by the bracket width/height properties.
@ bsSquareBracket
A square bracket is drawn.
@ bsHalfEllipse
A half ellipse is drawn. The size of the ellipse is given by the bracket width/height properties.
double getTangentAngle(const QCPPlottableInterface1D *interface1d, int dataIndex, int direction) const
void setBracketPen(const QPen &pen)
void setTangentAverage(int pointCount)
Controls how a plottable's data selection is drawn.
QCPScatterStyle getFinalScatterStyle(const QCPScatterStyle &unselectedStyle) const
void applyBrush(QCPPainter *painter) const
virtual void copyFrom(const QCPSelectionDecorator *other)
virtual void drawDecoration(QCPPainter *painter, QCPDataSelection selection)
void applyPen(QCPPainter *painter) const
void setUsedScatterProperties(const QCPScatterStyle::ScatterProperties &properties)
void setBrush(const QBrush &brush)
void setScatterStyle(const QCPScatterStyle &scatterStyle, QCPScatterStyle::ScatterProperties usedProperties=QCPScatterStyle::spPen)
void setPen(const QPen &pen)
virtual bool registerWithPlottable(QCPAbstractPlottable *plottable)
Provides rect/rubber-band data selection and range zoom interaction.
void accepted(const QRect &rect, QMouseEvent *event)
virtual void keyPressEvent(QKeyEvent *event)
void changed(const QRect &rect, QMouseEvent *event)
QCPRange range(const QCPAxis *axis) const
virtual void startSelection(QMouseEvent *event)
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
virtual void endSelection(QMouseEvent *event)
void started(QMouseEvent *event)
virtual void moveSelection(QMouseEvent *event)
virtual void draw(QCPPainter *painter) override
void setBrush(const QBrush &brush)
bool isActive() const
void setPen(const QPen &pen)
QCPSelectionRect(QCustomPlot *parentPlot)
void canceled(const QRect &rect, QInputEvent *event)
Q_SLOT void cancel()
Holds the data of one single data point for QCPStatisticalBox.
virtual void drawStatisticalBox(QCPPainter *painter, QCPStatisticalBoxDataContainer::const_iterator it, const QCPScatterStyle &outlierStyle) const
void setData(QSharedPointer< QCPStatisticalBoxDataContainer > data)
void setWidth(double width)
void getVisibleDataBounds(QCPStatisticalBoxDataContainer::const_iterator &begin, QCPStatisticalBoxDataContainer::const_iterator &end) const
QVector< QLineF > getWhiskerBackboneLines(QCPStatisticalBoxDataContainer::const_iterator it) const
virtual void drawLegendIcon(QCPPainter *painter, const QRectF &rect) const override
void setWhiskerPen(const QPen &pen)
virtual QCPDataSelection selectTestRect(const QRectF &rect, bool onlySelectable) const override
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
void setWhiskerAntialiased(bool enabled)
void setMedianPen(const QPen &pen)
QSharedPointer< QCPStatisticalBoxDataContainer > data() const
QCPStatisticalBox(QCPAxis *keyAxis, QCPAxis *valueAxis)
virtual QCPRange getValueRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth, const QCPRange &inKeyRange=QCPRange()) const override
void addData(const QVector< double > &keys, const QVector< double > &minimum, const QVector< double > &lowerQuartile, const QVector< double > &median, const QVector< double > &upperQuartile, const QVector< double > &maximum, bool alreadySorted=false)
QRectF getQuartileBox(QCPStatisticalBoxDataContainer::const_iterator it) const
void setWhiskerBarPen(const QPen &pen)
virtual QCPRange getKeyRange(bool &foundRange, QCP::SignDomain inSignDomain=QCP::sdBoth) const override
void setOutlierStyle(const QCPScatterStyle &style)
virtual void draw(QCPPainter *painter) override
void setWhiskerWidth(double width)
QVector< QLineF > getWhiskerBarLines(QCPStatisticalBoxDataContainer::const_iterator it) const
void setFont(const QFont &font)
void setSelectedFont(const QFont &font)
virtual void mouseDoubleClickEvent(QMouseEvent *event, const QVariant &details) override
virtual QSize maximumOuterSizeHint() const override
Q_SLOT void setSelectable(bool selectable)
virtual void selectEvent(QMouseEvent *event, bool additive, const QVariant &details, bool *selectionStateChanged) override
void selectionChanged(bool selected)
void setTextColor(const QColor &color)
virtual void mousePressEvent(QMouseEvent *event, const QVariant &details) override
virtual void mouseReleaseEvent(QMouseEvent *event, const QPointF &startPos) override
QColor mainTextColor() const
virtual void draw(QCPPainter *painter) override
void doubleClicked(QMouseEvent *event)
virtual void applyDefaultAntialiasingHint(QCPPainter *painter) const override
void setTextFlags(int flags)
Q_SLOT void setSelected(bool selected)
void setSelectedTextColor(const QColor &color)
void setText(const QString &text)
void clicked(QMouseEvent *event)
virtual double selectTest(const QPointF &pos, bool onlySelectable, QVariant *details=nullptr) const override
QCPTextElement(QCustomPlot *parentPlot)
QFont mainFont() const
virtual QSize minimumOuterSizeHint() const override
virtual void deselectEvent(bool *selectionStateChanged) override
Represents two doubles as a mathematical 2D vector.
QCPVector2D perpendicular() const
double length() const
double distanceSquaredToLine(const QCPVector2D &start, const QCPVector2D &end) const
double angle() const
double dot(const QCPVector2D &vec) const
QCPVector2D & operator-=(const QCPVector2D &vector)
QCPVector2D normalized() const
double lengthSquared() const
QCPVector2D & operator+=(const QCPVector2D &vector)
QCPVector2D & operator*=(double factor)
QPointF toPointF() const
double distanceToStraightLine(const QCPVector2D &base, const QCPVector2D &direction) const
QCPVector2D & operator/=(double divisor)
The central class of the library. This is the QWidget which displays the plot and interacts with the ...
void legendDoubleClick(QCPLegend *legend, QCPAbstractLegendItem *item, QMouseEvent *event)
QCPLayer * currentLayer() const
void drawBackground(QCPPainter *painter)
QCPLayer * layer(const QString &name) const
void setSelectionRect(QCPSelectionRect *selectionRect)
void beforeReplot()
QList< QCPAxisRect * > axisRects() const
QCPAbstractItem * item() const
void setBackground(const QPixmap &pm)
void setBufferDevicePixelRatio(double ratio)
int itemCount() const
void toPainter(QCPPainter *painter, int width=0, int height=0)
void setupPaintBuffers()
QCPGraph * addGraph(QCPAxis *keyAxis=nullptr, QCPAxis *valueAxis=nullptr)
QCPAbstractPlottable * plottable(int index)
void setBackgroundScaled(bool scaled)
void setPlottingHint(QCP::PlottingHint hint, bool enabled=true)
QCustomPlot(QWidget *parent=nullptr)
void setViewport(const QRect &rect)
QList< QCPLayerable * > layerableListAt(const QPointF &pos, bool onlySelectable, QList< QVariant > *selectionDetails=nullptr) const
bool removeLayer(QCPLayer *layer)
void setInteraction(const QCP::Interaction &interaction, bool enabled=true)
@ rpQueuedReplot
Queues the entire replot for the next event loop iteration. This way multiple redundant replots can b...
@ rpRefreshHint
Whether to use immediate or queued refresh depends on whether the plotting hint QCP::phImmediateRefre...
@ rpImmediateRefresh
Replots immediately and repaints the widget immediately by calling QWidget::repaint() after the replo...
@ rpQueuedRefresh
Replots immediately, but queues the widget repaint, by calling QWidget::update() after the replot....
QCPAxisRect * axisRectAt(const QPointF &pos) const
void setBackgroundScaledMode(Qt::AspectRatioMode mode)
void setSelectionTolerance(int pixels)
QCPLegend * legend
void selectionChangedByUser()
PlottableType * plottableAt(const QPointF &pos, bool onlySelectable=false, int *dataIndex=nullptr) const
virtual Q_SLOT void processRectZoom(QRect rect, QMouseEvent *event)
int graphCount() const
void setInteractions(const QCP::Interactions &interactions)
int plottableCount() const
void axisDoubleClick(QCPAxis *axis, QCPAxis::SelectablePart part, QMouseEvent *event)
virtual void updateLayout()
void afterReplot()
bool hasPlottable(QCPAbstractPlottable *plottable) const
bool setCurrentLayer(const QString &name)
void mouseMove(QMouseEvent *event)
QList< QCPAbstractPlottable * > selectedPlottables() const
@ limAbove
Layer is inserted above other layer.
bool saveJpg(const QString &fileName, int width=0, int height=0, double scale=1.0, int quality=-1, int resolution=96, QCP::ResolutionUnit resolutionUnit=QCP::ruDotsPerInch)
void setNoAntialiasingOnDrag(bool enabled)
void legendClick(QCPLegend *legend, QCPAbstractLegendItem *item, QMouseEvent *event)
void setOpenGl(bool enabled, int multisampling=16)
QList< QCPAxis * > selectedAxes() const
void updateLayerIndices() const
void setSelectionRectMode(QCP::SelectionRectMode mode)
virtual void mouseReleaseEvent(QMouseEvent *event) override
virtual void mouseDoubleClickEvent(QMouseEvent *event) override
void plottableDoubleClick(QCPAbstractPlottable *plottable, int dataIndex, QMouseEvent *event)
ItemType * itemAt(const QPointF &pos, bool onlySelectable=false) const
virtual void axisRemoved(QCPAxis *axis)
virtual void resizeEvent(QResizeEvent *event) override
bool addLayer(const QString &name, QCPLayer *otherLayer=nullptr, LayerInsertMode insertMode=limAbove)
int axisRectCount() const
void setMultiSelectModifier(Qt::KeyboardModifier modifier)
bool removeGraph(QCPGraph *graph)
QCPAbstractPaintBuffer * createPaintBuffer()
void setPlottingHints(const QCP::PlottingHints &hints)
virtual QSize sizeHint() const override
QCPLayerable * layerableAt(const QPointF &pos, bool onlySelectable, QVariant *selectionDetails=nullptr) const
QCPAxis * xAxis
void mouseDoubleClick(QMouseEvent *event)
virtual void legendRemoved(QCPLegend *legend)
Q_SLOT void deselectAll()
void afterLayout()
Q_SLOT void replot(QCustomPlot::RefreshPriority refreshPriority=QCustomPlot::rpRefreshHint)
QPixmap toPixmap(int width=0, int height=0, double scale=1.0)
QCPGraph * graph() const
virtual void mousePressEvent(QMouseEvent *event) override
void axisClick(QCPAxis *axis, QCPAxis::SelectablePart part, QMouseEvent *event)
virtual Q_SLOT void processRectSelection(QRect rect, QMouseEvent *event)
virtual Q_SLOT void processPointSelection(QMouseEvent *event)
void mouseWheel(QWheelEvent *event)
void itemDoubleClick(QCPAbstractItem *item, QMouseEvent *event)
QList< QCPLegend * > selectedLegends() const
void mouseRelease(QMouseEvent *event)
bool savePng(const QString &fileName, int width=0, int height=0, double scale=1.0, int quality=-1, int resolution=96, QCP::ResolutionUnit resolutionUnit=QCP::ruDotsPerInch)
void mousePress(QMouseEvent *event)
bool registerGraph(QCPGraph *graph)
virtual void wheelEvent(QWheelEvent *event) override
QList< QCPGraph * > selectedGraphs() const
bool hasInvalidatedPaintBuffers()
double replotTime(bool average=false) const
bool savePdf(const QString &fileName, int width=0, int height=0, QCP::ExportPen exportPen=QCP::epAllowCosmetic, const QString &pdfCreator=QString(), const QString &pdfTitle=QString())
bool saveRastered(const QString &fileName, int width, int height, double scale, const char *format, int quality=-1, int resolution=96, QCP::ResolutionUnit resolutionUnit=QCP::ruDotsPerInch)
virtual void draw(QCPPainter *painter)
QCPSelectionRect * selectionRect() const
Q_SLOT void rescaleAxes(bool onlyVisiblePlottables=false)
void setAutoAddPlottableToLegend(bool on)
QCPAxis * xAxis2
QCPAbstractPlottable * plottable()
bool removeItem(QCPAbstractItem *item)
void setNotAntialiasedElements(const QCP::AntialiasedElements &notAntialiasedElements)
void itemClick(QCPAbstractItem *item, QMouseEvent *event)
bool saveBmp(const QString &fileName, int width=0, int height=0, double scale=1.0, int resolution=96, QCP::ResolutionUnit resolutionUnit=QCP::ruDotsPerInch)
QCPAxisRect * axisRect(int index=0) const
bool moveLayer(QCPLayer *layer, QCPLayer *otherLayer, LayerInsertMode insertMode=limAbove)
virtual void paintEvent(QPaintEvent *event) override
bool registerPlottable(QCPAbstractPlottable *plottable)
void setAntialiasedElement(QCP::AntialiasedElement antialiasedElement, bool enabled=true)
bool hasItem(QCPAbstractItem *item) const
QCPAxis * yAxis2
virtual QSize minimumSizeHint() const override
bool removePlottable(QCPAbstractPlottable *plottable)
void plottableClick(QCPAbstractPlottable *plottable, int dataIndex, QMouseEvent *event)
virtual void mouseMoveEvent(QMouseEvent *event) override
void setAntialiasedElements(const QCP::AntialiasedElements &antialiasedElements)
QCPAxis * yAxis
int layerCount() const
QCPLayoutElement * layoutElementAt(const QPointF &pos) const
bool registerItem(QCPAbstractItem *item)
void setNotAntialiasedElement(QCP::AntialiasedElement notAntialiasedElement, bool enabled=true)
QList< QCPAbstractItem * > selectedItems() const
Type type(const QSqlDatabase &db)
const QList< QKeySequence > & begin()
const QList< QKeySequence > & end()
bool isInvalidData(double value)
@ epNoCosmetic
Cosmetic pens are converted to pens with pixel width 1 when exporting.
int getMarginValue(const QMargins &margins, QCP::MarginSide side)
Interaction
@ iSelectLegend
0x020 Legends are selectable (or their child items, see QCPLegend::setSelectableParts)
@ iRangeDrag
0x001 Axis ranges are draggable (see QCPAxisRect::setRangeDrag, QCPAxisRect::setRangeDragAxes)
@ iSelectPlottables
0x008 Plottables are selectable (e.g. graphs, curves, bars,... see QCPAbstractPlottable)
@ iRangeZoom
0x002 Axis ranges are zoomable with the mouse wheel (see QCPAxisRect::setRangeZoom,...
@ iSelectPlottablesBeyondAxisRect
0x100 When performing plottable selection/hit tests, this flag extends the sensitive area beyond the ...
@ iSelectAxes
0x010 Axes are selectable (or parts of them, see QCPAxis::setSelectableParts)
@ iSelectItems
0x040 Items are selectable (Rectangles, Arrows, Textitems, etc. see QCPAbstractItem)
@ iMultiSelect
0x004 The user can select multiple objects by holding the modifier set by QCustomPlot::setMultiSelect...
@ iSelectOther
0x080 All other objects are selectable (e.g. your own derived layerables, other layout elements,...
PlottingHint
@ phImmediateRefresh
0x002 causes an immediate repaint() instead of a soft update() when QCustomPlot::replot() is called w...
@ phCacheLabels
0x004 axis (tick) labels will be cached as pixmaps, increasing replot performance.
@ phFastPolylines
0x001 Graph/Curve lines are drawn with a faster method.
ResolutionUnit
@ ruDotsPerCentimeter
Resolution is given in dots per centimeter (dpcm)
@ ruDotsPerMeter
Resolution is given in dots per meter (dpm)
@ ruDotsPerInch
Resolution is given in dots per inch (DPI/PPI)
@ msAll
0xFF all margins
@ msBottom
0x08 bottom margin
@ msTop
0x04 top margin
@ msNone
0x00 no margin
@ msRight
0x02 right margin
@ msLeft
0x01 left margin
SelectionType
@ stMultipleDataRanges
Any combination of data points/ranges can be selected.
@ stDataRange
Multiple contiguous data points (a data range) can be selected.
@ stNone
The plottable is not selectable.
@ stSingleData
One individual data point can be selected at a time.
@ stWhole
Selection behaves like stMultipleDataRanges, but if there are any data points selected,...
SelectionRectMode
@ srmSelect
When dragging the mouse, a selection rect becomes active. Upon releasing, plottable data points that ...
@ srmZoom
When dragging the mouse, a selection rect becomes active. Upon releasing, the axes that are currently...
@ srmNone
The selection rect is disabled, and all mouse events are forwarded to the underlying objects,...
AntialiasedElement
@ aeLegendItems
0x0010 Legend items
@ aeZeroLine
0x0200 Zero-lines, see QCPGrid::setZeroLinePen
@ aePlottables
0x0020 Main lines of plottables
@ aeGrid
0x0002 Grid lines
@ aeOther
0x8000 Other elements that don't fit into any of the existing categories
@ aeFills
0x0100 Borders of fills (e.g. under or between graphs)
@ aeLegend
0x0008 Legend box
@ aeAll
0xFFFF All elements
@ aeSubGrid
0x0004 Sub grid lines
@ aeScatters
0x0080 Scatter symbols of plottables (excluding scatter symbols of type ssPixmap)
@ aeAxes
0x0001 Axis base line and tick marks
@ aeItems
0x0040 Main lines of items
void setMarginValue(QMargins &margins, QCP::MarginSide side, int value)
@ sdNegative
The negative sign domain, i.e. numbers smaller than zero.
@ sdPositive
The positive sign domain, i.e. numbers greater than zero.
@ sdBoth
Both sign domains, including zero, i.e. all numbers.
const QColor & color() const const
void setColor(Qt::GlobalColor color)
void setStyle(Qt::BrushStyle style)
Qt::BrushStyle style() const const
QByteArray & append(QByteArrayView data)
QByteArray number(double n, char format, int precision)
void clear()
bool contains(const Key &key) const const
bool insert(const Key &key, T *object, qsizetype cost)
qsizetype maxCost() const const
T * object(const Key &key) const const
void setMaxCost(qsizetype cost)
T * take(const Key &key)
int alpha() const const
float alphaF() const const
int blue() const const
float blueF() const const
QColor fromHsvF(float h, float s, float v, float a)
int green() const const
float greenF() const const
QString name(NameFormat format) const const
int red() const const
float redF() const const
QRgb rgb() const const
QRgb rgba() const const
QPoint pos()
QDateTime startOfDay() const const
QDateTime fromMSecsSinceEpoch(qint64 msecs)
QTime time() const const
qint64 toMSecsSinceEpoch() const const
bool testFlag(Enum flag) const const
int pixelSize() const const
int pointSize() const const
qreal pointSizeF() const const
void setPixelSize(int pixelSize)
void setPointSize(int pointSize)
void setPointSizeF(qreal pointSize)
QString toString() const const
QRect boundingRect(QChar ch) const const
bool contains(const Key &key) const const
iterator insert(const Key &key, const T &value)
bool remove(const Key &key)
T value(const Key &key) const const
void fill(Qt::GlobalColor color)
int height() const const
bool isNull() const const
QImage mirrored(bool horizontal, bool vertical) &&
bool save(QIODevice *device, const char *format, int quality) const const
QImage scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode, Qt::TransformationMode transformMode) const const
uchar * scanLine(int i)
void setDotsPerMeterX(int x)
void setDotsPerMeterY(int y)
int width() const const
bool isNull() const const
QPointF p1() const const
QPointF p2() const const
void setLine(qreal x1, qreal y1, qreal x2, qreal y2)
void setPoints(const QPointF &p1, const QPointF &p2)
QLine toLine() const const
QLineF translated(const QPointF &offset) const const
qreal x1() const const
qreal x2() const const
qreal y1() const const
qreal y2() const const
QList< T > toVector() const const
void append(QList< T > &&value)
const_reference at(qsizetype i) const const
iterator begin()
void clear()
bool contains(const AT &value) const const
iterator end()
T & first()
qsizetype indexOf(const AT &value, qsizetype from) const const
iterator insert(const_iterator before, parameter_type value)
bool isEmpty() const const
T & last()
void move(qsizetype from, qsizetype to)
void prepend(parameter_type value)
void removeAt(qsizetype i)
void removeLast()
bool removeOne(const AT &t)
qsizetype size() const const
OmitGroupSeparator
void setNumberOptions(NumberOptions options)
QString toString(QDate date, FormatType format) const const
void clear()
const_iterator constBegin() const const
const_iterator constEnd() const const
iterator insert(const Key &key, const T &value)
bool isEmpty() const const
size_type size() const const
T value(const Key &key, const T &defaultValue) const const
int bottom() const const
int left() const const
int right() const const
int top() const const
const QObjectList & children() const const
QMetaObject::Connection connect(const QObject *sender, PointerToMemberFunction signal, Functor functor)
bool disconnect(const QMetaObject::Connection &connection)
virtual bool event(QEvent *e)
QObject * parent() const const
QObject * sender() const const
void setParent(QObject *parent)
void setFormat(const QSurfaceFormat &format)
QOpenGLContext * currentContext()
virtual bool setPageLayout(const QPageLayout &newPageLayout)
bool setMargins(const QMarginsF &margins)
void setMode(Mode mode)
void setOrientation(Orientation orientation)
void setPageSize(const QPageSize &pageSize, const QMarginsF &minMargins)
qreal devicePixelRatio() const const
qreal devicePixelRatioF() const const
bool begin(QPaintDevice *device)
const QBrush & brush() const const
QRectF clipBoundingRect() const const
QRegion clipRegion() const const
QPaintDevice * device() const const
void drawArc(const QRect &rectangle, int startAngle, int spanAngle)
void drawConvexPolygon(const QPoint *points, int pointCount)
void drawEllipse(const QPoint &center, int rx, int ry)
void drawImage(const QPoint &point, const QImage &image)
void drawLine(const QLine &line)
void drawLines(const QLine *lines, int lineCount)
void drawPath(const QPainterPath &path)
void drawPixmap(const QPoint &point, const QPixmap &pixmap)
void drawPolygon(const QPoint *points, int pointCount, Qt::FillRule fillRule)
void drawPolyline(const QPoint *points, int pointCount)
void drawRect(const QRect &rectangle)
void drawText(const QPoint &position, const QString &text)
bool end()
void fillPath(const QPainterPath &path, const QBrush &brush)
void fillRect(const QRect &rectangle, QGradient::Preset preset)
const QFont & font() const const
QFontMetrics fontMetrics() const const
bool isActive() const const
const QPen & pen() const const
void restore()
void rotate(qreal angle)
void save()
void scale(qreal sx, qreal sy)
void setBrush(Qt::BrushStyle style)
void setClipRect(const QRect &rectangle, Qt::ClipOperation operation)
void setClipRegion(const QRegion &region, Qt::ClipOperation operation)
void setFont(const QFont &font)
void setPen(Qt::PenStyle style)
void setRenderHint(RenderHint hint, bool on)
void setTransform(const QTransform &transform, bool combine)
const QTransform & transform() const const
void translate(const QPoint &offset)
QColor color() const const
bool isCosmetic() const const
void setColor(const QColor &color)
void setStyle(Qt::PenStyle style)
void setWidth(int width)
Qt::PenStyle style() const const
qreal widthF() const const
qreal devicePixelRatio() const const
void fill(const QColor &color)
QPixmap fromImage(QImage &&image, Qt::ImageConversionFlags flags)
int height() const const
bool isNull() const const
QRect rect() const const
QPixmap scaled(const QSize &size, Qt::AspectRatioMode aspectRatioMode, Qt::TransformationMode transformMode) const const
void setDevicePixelRatio(qreal scaleFactor)
QSize size() const const
QImage toImage() const const
int width() const const
void setX(int x)
void setY(int y)
int x() const const
int y() const const
T * data() const const
bool isNull() const const
qreal & rx()
qreal & ry()
void setX(qreal x)
void setY(qreal y)
QPoint toPoint() const const
qreal x() const const
qreal y() const const
virtual void setProperty(PrintEnginePropertyKey key, const QVariant &value)=0
QPrintEngine * printEngine() const const
void setColorMode(ColorMode newColorMode)
void setFullPage(bool fp)
void setOutputFileName(const QString &fileName)
void setOutputFormat(OutputFormat format)
void adjust(int dx1, int dy1, int dx2, int dy2)
QRect adjusted(int dx1, int dy1, int dx2, int dy2) const const
int bottom() const const
QPoint bottomLeft() const const
QPoint bottomRight() const const
QPoint center() const const
bool contains(const QPoint &point, bool proper) const const
int height() const const
bool intersects(const QRect &rectangle) const const
int left() const const
void moveTopLeft(const QPoint &position)
QRect normalized() const const
int right() const const
void setBottomRight(const QPoint &position)
void setCoords(int x1, int y1, int x2, int y2)
QSize size() const const
int top() const const
QPoint topLeft() const const
QPoint topRight() const const
int width() const const
int x() const const
int y() const const
void adjust(qreal dx1, qreal dy1, qreal dx2, qreal dy2)
QRectF adjusted(qreal dx1, qreal dy1, qreal dx2, qreal dy2) const const
qreal bottom() const const
QPointF bottomLeft() const const
QPointF bottomRight() const const
QPointF center() const const
bool contains(const QPointF &point) const const
qreal height() const const
bool intersects(const QRectF &rectangle) const const
qreal left() const const
void moveBottom(qreal y)
void moveCenter(const QPointF &position)
void moveLeft(qreal x)
void moveRight(qreal x)
void moveTop(qreal y)
QRectF normalized() const const
qreal right() const const
void setBottomRight(const QPointF &position)
void setHeight(qreal height)
void setSize(const QSizeF &size)
void setTopLeft(const QPointF &position)
void setWidth(qreal width)
QSizeF size() const const
qreal top() const const
QPointF topLeft() const const
QPointF topRight() const const
QRectF translated(const QPointF &offset) const const
qreal width() const const
QRect boundingRect() const const
bool contains(const QSet< T > &other) const const
iterator insert(const T &value)
bool remove(const T &value)
QList< T > values() const const
QSharedPointer< X > dynamicCast() const const
int height() const const
int & rheight()
int & rwidth()
void scale(const QSize &size, Qt::AspectRatioMode mode)
void setHeight(int height)
void setWidth(int width)
int width() const const
qreal height() const const
QSize toSize() const const
qreal width() const const
void push(const T &t)
QString & append(QChar ch)
QString arg(Args &&... args) const const
const QChar at(qsizetype position) const const
bool contains(QChar ch, Qt::CaseSensitivity cs) const const
QString fromUtf8(QByteArrayView str)
qsizetype indexOf(QChar ch, qsizetype from, Qt::CaseSensitivity cs) const const
bool isEmpty() const const
QString left(qsizetype n) const const
qsizetype length() const const
QString mid(qsizetype position, qsizetype n) const const
QString number(double n, char format, int precision)
QString & prepend(QChar ch)
QString & remove(QChar ch, Qt::CaseSensitivity cs)
QString & replace(QChar before, QChar after, Qt::CaseSensitivity cs)
qsizetype size() const const
QByteArray toLatin1() const const
QByteArray toUtf8() const const
QString trimmed() const const
typedef Alignment
AspectRatioMode
SolidPattern
IntersectClip
ClickFocus
PinchGesture
transparent
Key_Escape
KeyboardModifier
LeftButton
Horizontal
MiterJoin
PenStyle
TextDontClip
TimeSpec
SmoothTransformation
WA_NoMousePropagation
QTextStream & center(QTextStream &stream)
int msec() const const
QRect mapRect(const QRect &rectangle) const const
QVariant fromValue(T &&value)
void setValue(QVariant &&value)
T value() const const
QSharedPointer< T > toStrongRef() const const
virtual bool event(QEvent *event) override
void setFocusPolicy(Qt::FocusPolicy policy)
void grabGesture(Qt::GestureType gesture, Qt::GestureFlags flags)
QPoint mapFromGlobal(const QPoint &pos) const const
void setMouseTracking(bool enable)
void repaint()
void setAttribute(Qt::WidgetAttribute attribute, bool on)
void update()
This file is part of the KDE documentation.
Documentation copyright © 1996-2024 The KDE developers.
Generated on Tue Mar 26 2024 11:19:01 by doxygen 1.10.0 written by Dimitri van Heesch, © 1997-2006

KDE's Doxygen guidelines are available online.